Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 140
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Pharmacol Drug Dev ; 12(10): 1022-1035, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37477389

RESUMO

Bempedoic acid is an adenosine triphosphate citrate lyase inhibitor that lowers low-density lipoprotein cholesterol by inhibiting cholesterol synthesis and upregulating hepatic low-density lipoprotein receptor expression. After oral dosing, bempedoic acid was readily absorbed, attaining maximum concentrations with a median time of 3.5 hours, and may be taken without regard to food. Steady-state oral pharmacokinetics in healthy adults receiving bempedoic acid at the approved 180 mg/day dose were characterized by mean maximum concentration of 20.6 µg/mL, area under the concentration-time curve over 24 hours of 289 µg·h/mL, and elimination half-life of 21.1 hours. Multiple-dose pharmacokinetics were linear at bempedoic acid doses of 120-220 mg/day. Circulating concentrations of the active metabolite ESP15228 were 18.0% of bempedoic acid concentrations on average. Comparisons of bempedoic acid 180 mg/day pharmacokinetics after single and multiple dosing revealed no clinically meaningful differences between Japanese, Chinese, and Western subjects. Mean estimates of bempedoic acid elimination half-life in Japanese (25.2 hours) and Chinese (20.0 hours) subjects were comparable to Western subjects (23.9 hours) following 14 days of once-daily dosing. Bempedoic acid was generally safe and well tolerated up to a dose of 220 mg/day across the study populations described herein.


Assuntos
População do Leste Asiático , Hipolipemiantes , Oxo-Ácido-Liases , Adulto , Humanos , Trifosfato de Adenosina/antagonistas & inibidores , LDL-Colesterol , Oxo-Ácido-Liases/administração & dosagem , Oxo-Ácido-Liases/efeitos adversos , Oxo-Ácido-Liases/antagonistas & inibidores , Hipolipemiantes/efeitos adversos , Hipolipemiantes/farmacocinética , Administração Oral
2.
J Antibiot (Tokyo) ; 74(6): 370-380, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33580212

RESUMO

The emergence of multi-drug resistant pathogenic bacteria represents a serious and growing threat to national healthcare systems. Most pressing is an immediate need for the development of novel antibacterial agents to treat Gram-negative multi-drug resistant infections, including the opportunistic, hospital-derived pathogen, Acinetobacter baumannii. Herein we report a naturally occurring 1,2-benzisoxazole with minimum inhibitory concentrations as low as 6.25 µg ml-1 against clinical strains of multi-drug resistant A. baumannii and investigate its possible mechanisms of action. This molecule represents a new chemotype for antibacterial agents against A. baumannii and is easily accessed in two steps via de novo synthesis. In vitro testing of structural analogs suggest that the natural compound may already be optimized for activity against this pathogen. Our results demonstrate that supplementation of 4-hydroxybenzoate in minimal media was able to reverse 1,2-benzisoxazole's antibacterial effects in A. baumannii. A search of metabolic pathways involving 4-hydroxybenzoate coupled with molecular modeling studies implicates two enzymes, chorismate pyruvate-lyase and 4-hydroxybenzoate octaprenyltransferase, as promising leads for the target of 3,6-dihydroxy-1,2-benzisoxazole.


Assuntos
Acinetobacter baumannii/efeitos dos fármacos , Antibacterianos/química , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Bradyrhizobium/metabolismo , Antagonismo de Drogas , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Estrutura Molecular , Oxo-Ácido-Liases/antagonistas & inibidores , Oxo-Ácido-Liases/química , Oxo-Ácido-Liases/metabolismo , Parabenos/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos
3.
Sci Rep ; 10(1): 4860, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32184419

RESUMO

The opportunistic pathogen Malassezia pachydermatis causes bloodstream infections in preterm infants or individuals with immunodeficiency disorders and has been associated with a broad spectrum of diseases in animals such as seborrheic dermatitis, external otitis and fungemia. The current approaches to treat these infections are failing as a consequence of their adverse effects, changes in susceptibility and antifungal resistance. Thus, the identification of novel therapeutic targets against M. pachydermatis infections are highly relevant. Here, Gene Essentiality Analysis and Flux Variability Analysis was applied to a previously reported M. pachydermatis metabolic network to identify enzymes that, when absent, negatively affect biomass production. Three novel therapeutic targets (i.e., homoserine dehydrogenase (MpHSD), homocitrate synthase (MpHCS) and saccharopine dehydrogenase (MpSDH)) were identified that are absent in humans. Notably, L-lysine was shown to be an inhibitor of the enzymatic activity of MpHCS and MpSDH at concentrations of 1 mM and 75 mM, respectively, while L-threonine (1 mM) inhibited MpHSD. Interestingly, L- lysine was also shown to inhibit M. pachydermatis growth during in vitro assays with reference strains and canine isolates, while it had a negligible cytotoxic activity on HEKa cells. Together, our findings form the bases for the development of novel treatments against M. pachydermatis infections.


Assuntos
Dermatomicoses/microbiologia , Proteínas Fúngicas/antagonistas & inibidores , Fungemia/microbiologia , Lisina/farmacologia , Malassezia/crescimento & desenvolvimento , Treonina/farmacologia , Animais , Linhagem Celular , Dermatomicoses/tratamento farmacológico , Dermatomicoses/veterinária , Relação Dose-Resposta a Droga , Fungemia/tratamento farmacológico , Genes Essenciais , Homosserina Desidrogenase/antagonistas & inibidores , Humanos , Malassezia/efeitos dos fármacos , Oxo-Ácido-Liases/antagonistas & inibidores , Sacaropina Desidrogenases/antagonistas & inibidores
4.
PLoS One ; 14(10): e0223413, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31618227

RESUMO

Neisseria meningitidis is the primary cause of bacterial meningitis in many parts of the world, with considerable mortality rates among neonates and adults. In Saudi Arabia, serious outbreaks of N. meningitidis affecting several hundreds of pilgrims attending Hajj in Makkah were recorded in the 2000-2001 season. Evidence shows increased rates of bacterial resistance to penicillin and other antimicrobial agents that are used in the treatment of the meningococcal disease. The host's immune system becomes unable to recognize the polysialic acid capsule of the resistant N. meningitidis that mimics the mammalian cell surface. The biosynthetic pathways of sialic acid (i.e., N-acetylneuraminic acid [NANA]) in bacteria, however, are somewhat different from those in mammals. The largest obstacle facing previously identified inhibitors of NANA synthase (NANAS) in N. meningitidis is that these inhibitors feature undesired chemical and pharmacological characteristics. To better comprehend the binding mechanism underlying these inhibitors at the catalytic site of NANAS, we performed molecular modeling studies to uncover essential structural aspects for the ultimate recognition at the catalytic site required for optimal inhibitory activity. Applying two virtual screening candidate molecules and one designed molecule showed promising structural scaffolds. Here, we report ethyl 3-benzoyl-2,7-dimethyl indolizine-1-carboxylate (INLZ) as a novel molecule with high energetic fitness scores at the catalytic site of the NmeNANAS enzyme. INLZ represents a promising scaffold for NmeNANAS enzyme inhibitors, with new prospects for further structural development and activity optimization.


Assuntos
Antibacterianos/síntese química , Antibacterianos/farmacologia , Ácido N-Acetilneuramínico/síntese química , Ácido N-Acetilneuramínico/farmacologia , Neisseria meningitidis/efeitos dos fármacos , Antibacterianos/química , Humanos , Infecções Meningocócicas/tratamento farmacológico , Infecções Meningocócicas/microbiologia , Modelos Moleculares , Conformação Molecular , Estrutura Molecular , Ácido N-Acetilneuramínico/química , Oxo-Ácido-Liases/antagonistas & inibidores , Oxo-Ácido-Liases/química , Relação Estrutura-Atividade
5.
Biochemistry ; 58(41): 4236-4245, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31549502

RESUMO

NeuB is a bacterial sialic acid synthase used by neuroinvasive bacteria to synthesize N-acetylneuraminate (NeuNAc), helping them to evade the host immune system. NeuNAc oxime is a potent slow-binding NeuB inhibitor. It dissociated too slowly to be detected experimentally, with initial estimates of its residence time in the active site being >47 days. This is longer than the lifetime of a typical bacterial cell, meaning that inhibition is effectively irreversible. Inhibition data fitted well to a model that included a pre-equilibration step with a Ki of 36 µM, followed by effectively irreversible conversion to an E*·I complex, with a k2 of 5.6 × 10-5 s-1. Thus, the inhibitor can subvert ligand release and achieve extraordinary residence times in spite of a relatively modest initial dissociation constant. The crystal structure showed the oxime functional group occupying the phosphate-binding site normally occupied by the substrate PEP and the tetrahedral intermediate. There was an ≈10% residual rate at high inhibitor concentrations regardless of how long NeuB and NeuNAc oxime were preincubated together. However, complete inhibition was achieved by incubating NeuNAc oxime with the actively catalyzing enzyme. This requirement for the enzyme to be actively turning over for the inhibitor to bind to the second subunit demonstrated an important role for intersubunit communication in the inhibitory mechanism.


Assuntos
Ácido N-Acetilneuramínico/química , Oximas/química , Oximas/farmacologia , Oxo-Ácido-Liases/antagonistas & inibidores , Oxo-Ácido-Liases/química , 3-Desoxi-7-Fosfo-Heptulonato Sintase/química , Aldeído Liases/química , Domínio Catalítico , Cristalização , Cristalografia por Raios X , Vetores Genéticos , Cinética , Neisseria meningitidis/genética , Oximas/síntese química , Oxo-Ácido-Liases/isolamento & purificação , Ligação Proteica , Fatores de Tempo , Triose-Fosfato Isomerase/química
6.
SLAS Discov ; 23(10): 1070-1082, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29991301

RESUMO

Acquiring sufficient quantities of iron to support survival is often a critical limitation for pathogenic bacteria. To meet this demand, bacteria have evolved unique strategies to scavenge iron and circumvent the nutritional immunity exerted by their hosts. One common strategy, which is often a key virulence factor for bacterial pathogens, involves the synthesis, secretion, and reuptake of iron chelators known as siderophores. In vitro and in vivo studies have demonstrated that the siderophore aerobactin is critical for virulence in the hypervirulent pathotype of Klebsiella pneumoniae (hvKP). Given the high rate of multidrug resistance in K. pneumoniae, and in light of the ever-increasing demand for novel Gram-negative therapeutic targets, we identified aerobactin production as a promising antivirulence target in hvKP. Herein, we describe the development of a high-throughput biochemical assay for identifying inhibitors of the aerobactin synthetase IucA. The assay was employed to screen ~110,000 compounds across several commercially available small-molecule libraries. IucA inhibitors with activity at micromolar concentrations were identified in our screening campaigns and confirmed using secondary orthogonal assays. However, the most potent compounds also exhibited some properties commonly observed with promiscuous/nonspecific inhibitors, including incubation time and target enzyme concentration dependence, as well as the potential to antagonize unrelated enzymes.


Assuntos
Anti-Infecciosos/farmacologia , Descoberta de Drogas , Inibidores Enzimáticos/farmacologia , Ensaios de Triagem em Larga Escala , Oxo-Ácido-Liases/antagonistas & inibidores , Anti-Infecciosos/química , Relação Dose-Resposta a Droga , Descoberta de Drogas/métodos , Inibidores Enzimáticos/química , Expressão Gênica , Genes Reporter , Ácidos Hidroxâmicos/química , Ácidos Hidroxâmicos/metabolismo , Oxo-Ácido-Liases/química
7.
J Biol Chem ; 292(24): 10142-10152, 2017 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-28468827

RESUMO

Contributions of metabolic changes to cancer development and maintenance have received increasing attention in recent years. Although many human cancers share similar metabolic alterations, it remains unclear whether oncogene-specific metabolic alterations are required for tumor development. Using an RNAi-based screen targeting the majority of the known metabolic proteins, we recently found that oncogenic BRAFV600E up-regulates HMG-CoA lyase (HMGCL), which converts HMG-CoA to acetyl-CoA and a ketone body, acetoacetate, that selectively enhances BRAFV600E-dependent MEK1 activation in human cancer. Here, we identified HMG-CoA synthase 1 (HMGCS1), the upstream ketogenic enzyme of HMGCL, as an additional "synthetic lethal" partner of BRAFV600E Although HMGCS1 expression did not correlate with BRAFV600E mutation in human melanoma cells, HMGCS1 was selectively important for proliferation of BRAFV600E-positive melanoma and colon cancer cells but not control cells harboring active N/KRAS mutants, and stable knockdown of HMGCS1 only attenuated colony formation and tumor growth potential of BRAFV600E melanoma cells. Moreover, cytosolic HMGCS1 that co-localized with HMGCL and BRAFV600E was more important than the mitochondrial HMGCS2 isoform in BRAFV600E-expressing cancer cells in terms of acetoacetate production. Interestingly, HMGCL knockdown did not affect HMGCS1 expression levels, whereas HMGCS1 knockdown caused a compensating increase in HMGCL protein level because of attenuated protein degradation. However, this increase did not reverse the reduced ketogenesis in HMGCS1 knockdown cells. Mechanistically, HMGCS1 inhibition decreased intracellular acetoacetate levels, leading to reduced BRAFV600E-MEK1 binding and consequent MEK1 activation. We conclude that the ketogenic HMGCS1-HMGCL-acetoacetate axis may represent a promising therapeutic target for managing BRAFV600E-positive human cancers.


Assuntos
Neoplasias do Colo/enzimologia , Hidroximetilglutaril-CoA Sintase/metabolismo , MAP Quinase Quinase 1/metabolismo , Melanoma/enzimologia , Proteínas de Neoplasias/metabolismo , Oxo-Ácido-Liases/metabolismo , Proteínas Proto-Oncogênicas B-raf/metabolismo , Acetoacetatos/metabolismo , Substituição de Aminoácidos , Animais , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Citosol/enzimologia , Citosol/metabolismo , Ativação Enzimática , Estabilidade Enzimática , Feminino , Humanos , Hidroximetilglutaril-CoA Sintase/antagonistas & inibidores , Hidroximetilglutaril-CoA Sintase/genética , Isoenzimas/antagonistas & inibidores , Isoenzimas/genética , Isoenzimas/metabolismo , MAP Quinase Quinase 1/química , Melanoma/metabolismo , Melanoma/patologia , Camundongos Nus , Mutação , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Transplante de Neoplasias , Oxo-Ácido-Liases/antagonistas & inibidores , Oxo-Ácido-Liases/química , Oxo-Ácido-Liases/genética , Proteólise , Proteínas Proto-Oncogênicas B-raf/genética , Interferência de RNA , Carga Tumoral
8.
FEBS Lett ; 590(23): 4414-4428, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27943302

RESUMO

N-Acetylneuraminate lyase is the first committed enzyme in the degradation of sialic acid by bacterial pathogens. In this study, we analyzed the kinetic parameters of N-acetylneuraminate lyase from methicillin-resistant Staphylococcus aureus (MRSA). We determined that the enzyme has a relatively high KM of 3.2 mm, suggesting that flux through the catabolic pathway is likely to be controlled by this enzyme. Our data indicate that sialic acid alditol, a known inhibitor of N-acetylneuraminate lyase enzymes, is a stronger inhibitor of MRSA N-acetylneuraminate lyase than of Clostridium perfringens N-acetylneuraminate lyase. Our analysis of the crystal structure of ligand-free and 2R-sialic acid alditol-bound MRSA N-acetylneuraminate lyase suggests that subtle dynamic differences in solution and/or altered binding interactions within the active site may account for species-specific inhibition.


Assuntos
Inibidores Enzimáticos/farmacologia , Staphylococcus aureus Resistente à Meticilina/enzimologia , Oxo-Ácido-Liases/antagonistas & inibidores , Oxo-Ácido-Liases/química , Sequência de Aminoácidos , Humanos , Cinética , Modelos Moleculares , Ácido N-Acetilneuramínico/metabolismo , Oxo-Ácido-Liases/metabolismo , Estrutura Quaternária de Proteína , Especificidade da Espécie
9.
Sci Rep ; 6: 25169, 2016 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-27125351

RESUMO

Streptococcus pneumoniae is the leading pathogen causing bacterial pneumonia and meningitis. Its surface-associated virulence factor neuraminidase A (NanA) promotes the bacterial colonization by removing the terminal sialyl residues from glycoconjugates on eukaryotic cell surface. The predominant role of NanA in the pathogenesis of pneumococci renders it an attractive target for therapeutic intervention. Despite the highly conserved activity of NanA, our alignment of the 11 NanAs revealed the evolutionary diversity of this enzyme. The amino acid substitutions we identified, particularly those in the lectin domain and in the insertion domain next to the catalytic centre triggered our special interest. We synthesised the representative NanAs and the mutagenized derivatives from E. coli for enzyme kinetics study and neuraminidase inhibitor susceptibility test. Via molecular docking we got a deeper insight into the differences between the two major variants of NanA and their influence on the ligand-target interactions. In addition, our molecular dynamics simulations revealed a prominent intrinsic flexibility of the linker between the active site and the insertion domain, which influences the inhibitor binding. Our findings for the first time associated the primary sequence diversity of NanA with the biochemical properties of the enzyme and with the inhibitory efficiency of neuraminidase inhibitors.


Assuntos
Inibidores Enzimáticos/metabolismo , Variação Genética , Oxo-Ácido-Liases/genética , Oxo-Ácido-Liases/metabolismo , Streptococcus pneumoniae/enzimologia , Substituição de Aminoácidos , Cinética , Simulação de Acoplamento Molecular , Proteínas Mutantes/antagonistas & inibidores , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Oxo-Ácido-Liases/antagonistas & inibidores , Análise de Sequência de DNA , Streptococcus pneumoniae/genética
10.
Nature ; 526(7574): 591-4, 2015 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-26458103

RESUMO

The most abundant mRNA post-transcriptional modification is N(6)-methyladenosine (m(6)A), which has broad roles in RNA biology. In mammalian cells, the asymmetric distribution of m(6)A along mRNAs results in relatively less methylation in the 5' untranslated region (5'UTR) compared to other regions. However, whether and how 5'UTR methylation is regulated is poorly understood. Despite the crucial role of the 5'UTR in translation initiation, very little is known about whether m(6)A modification influences mRNA translation. Here we show that in response to heat shock stress, certain adenosines within the 5'UTR of newly transcribed mRNAs are preferentially methylated. We find that the dynamic 5'UTR methylation is a result of stress-induced nuclear localization of YTHDF2, a well-characterized m(6)A 'reader'. Upon heat shock stress, the nuclear YTHDF2 preserves 5'UTR methylation of stress-induced transcripts by limiting the m(6)A 'eraser' FTO from demethylation. Remarkably, the increased 5'UTR methylation in the form of m(6)A promotes cap-independent translation initiation, providing a mechanism for selective mRNA translation under heat shock stress. Using Hsp70 mRNA as an example, we demonstrate that a single m(6)A modification site in the 5'UTR enables translation initiation independent of the 5' end N(7)-methylguanosine cap. The elucidation of the dynamic features of 5'UTR methylation and its critical role in cap-independent translation not only expands the breadth of physiological roles of m(6)A, but also uncovers a previously unappreciated translational control mechanism in heat shock response.


Assuntos
Adenosina/análogos & derivados , Regulação da Expressão Gênica , Resposta ao Choque Térmico , Metilação , Iniciação Traducional da Cadeia Peptídica , RNA Mensageiro/metabolismo , Regiões 5' não Traduzidas/genética , Adenosina/metabolismo , Dioxigenase FTO Dependente de alfa-Cetoglutarato , Animais , Linhagem Celular , Núcleo Celular/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Proteínas de Choque Térmico HSP70/genética , Resposta ao Choque Térmico/genética , Camundongos , Oxigenases de Função Mista/antagonistas & inibidores , Oxigenases de Função Mista/metabolismo , Oxo-Ácido-Liases/antagonistas & inibidores , Oxo-Ácido-Liases/metabolismo , Capuzes de RNA/metabolismo , RNA Mensageiro/genética , Proteínas de Ligação a RNA/metabolismo , Transcrição Gênica/genética
11.
PLoS One ; 10(4): e0121829, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25830347

RESUMO

In 2007, a genome wide association study identified a SNP in intron one of the gene encoding human FTO that was associated with increased body mass index. Homozygous risk allele carriers are on average three kg heavier than those homozygous for the protective allele. FTO is a DNA/RNA demethylase, however, how this function affects body weight, if at all, is unknown. Here we aimed to pharmacologically inhibit FTO to examine the effect of its demethylase function in vitro and in vivo as a first step in evaluating the therapeutic potential of FTO. We showed that IOX3, a known inhibitor of the HIF prolyl hydroxylases, decreased protein expression of FTO (in C2C12 cells) and reduced maximal respiration rate in vitro. However, FTO protein levels were not significantly altered by treatment of mice with IOX3 at 60 mg/kg every two days. This treatment did not affect body weight, or RER, but did significantly reduce bone mineral density and content and alter adipose tissue distribution. Future compounds designed to selectively inhibit FTO's demethylase activity could be therapeutically useful for the treatment of obesity.


Assuntos
Fármacos Antiobesidade/farmacologia , Glicina/análogos & derivados , Isoquinolinas/farmacologia , Oxigenases de Função Mista/antagonistas & inibidores , Obesidade/tratamento farmacológico , Oxo-Ácido-Liases/antagonistas & inibidores , Dioxigenase FTO Dependente de alfa-Cetoglutarato , Animais , Linhagem Celular , Avaliação Pré-Clínica de Medicamentos , Glicina/farmacologia , Concentração Inibidora 50 , Masculino , Camundongos Endogâmicos C57BL , Oxigenases de Função Mista/metabolismo , Obesidade/metabolismo , Oxo-Ácido-Liases/metabolismo
12.
PLoS Pathog ; 11(2): e1004679, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25675247

RESUMO

Mycobacterium tuberculosis (Mtb) relies on a specialized set of metabolic pathways to support growth in macrophages. By conducting an extensive, unbiased chemical screen to identify small molecules that inhibit Mtb metabolism within macrophages, we identified a significant number of novel compounds that limit Mtb growth in macrophages and in medium containing cholesterol as the principle carbon source. Based on this observation, we developed a chemical-rescue strategy to identify compounds that target metabolic enzymes involved in cholesterol metabolism. This approach identified two compounds that inhibit the HsaAB enzyme complex, which is required for complete degradation of the cholesterol A/B rings. The strategy also identified an inhibitor of PrpC, the 2-methylcitrate synthase, which is required for assimilation of cholesterol-derived propionyl-CoA into the TCA cycle. These chemical probes represent new classes of inhibitors with novel modes of action, and target metabolic pathways required to support growth of Mtb in its host cell. The screen also revealed a structurally-diverse set of compounds that target additional stage(s) of cholesterol utilization. Mutants resistant to this class of compounds are defective in the bacterial adenylate cyclase Rv1625/Cya. These data implicate cyclic-AMP (cAMP) in regulating cholesterol utilization in Mtb, and are consistent with published reports indicating that propionate metabolism is regulated by cAMP levels. Intriguingly, reversal of the cholesterol-dependent growth inhibition caused by this subset of compounds could be achieved by supplementing the media with acetate, but not with glucose, indicating that Mtb is subject to a unique form of metabolic constraint induced by the presence of cholesterol.


Assuntos
Antituberculosos/farmacologia , Colesterol/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Macrófagos/microbiologia , Mycobacterium tuberculosis/metabolismo , Adenilil Ciclases/genética , Animais , Proteínas de Bactérias/metabolismo , Linhagem Celular , AMP Cíclico/metabolismo , Hidroxiesteroide Desidrogenases/antagonistas & inibidores , Espaço Intracelular , Macrófagos/imunologia , Camundongos , Testes de Sensibilidade Microbiana , Oxigenases de Função Mista/antagonistas & inibidores , Mycobacterium tuberculosis/crescimento & desenvolvimento , Oxo-Ácido-Liases/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Tuberculose Pulmonar/tratamento farmacológico
13.
Curr Med Chem ; 22(11): 1383-99, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25666801

RESUMO

Chorismate-utilizing enzymes (CUE) such as chorismate mutase, anthranilate synthase, chorismate pyruvate-lyase, 4-amino-4-deoxychorismate synthase, isochorismate synthase and salicylate synthase are responsible for converting chorismate into various products necessary for the survival of bacteria. The absence of these enzymes in humans and their importance in the virulence and survival of bacteria make them suitable targets for potential antimicrobial compounds. Furthermore, the CUE have significant structural homology and similar catalytic mechanisms, enabling the strategy of affecting multiple enzymes with one single inhibitor. This review follows up the investigation of mechanisms of CUE-catalysed reactions and the concurrent development of CUE inhibitors. Many active compounds were found amongst the structures mimicking the transition state of chorismate during the reaction. Most recently, high nanomolar and low micromolar inhibitors against isochorismate-pyruvate lyase were identified, which were also effective against chorismate mutase and salicylate synthase and belong to the most active inhibitors reported up to date.


Assuntos
Ácido Corísmico/metabolismo , Inibidores Enzimáticos/farmacologia , Transferases Intramoleculares/antagonistas & inibidores , Oxo-Ácido-Liases/antagonistas & inibidores , Biocatálise/efeitos dos fármacos , Desenho de Fármacos , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Transferases Intramoleculares/metabolismo , Oxo-Ácido-Liases/metabolismo
14.
Bioorg Med Chem ; 22(21): 5961-9, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25282647

RESUMO

Antibiotic resistance is a growing health concern, and new avenues of antimicrobial drug design are being actively sought. One suggested pathway to be targeted for inhibitor design is that of iron scavenging through siderophores. Here we present a high throughput screen to the isochorismate-pyruvate lyase of Pseudomonas aeruginosa, an enzyme required for the production of the siderophore pyochelin. Compounds identified in the screen are high nanomolar to low micromolar inhibitors of the enzyme and produce growth inhibition in PAO1 P. aeruginosa in the millimolar range under iron-limiting conditions. The identified compounds were also tested for enzymatic inhibition of Escherichia coli chorismate mutase, a protein of similar fold and similar chemistry, and of Yersinia enterocolitica salicylate synthase, a protein of differing fold but catalyzing the same lyase reaction. In both cases, subsets of the inhibitors from the screen were found to be inhibitory to enzymatic activity (mutase or synthase) in the micromolar range and capable of growth inhibition in their respective organisms (E. coli or Y. enterocolitica).


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Ácido Corísmico/metabolismo , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Oxo-Ácido-Liases/antagonistas & inibidores , Pseudomonas aeruginosa/enzimologia , Infecções Bacterianas/tratamento farmacológico , Escherichia coli/efeitos dos fármacos , Escherichia coli/enzimologia , Escherichia coli/crescimento & desenvolvimento , Ensaios de Triagem em Larga Escala , Humanos , Modelos Moleculares , Oxo-Ácido-Liases/metabolismo , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/crescimento & desenvolvimento , Yersinia enterocolitica/efeitos dos fármacos , Yersinia enterocolitica/enzimologia , Yersinia enterocolitica/crescimento & desenvolvimento
15.
ACS Chem Neurosci ; 5(8): 658-65, 2014 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-24834807

RESUMO

We describe the rationale for and the synthesis of a new class of compounds utilizing a modular approach that are designed to mimic ascorbic acid and to inhibit 2-oxoglutarate-dependent hydroxylases. Preliminary characterization of one of these compounds indicates in vivo anticonvulsant activity (6 Hz mouse model) at nontoxic doses, inhibition of the 2-oxoglutarate-dependent hydroxylase FTO, and expected increase in cellular N(6)-methyladenosine. This compound is also able to modulate various microRNA, an interesting result in light of the recent view that modulation of microRNAs may be useful for the treatment of CNS disease.


Assuntos
Anticonvulsivantes/síntese química , Oxigenases de Função Mista/antagonistas & inibidores , Oxo-Ácido-Liases/antagonistas & inibidores , Proteínas/antagonistas & inibidores , Adenosina/análogos & derivados , Adenosina/metabolismo , Dioxigenase FTO Dependente de alfa-Cetoglutarato , Animais , Anticonvulsivantes/química , Anticonvulsivantes/farmacologia , Western Blotting , Domínio Catalítico , Modelos Animais de Doenças , Epilepsia/tratamento farmacológico , Células HeLa , Humanos , Camundongos , MicroRNAs/metabolismo , Oxigenases de Função Mista/química , Modelos Químicos , Estrutura Molecular , Oxo-Ácido-Liases/química , Proteínas/química
16.
Biol Pharm Bull ; 36(12): 1902-6, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24292050

RESUMO

When carbohydrate metabolism is impaired, fatty acid metabolism is activated. Excess acetyl-coenzyme A (CoA) is generated from fatty acids by ß-oxidation and is used for the formation of 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) and subsequently for acetoacetate. High levels of secreted ketone bodies (acetoacetate and 3ß-hydroxybutyrate) lower the pH of blood and urine, resulting in ketoacidosis. HMG-CoA lyase in hepatic cells is a rate-limiting enzyme catalyzing the cleavage of HMG-CoA to acetoacetate, and thus inhibition of this enzyme results in reduced acetoacetate production, in other words, impaired ketoacidosis. Inhibition of HMG-CoA lyase activity possibly prevents ketoacidosis and should be the therapeutic target. Polyphenols are common and abundant dietary constituents with beneficial effects on human health. We examined the inhibitory effects of dietary polyphenols on HMG-CoA lyase activity in cellular extracts of human hepatoma HepG2 cells. Of the nine representative dietary polyphenols tested, (-)-epigallocatechin (EGC), (-)-epigallocatechin gallate (EGCG), and gallic acid (GA) effectively inhibited HMG-CoA lyase activity. Lineweaver-Burk analysis revealed that EGC and EGCG are likely to be mixed-type noncompetitive inhibitors. Pyrogallol with the gallyl structure also inhibited HMG-CoA lyase activity, suggesting that the gallyl moiety of polyphenols is important for the inhibition of HMG-CoA lyase activity.


Assuntos
Oxo-Ácido-Liases/metabolismo , Polifenóis/farmacologia , Carcinoma Hepatocelular , Extratos Celulares , Células Hep G2 , Humanos , Neoplasias Hepáticas , Oxo-Ácido-Liases/antagonistas & inibidores
17.
Biochim Biophys Acta ; 1822(10): 1544-52, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22771891

RESUMO

Mutations in the gene encoding for 4-hydroxy-2-oxoglutarate aldolase (HOGA) are associated with an excessive production of oxalate in Primary Hyperoxaluria type 3 (PH3). This enzyme is the final step of the hydroxyproline degradation pathway within the mitochondria and catalyzes the cleavage of 4-hydroxy-2-oxoglutarate (HOG) to pyruvate and glyoxylate. No analyses have been performed to assess the consequences of the mutations identified, particularly for those variants that produce either full-length or nearly full-length proteins. In this study, the expression, stability, and activity of nine PH3 human HOGA variants were examined. Using recombinant protein produced in Escherichia coli as well as transfected Chinese hamster ovary (CHO) cells, it was found that all nine PH3 variants are quite unstable, have a tendency to aggregate, and retain no measurable activity. A buildup of HOG was confirmed in the urine, sera and liver samples from PH3 patients. To determine how HOG is cleaved in the absence of HOGA activity, the ability of N-acetylneuraminate aldolase (NAL) to cleave HOG was evaluated. NAL showed minimal activity towards HOG. Whether the expected buildup of HOG in mitochondria could inhibit glyoxylate reductase (GR), the enzyme mutated in PH2, was also evaluated. GR was inhibited by HOG but not by 2-hydroxyglutarate or 2-oxoglutarate. Thus, one hypothetical component of the molecular basis for the excessive oxalate production in PH3 appears to be the inhibition of GR by HOG, resulting in a phenotype similar to PH2.


Assuntos
Oxirredutases do Álcool/antagonistas & inibidores , Oxirredutases do Álcool/metabolismo , Hiperoxalúria Primária/enzimologia , Oxo-Ácido-Liases/antagonistas & inibidores , Oxo-Ácido-Liases/metabolismo , Oxirredutases do Álcool/genética , Animais , Células CHO , Células Cultivadas , Cricetinae , Glutaratos/metabolismo , Humanos , Hidroxiprolina/metabolismo , Hiperoxalúria Primária/genética , Ácidos Cetoglutáricos/metabolismo , Fígado/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mutação , Oxalatos/metabolismo , Oxo-Ácido-Liases/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transfecção/métodos
18.
Biochemistry ; 50(26): 5893-904, 2011 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-21627110

RESUMO

1,4-Dihydroxy-2-naphthoyl-coenzyme A (DHNA-CoA) synthase, or MenB, catalyzes an intramolecular Claisen condensation involving two oxyanion intermediates in the biosynthetic pathway of menaquinone, an essential respiration electron transporter in many microorganisms. Here we report the finding that the DHNA-CoA product and its analogues bind and inhibit the synthase from Escherichia coli with significant ultraviolet--visible spectral changes, which are similar to the changes induced by deprotonation of the free inhibitors in a basic solution. Dissection of the structure--affinity relationships of the inhibitors identifies the hydroxyl groups at positions 1 (C1-OH) and 4 (C4-OH) of DHNA-CoA or their equivalents as the dominant and minor sites, respectively, for the enzyme--ligand interaction that polarizes or deprotonates the bound ligands to cause the observed spectral changes. In the meantime, spectroscopic studies with active site mutants indicate that C4-OH of the enzyme-bound DHNA-CoA interacts with conserved polar residues Arg-91, Tyr-97, and Tyr-258 likely through a hydrogen bonding network that also includes Ser-161. In addition, site-directed mutation of the conserved Asp-163 to alanine causes a complete loss of the ligand binding ability of the protein, suggesting that the Asp-163 side chain is most likely hydrogen-bonded to C1-OH of DHNA-CoA to provide the dominant polarizing effect. Moreover, this mutation also completely eliminates the enzyme activity, strongly supporting the possibility that the Asp-163 side chain provides a strong stabilizing hydrogen bond to the tetrahedral oxyanion, which takes a position similar to that of C1-OH of the enzyme-bound DHNA-CoA and is the second high-energy intermediate in the intracellular Claisen condensation reaction. Interestingly, both Arg-91 and Tyr-97 are located in a disordered loop forming part of the active site of all available DHNA-CoA synthase structures. Their involvement in the interaction with the small molecule ligands suggests that the disordered loop is folded in interaction with the substrates or reaction intermediates, supporting an induced-fit catalytic mechanism for the enzyme.


Assuntos
Ácido Aspártico , Sequência Conservada , Oxo-Ácido-Liases/química , Oxo-Ácido-Liases/metabolismo , Oxigênio/metabolismo , Análise Espectral , Vitamina K 2/metabolismo , Absorção , Bactérias/enzimologia , Domínio Catalítico , Coenzima A/química , Coenzima A/metabolismo , Coenzima A/farmacologia , Estabilidade Enzimática , Ligação de Hidrogênio , Modelos Moleculares , Mutagênese Sítio-Dirigida , Oxo-Ácido-Liases/antagonistas & inibidores , Oxo-Ácido-Liases/genética , Oxigênio/química , Fenóis/química , Fenóis/metabolismo , Prótons
19.
Anal Biochem ; 410(1): 133-40, 2011 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-21073853

RESUMO

Homocitrate synthase (HCS) catalyzes the first step of l-lysine biosynthesis in fungi by condensing acetyl-coenzyme A and 2-oxoglutarate to form 3R-homocitrate and coenzyme A. Due to its conservation in pathogenic fungi, HCS has been proposed as a candidate for antifungal drug design. Here we report the development and validation of a robust fluorescent assay for HCS that is amenable to high-throughput screening for inhibitors in vitro. Using this assay, Schizosaccharomyces pombe HCS was screened against a diverse library of approximately 41,000 small molecules. Following confirmation, counter screens, and dose-response analysis, we prioritized more than 100 compounds for further in vitro and in vivo analysis. This assay can be readily adapted to screen for small molecule modulators of other acyl-CoA-dependent acyltransferases or enzymes that generate a product with a free sulfhydryl group, including histone acetyltransferases, aminoglycoside N-acetyltransferases, thioesterases, and enzymes involved in lipid metabolism.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Ensaios Enzimáticos/métodos , Inibidores Enzimáticos/farmacologia , Ensaios de Triagem em Larga Escala/métodos , Histona Acetiltransferases/metabolismo , Oxo-Ácido-Liases/antagonistas & inibidores , Espectrometria de Fluorescência/métodos , Acil Coenzima A/metabolismo , Quelantes/química , Quelantes/farmacologia , Inibidores Enzimáticos/química , Metais/química , Naftalenos/química , Oxo-Ácido-Liases/química , Oxo-Ácido-Liases/metabolismo , Pirróis/química , Reprodutibilidade dos Testes , Schizosaccharomyces/enzimologia , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Compostos de Sulfidrila/química
20.
Bioorg Med Chem Lett ; 20(22): 6472-4, 2010 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-20943392

RESUMO

The discovery of 3-deazathiamine diphosphate (deazaThDP) as a potent inhibitor analog of the cofactor thiamine diphosphate (ThDP) has highlighted the need for an efficient and scalable synthesis of deazaThDP. Such a method would facilitate development of analogs with the ability to inhibit individual ThDP-dependent enzymes selectively. Toward the goal of developing selective inhibitors of the mycobacterial enzyme 2-hydroxy-3-oxoadipate synthase (HOAS), we report an improved synthesis of deazaThDP without use of protecting groups. Tribromo-3-methylthiophene served as a versatile starting material whose selective functionalization permitted access to deazaThDP in five steps, with potential to make other analogs accessible in substantial amounts.


Assuntos
Compostos Aza/química , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Oxo-Ácido-Liases/antagonistas & inibidores , Tiamina/síntese química , Tiamina/farmacologia , Aldeído-Cetona Transferases , Inibidores Enzimáticos/química , Espectroscopia de Ressonância Magnética , Tiamina/análogos & derivados
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...