Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Clin Transl Med ; 14(5): e1687, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38738791

RESUMO

OBJECTIVE: It has been observed that the prognosis of patients with HER2-positive metastatic breast cancer has improved significantly with HER2-targeted agents. However, there is still a lack of evidence regarding first-line anti-HER2 treatment options for patients who have received adjuvant and/or neoadjuvant trastuzumab for HER2-positive metastatic breast cancer. Besides, there are no reliable markers that can predict the efficacy of anti-HER2 treatment in these patients. METHODS: Patients who have received adjuvant and/or neoadjuvant trastuzumab for HER2-positive metastatic breast cancer were enrolled. Pyrotinib plus albumin-bound paclitaxel were used as first-line treatment. The primary endpoint was the objective response rate (ORR). The safety profile was also assessed. In order to explore predictive biomarkers using Olink technology, blood samples were collected dynamically. RESULTS: From December 2019 to August 2023, the first stage of the study involved 27 eligible patients. It has not yet reached the median PFS despite the median follow-up being 17.8 months. Efficacy evaluation showed that the ORR was 92.6%, and the DCR was 100%. Adverse events of grade 3 or higher included diarrhoea (29.6%), leukopenia (11.1%), neutropenia (25.9%), oral mucositis (3.7%), and hand-foot syndrome (3.7%). Toll-like receptor 3 (TLR3) and Proto-oncogene tyrosine-protein kinase receptor (RET) were proteins with significant relevance to PFS in these patients. CONCLUSIONS: This study demonstrates that pyrotinib plus albumin-bound paclitaxel as a first-line treatment regimen shows good efficacy and manageable safety for patients who have received adjuvant and/or neoadjuvant trastuzumab for HER2-positive metastatic breast cancer. Besides, a significant association was identified between the expression levels of TLR3 and RET and the PFS in patients.


Assuntos
Neoplasias da Mama , Receptor ErbB-2 , Trastuzumab , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Pessoa de Meia-Idade , Adulto , Trastuzumab/uso terapêutico , Trastuzumab/farmacologia , Estudos Prospectivos , Idoso , Receptor ErbB-2/metabolismo , Paclitaxel Ligado a Albumina/uso terapêutico , Paclitaxel Ligado a Albumina/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Acrilamidas/uso terapêutico , Terapia Neoadjuvante/métodos , Proto-Oncogene Mas , Ácidos Sulfínicos/uso terapêutico , Ácidos Sulfínicos/farmacologia , Aminoquinolinas/uso terapêutico , Aminoquinolinas/farmacologia , Resultado do Tratamento
2.
J Control Release ; 367: 620-636, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38311244

RESUMO

Chemotherapeutic efficacy for pancreatic cancer is severely compromised by limited drug availability to tumor cells. Herein, we constructed a cancer cell membrane-fused liposome containing a siATG5-loaded calcium phosphate (CaP) core, termed CLip@siATG5. Through cancer cell membrane camouflage, the liposomes evaded immune clearance, actively infiltrated tumor tissues, and were preferentially taken up by homotypic tumor cells. Then, siATG5 escaped from the endosomes and was liberated in the cytoplasm, mainly benefiting from CaP dissolution-induced endosome rupture and liposome disassembly in acidic endosomes. The released siATG5 silenced autophagy protein 5 (ATG5) to inhibit autophagy, starving tumor cells. An alternative nutrient procurement pathway, macropinocytosis, was then upregulated in the cells, leading to increased uptake of the albumin-bound chemotherapeutic agent (nanoparticle albumin-bound paclitaxel (Nab-PTX)). Finally, in a murine pancreatic cancer model, CLip@siATG5 combined with Nab-PTX exerted superior efficacy to a twofold dose of Nab-PTX while avoiding its toxicity. Overall, we justified enhancing chemotherapeutic delivery by modulating the pancreatic cancer cell metabolism, which will enlighten the development of more effective chemotherapeutic adjuvants for pancreatic cancer in the future.


Assuntos
Nanopartículas , Neoplasias Pancreáticas , Humanos , Animais , Camundongos , Lipossomos/uso terapêutico , Paclitaxel/uso terapêutico , Paclitaxel/farmacologia , Neoplasias Pancreáticas/patologia , Albuminas , Pâncreas/metabolismo , Membrana Celular/metabolismo , Linhagem Celular Tumoral , Paclitaxel Ligado a Albumina/farmacologia
3.
J Exp Clin Cancer Res ; 42(1): 285, 2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37891669

RESUMO

BACKGROUND: Temozolomide (TMZ) treatment efficacy in glioblastoma (GBM) patients has been limited by resistance in the clinic. Currently, there are no clinically proven therapeutic options available to restore TMZ treatment sensitivity. Here, we investigated the potential of albumin-bound paclitaxel (ABX), a novel microtubule targeting agent, in sensitizing GBM cells to TMZ and elucidated its underlying molecular mechanism. METHODS: A series of in vivo and in vitro experiments based on two GBM cell lines and two primary GBM cells were designed to evaluate the efficacy of ABX in sensitizing GBM cells to TMZ. Further proteomic analysis and validation experiments were performed to explore the underlying molecular mechanism. Finally, the efficacy and mechanism were validated in GBM patients derived organoids (PDOs) models. RESULTS: ABX exhibited a synergistic inhibitory effect on GBM cells when combined with TMZ in vitro. Combination treatment of TMZ and ABX was highly effective in suppressing GBM progression and significantly prolonged the survival oforthotopic xenograft nude mice, with negligible side effects. Further proteomic analysis and experimental validation demonstrated that the combined treatment of ABX and TMZ can induce sustained DNA damage by disrupting XPC and ERCC1 expression and nuclear localization. Additionally, the combination treatment can enhance ferroptosis through regulating HOXM1 and GPX4 expression. Preclinical drug-sensitivity testing based on GBM PDOs models confirmed that combination therapy was significantly more effective than conventional TMZ monotherapy. CONCLUSION: Our findings suggest that ABX has the potential to enhance TMZ treatment sensitivity in GBM, which provides a promising therapeutic strategy for GBM patients.


Assuntos
Neoplasias Encefálicas , Ferroptose , Glioblastoma , Animais , Camundongos , Humanos , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Paclitaxel Ligado a Albumina/farmacologia , Paclitaxel Ligado a Albumina/uso terapêutico , Antineoplásicos Alquilantes/farmacologia , Antineoplásicos Alquilantes/uso terapêutico , Camundongos Nus , Proteômica , Resistencia a Medicamentos Antineoplásicos , Dano ao DNA , Linhagem Celular Tumoral , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
4.
J Biomed Mater Res B Appl Biomater ; 111(3): 579-589, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36221929

RESUMO

Cerium oxide nanoparticles (CeONPs) displayed cytotoxic properties against some cancer cells. However, there is very limited data about the possible antitumoral potential of them in breast cancer cells when used alone and/or together with a chemotherapeutic drug. We investigated the effects of CeONPs alone or in combination with paclitaxel (PAC) on healthy or carcinoma breast cells. After human breast cancer cells (MCF-7) treated with CeONPs alone or together with PAC for 24, 48, and 72 h, the effects of CeONPs on cell viability, apoptosis, migration, and adhesion were investigated. All cell viability and IC50 values of CeONPs and PAC treatments in healthy breast cells (HTERT-HME1) were higher than MCF-7 cells. They showed higher cytotoxicity against MCF-7 cells. CeONPs (10, 20, and 30 mM) and/or abraxane (AB) (2 µM) significantly decreased cell viability values in MCF-7 cells. All CeONPs concentrations increased the number of apoptotic MCF-7 cells. CeONPs (20 and 30 mM) alone or in combination with AB for 72 h treatment also significantly increased the apoptosis in compared to AB alone. CeONPs and/or AB can significantly inhibit the migratory ability of breast cancer cells. The migration rates in co-treated groups with CeONPs and AB were lower than CeONPs treatments. Higher concentrations of CeONPs alone or together with AB inhibited cell adhesion. Our results showed CeONPs can increase cytotoxicity and apoptosis and decrease cell migration and cell adhesion when used alone or together with AB. Therefore, combination of chemotherapeutics with CeONPs may provide a good strategy against cancer.


Assuntos
Antineoplásicos , Neoplasias da Mama , Nanopartículas , Humanos , Feminino , Paclitaxel/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Nanopartículas/uso terapêutico , Apoptose , Paclitaxel Ligado a Albumina/farmacologia , Paclitaxel Ligado a Albumina/uso terapêutico
5.
J Control Release ; 350: 569-583, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36037976

RESUMO

Microtubule binding agents such as paclitaxel and vincristine have activity in metastatic melanoma. However, even responsive tumors develop resistance, highlighting the need to investigate new drug molecules. Here, we showed that a new compound, CH-2-102, developed by our group, has high anti-tumor efficacy in human and murine melanoma cells. We confirmed that CH-2-102 robustly suppresses the microtubule polymerization process by directly interacting with the colchicine binding site. Our results unveil that CH-2-102 suppresses microtubule polymerization and subsequently induces G2 phase cell arrest as one of the possible mechanisms. Notably, CH-2-102 maintains its efficacy even in the paclitaxel resistance melanoma cells due to different binding sites and a non-Pgp substrate. We developed a pH-responsive drug-polymer Schiff bases linker for high drug loading into nanoparticles (NPs). Our CH-2-102 conjugated NPs induced tumor regression more effectively than Abraxane® (Nab-paclitaxel, N-PTX), free drug, and non-sensitive NPs in B16-F10 cell-derived lung metastasis mouse model. Furthermore, our results suggest that the formulation has a high impact on the in vivo efficacy of the drug and warrants further investigation in other cancers, particularly taxane resistant. In conclusion, the microtubule polymerization inhibitor CH-2-102 conjugated pH-responsive NPs induce tumor regression in lung metastasis melanoma mice, suggesting it may be an effective strategy for treating metastatic melanoma.


Assuntos
Antineoplásicos , Neoplasias Pulmonares , Melanoma , Paclitaxel Ligado a Albumina/farmacologia , Animais , Antineoplásicos/química , Linhagem Celular Tumoral , Colchicina/farmacologia , Colchicina/uso terapêutico , Humanos , Concentração de Íons de Hidrogênio , Pulmão/metabolismo , Neoplasias Pulmonares/patologia , Melanoma/patologia , Camundongos , Nanomedicina , Paclitaxel/química , Polímeros/química , Bases de Schiff/farmacologia , Bases de Schiff/uso terapêutico , Moduladores de Tubulina/química , Moduladores de Tubulina/uso terapêutico , Vincristina
6.
Int J Biol Sci ; 18(3): 911-922, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35173526

RESUMO

Pancreatic cancer is a dismal malignancy with poor prognosis. In spite of progress in surgical technology, chemotherapy is still the cornerstone in the multi-disciplinary treatment. Albumin-bound paclitaxel is a first-line treatment for PDAC patients. Yet the response rate of the drug is far from satisfying. SOX8 is a member of the sex determining region Y-boxes family, which is potentially related to the chemoresistance of tumor. Patient with high expression of SOX8 were insensitive to albumin-bound paclitaxel. SOX8 reduced apoptosis and G2/M cell cycle arrest caused by albumin-bound paclitaxel. SOX8 transcriptionally regulated EZH2, which reduced expression of SPARC by promoting the methylation of SPARC, thereby reducing the transport of albumin-bound paclitaxel in pancreatic cancer cells. EZH2 inhibitor, UNC1999, can reverse the effect of SOX8 on chemo-resistance of albumin-bound paclitaxel. Collectively, our data revealed SOX8/EZH2/SPARC signaling induced primary chemo-resistance of albumin-bound paclitaxel in pancreatic ductal adenocarcinoma.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Paclitaxel Ligado a Albumina/metabolismo , Paclitaxel Ligado a Albumina/farmacologia , Paclitaxel Ligado a Albumina/uso terapêutico , Apoptose/genética , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Humanos , Osteonectina/genética , Osteonectina/farmacologia , Osteonectina/uso terapêutico , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Neoplasias Pancreáticas/metabolismo , Fatores de Transcrição SOXE/metabolismo , Neoplasias Pancreáticas
7.
J Cell Mol Med ; 26(7): 1955-1968, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35174623

RESUMO

Nab-paclitaxel (Abraxane), which is a nanoparticle form of albumin-bound paclitaxel, is one of the standard chemotherapies for pancreatic ductal adenocarcinoma (PDAC). This study determined the effect of Abraxane in combination with a fusion protein, hIL15-ABD, on subcutaneous Panc02 and orthotopic KPC C57BL/6 murine PDAC models. Abraxane combined with hIL15-ABD best suppressed tumour growth and produced a 40%-60% reduction in the tumour size for Panc02 and KPC, compared to the vehicle group. In the combination group, the active form of interferon-γ (IFN-γ)-secreting CD8+ T cells and CD11b+ CD86+ M1 macrophages in tumour infiltrating lymphocytes (TILs) were increased. In the tumour drainage lymph nodes (TDLNs) of the combination group, there was a 18% reduction in CD8+ IFN-γ+ T cells and a 0.47% reduction in CD4+ CD25+ FOXP3+ regulatory T cells, as opposed to 5.0% and 5.1% reductions, respectively, for the control group. Superior suppression of CD11b+ GR-1+ myeloid-derived suppressor cells (MDSCs) and the induction of M1 macrophages in the spleen and bone marrow of mice were found in the combination group. Abraxane and hIL15-ABD effectively suppressed NF-κB-mediated immune suppressive markers, including indoleamine 2,3-dioxygenase (IDO), Foxp3 and VEGF. In conclusion, Abraxane combined with hIL15-ABD stimulates the anticancer activity of effector cells, inhibits immunosuppressive cells within the tumour microenvironment (TME) of PDAC, and produces a greater inhibitory effect than individual monotherapies.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Paclitaxel Ligado a Albumina/farmacologia , Paclitaxel Ligado a Albumina/uso terapêutico , Albuminas/uso terapêutico , Animais , Linfócitos T CD8-Positivos/metabolismo , Carcinoma Ductal Pancreático/patologia , Modelos Animais de Doenças , Humanos , Interleucina-15 , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias Pancreáticas/patologia , Microambiente Tumoral
8.
Drug Deliv ; 28(1): 1067-1079, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34109887

RESUMO

BACKGROUND: Combination of the prodrug technique with an albumin nano drug-loaded system is a novel promising approach for cancer treatment. However, the long-lasting and far-reaching challenge for the treatment of cancers lies in how to construct the albumin nanometer drug delivery system with lead compounds and their derivatives. METHODS: In this study, we reported the preparation of injectable albumin nanoparticles (NPs) with a high and quantitative drug loading system based on the NabTM technology of paclitaxel palmitate (PTX-PA). RESULTS: Our experimental study on drug tissue distribution in vivo demonstrated that the paclitaxel palmitate albumin nanoparticles (Nab-PTX-PA) remained in the tumor for a longer time post-injection. Compared with saline and paclitaxel albumin nanoparticles (Abraxane®), intravenous injection of Nab-PTX-PA not only reduced the toxicity of the drug in normal organs, and increased the body weight of the animals but maintained sustained release of paclitaxel (PTX) in the tumor, thereby displaying an excellent antitumor activity. Blood routine analysis showed that Nab-PTX-PA had fewer adverse effects or less toxicity to the normal organs, and it inhibited tumor cell proliferation more effectively as compared with commercial paclitaxel albumin nanoparticles. CONCLUSIONS: This carrier strategy for small molecule drugs is based on naturally evolved interactions between long-chain fatty acids (LCFAs) and Human Serum Albumin (HSA), demonstrated here for PTX. Nab-PTX-PA shows higher antitumor efficacy in vivo in breast cancer models. On the whole, this novel injectable Nab-PTX-PA has great potential as an effective drug delivery system in the treatment of breast cancer.


Assuntos
Paclitaxel Ligado a Albumina/farmacologia , Antineoplásicos/farmacologia , Paclitaxel Ligado a Albumina/administração & dosagem , Paclitaxel Ligado a Albumina/efeitos adversos , Paclitaxel Ligado a Albumina/farmacocinética , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/efeitos adversos , Antineoplásicos/farmacocinética , Linhagem Celular Tumoral , Proliferação de Células , Química Farmacêutica , Portadores de Fármacos , Liberação Controlada de Fármacos , Estabilidade de Medicamentos , Feminino , Camundongos , Camundongos Endogâmicos ICR , Nanopartículas , Tamanho da Partícula , Distribuição Aleatória , Propriedades de Superfície
9.
PLoS One ; 16(3): e0248942, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33740022

RESUMO

Peripheral neuropathy (PN) is a dose-limiting, painful adverse reaction associated with the use of paclitaxel. This common side effect was often partially attributed to the solvent used for solubilization of the highly hydrophobic drug substance. Therefore, the development of alternative formulations thrived, which included that of Abraxane® containing nanoparticle albumin-bound paclitaxel (nab-paclitaxel). However, studies demonstrated inconsistent conclusions regarding the mitigation of PN in comparison with the traditional formulation. The mass spectrometry-based cell metabolomics approach was used in the present study to explore the potentially associated mechanisms. Although no significant difference in the effects on cell viability was observed, fold changes in carnitine, several acylcarnitines and long-chain fatty acid(s) were significantly different between treatment groups in differentiated and undifferentiated SH-SY5Y cells. The most prominent difference observed was the significant increase of octanoylcarnitine in cells treated with solvent-based paclitaxel, which was found to be associated with significant decrease of medium-chain acyl-CoA dehydrogenase (MCAD). The findings suggested the potential role of altered fatty acid oxidation in the different neurotoxicity patterns observed, which may be a possible target for therapeutic interventions worth further investigation.


Assuntos
Albuminas/toxicidade , Ácidos Graxos/metabolismo , Metabolômica , Neurotoxinas/toxicidade , Paclitaxel/toxicidade , Solventes/química , Acil-CoA Desidrogenase/metabolismo , Paclitaxel Ligado a Albumina/farmacologia , Carnitina/análogos & derivados , Carnitina/metabolismo , Diferenciação Celular , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Oxirredução
10.
Clin Res Hepatol Gastroenterol ; 45(6): 101632, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33662778

RESUMO

BACKGROUND: Trimetazidine (TMZ) is an anti-ischemic agent that can inhibit the fatty acid oxidation. It has been stated that inhibition of fatty acid oxidation may be an acceptable approach to cancer treatment. METHODS: We examined the effects of TMZ alone or together with abraxane (ABX) and/or gemcitabine (GEM) on cell viability, apoptosis, adhesion, migration and ATP levels of human pancreatic cancer cell line PANC-1. RESULTS: TMZ significantly reduced the cell viability at higher concentrations. Lower cell viability values were found in cells co-treated with TMZ + GEM, TMZ + ABX and GEM + ABX. The combined treatment of TMZ with ABX and/or GEM significantly increased the apoptosis rates. The highest percentages of apoptosis were found in TMZ + ABX or TMZ + ABX + GEM treatments. TMZ alone or together with ABX and/or GEM significantly reduced the ATP levels. The lowest migration rates were also found at TMZ + ABX and TMZ + ABX + GEM treatments. CONCLUSIONS: Our study is the first study to indicate that TMZ can induce cytotoxicity and apoptosis and reduce migration and ATP levels, especially in cells co-treated with ABX and/or GEM. A combination strategy based on inhibition of fatty acid oxidation and anticancer drugs may be more effective in the treatment of pancreatic cancers.


Assuntos
Paclitaxel Ligado a Albumina , Desoxicitidina/análogos & derivados , Neoplasias Pancreáticas , Trimetazidina , Trifosfato de Adenosina/sangue , Paclitaxel Ligado a Albumina/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Desoxicitidina/farmacologia , Quimioterapia Combinada , Humanos , Neoplasias Pancreáticas/tratamento farmacológico , Resultado do Tratamento , Trimetazidina/farmacologia , Gencitabina
11.
ACS Appl Bio Mater ; 4(5): 4302-4309, 2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35006842

RESUMO

Many macromolecular antitumor drugs were developed based on the enhanced permeability and retention (EPR) effect, for example, albumin-bound paclitaxel nanoparticles (nab-PTX and Abraxane) and pegylated liposomal doxorubicin (Doxil). However, these EPR effect-based therapeutic systems are less effective in malignant tumors with low vascular permeability, such as pancreatic tumors. Because the EPR effect depends on nanoparticles' size, we first determined nanoparticles' size associated with a high tumor-targeting rate in a human pancreatic tumor xenograft model with low vascular permeability. Abraxane appears to behave as an albumin monomer (7 nm) in the blood circulation following intravenous injection. The in vitro and in vivo tumor-targeted delivery and antitumor activity of PTX-loaded albumin nanoparticles were significantly improved by optimizing the mean nanoparticle diameter to 30 nm. Furthermore, nitric oxide was added to 30 nm PTX-loaded albumin nanoparticles to examine the feasibility of albumin nanoparticles as a platform for multiple drug delivery. Their antitumor effect was evaluated in an orthotopic transplantation mouse model of a human pancreatic tumor. The nitric oxide PTX-loaded 30 nm albumin nanoparticle treatment on model mice achieved a significantly higher survival rate than Abraxane treatment. These findings suggest that 30 nm albumin nanoparticles have a high therapeutic effect as a useful platform for multiple drugs against human pancreatic tumors.


Assuntos
Paclitaxel Ligado a Albumina/farmacologia , Antineoplásicos/farmacologia , Materiais Biocompatíveis/farmacologia , Nanopartículas/química , Neoplasias Pancreáticas/tratamento farmacológico , Paclitaxel Ligado a Albumina/síntese química , Paclitaxel Ligado a Albumina/química , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Teste de Materiais , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/patologia , Neoplasias Pancreáticas/patologia , Tamanho da Partícula
12.
J BUON ; 25(2): 681-687, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32521853

RESUMO

PURPOSE: This study aimed to investigate the efficacy of albumin-bound paclitaxel (nab-paclitaxel) in the treatment of advanced refractory breast cancer (BC) and its effect on serum resistin. METHODS: A retrospective study was performed based on the clinical records of 95 patients with advanced refractory BC admitted to Weihai Central Hospital from March 2012 to May 2015. Thirty-four patients were treated with traditional paclitaxel and enrolled in the control group, while the other 61 patients were treated with nab-paclitaxel and enrolled in the study group. The efficacy, toxicity and side effects, quality of life, and serum resistin levels were compared between the two groups. RESULTS: The total response rate (RR) of the study group was much higher than that of the control group (p<0.05). The leukopenia level of the study group during the treatment was significantly lower than that of the control group (p<0.05). The level of serum resistin in the study group after treatment was significantly lower than in the control group (p<0.05). The improvement rate of quality of life in the study group was significantly higher than in the control group (p<0.05). CONCLUSION: The results indicated that nab-paclitaxel is very effective in treating advanced refractory BC and reduces the level of serum resistin. It can improve the quality of life of patients and is worthy of clinical promotion.


Assuntos
Paclitaxel Ligado a Albumina/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Resistina/sangue , Adulto , Paclitaxel Ligado a Albumina/farmacologia , Feminino , Humanos , Estudos Retrospectivos
13.
Sci Rep ; 10(1): 2838, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-32071352

RESUMO

A major obstacle to nanodrugs-mediated cancer therapy is their rapid uptake by the reticuloendothelial system that decreases the systemic exposure of the nanodrugs to tumors and also increases toxicities. Intralipid has been shown to reduce nano-oxaliplatin-mediated toxicity while improving bioavailability. Here, we have found that Intralipid reduces the cytotoxicity of paclitaxel for human monocytic cells, but not for breast, lung, or pancreatic cancer cells. Intralipid also promotes the polarization of macrophages to the anti-cancer M1-like phenotype. Using a xenograft breast cancer mouse model, we have found that Intralipid pre-treatment significantly increases the amount of paclitaxel reaching the tumor and promotes tumor apoptosis. The combination of Intralipid with half the standard clinical dose of Abraxane reduces the tumor growth rate as effectively as the standard clinical dose. Our findings suggest that pre-treatment of Intralipid has the potential to be a powerful agent to enhance the tumor cytotoxic effects of Abraxane and to reduce its off-target toxicities.


Assuntos
Paclitaxel Ligado a Albumina/farmacologia , Neoplasias da Mama/tratamento farmacológico , Imunidade Inata/efeitos dos fármacos , Fosfolipídeos/farmacologia , Óleo de Soja/farmacologia , Animais , Antineoplásicos , Apoptose/efeitos dos fármacos , Disponibilidade Biológica , Neoplasias da Mama/imunologia , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Emulsões/farmacologia , Feminino , Xenoenxertos , Humanos , Camundongos , Nanopartículas/química , Oxaliplatina/farmacologia , Paclitaxel/química , Paclitaxel/farmacologia , Fosfolipídeos/imunologia , Óleo de Soja/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Sci Rep ; 10(1): 530, 2020 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-31953463

RESUMO

The curative effects of nanoparticle albumin-bound (nab)-paclitaxel in the first-line treatment of metastatic breast cancer (MBC) are still controversial, with even more after the removal of marketing approval of indication of bevacizumab. Five electronic databases and the related resources were searched for eligible randomized clinical trials (RCTs) without year and language restrictions to perform a meta-analysis. The studies were comparing the efficacy and safety between nab-paclitaxel chemotherapy versus solvent-based (sb)-taxanes chemotherapy such as sb-paclitaxel and docetaxel. The primary end points were overall response rate (ORR) and disease control rate (DCR). Secondary end points were progression-free survival (PFS), overall survival (OS), adverse events (AEs), and dose discontinuation rate (DDR). Five RCTs (1,554 patients) were finally identified from 1,902 studies. When compared to sb-paclitaxel, nab-paclitaxel showed significant beneficial effects in terms of ORR (OR 2.39, 95% CI 1.69-3.37, p < 0.001), DCR (OR 1.89, 95% CI 1.07-3.35, p = 0.03), and PFS (HR 0.75, 95% CI 0.62-0.90, p = 0.002). Nab-paclitaxel also showed significantly longer OS (HR 0.73, 95% CI 0.54-0.99, p = 0.04) than docetaxel. AEs and DDR were comparable between the two arms. Using nab-paclitaxel could significantly improve efficacy with comparable toxicities in the treatment of MBC.


Assuntos
Paclitaxel Ligado a Albumina/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Segurança , Solventes/química , Taxoides/química , Taxoides/farmacologia , Paclitaxel Ligado a Albumina/efeitos adversos , Paclitaxel Ligado a Albumina/uso terapêutico , Humanos , Metástase Neoplásica , Taxoides/efeitos adversos , Taxoides/uso terapêutico
15.
Nanomedicine ; 21: 102058, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31344500

RESUMO

Albumin is a serum transport protein, which has been utilized as a carrier for a variety of drugs to improve their delivery efficiency and to obtain favorable pharmacokinetic profiles. However, natural albumin possesses only a few high-affinity binding sites for a limited number of drugs. This results in deficiencies in drug-loading and serum stability, and consequently, in impaired therapeutic efficacy. Herein, BSA was modified with different isothiocyanate conjugates (BSA-ITCs), which self-assembled with paclitaxel (PTX) to produce BSA-ITCs/PTX nanoparticles. Among these BSA-ITCs, phenethyl isothiocyanate (PEITC)-modified BSA (BSA-PEITC35) conjugates effectively loaded PTX and formed highly stable BSA-PEITC35/PTX nanoparticles. Molecular modeling studies suggested that PEITC groups in BSA-PEITC35 can significantly lower the PTX binding free energy. BSA-PEITC35/PTX showed enhanced stability, prolonged blood circulation and increased tumor accumulation than unmodified BSA/PTX, and exerted more potent antitumor activity than both BSA/PTX and Abraxane in subcutaneous mouse tumor models after intravenous administration.


Assuntos
Paclitaxel Ligado a Albumina , Antineoplásicos , Portadores de Fármacos , Modelos Moleculares , Nanopartículas , Neoplasias Experimentais/tratamento farmacológico , Paclitaxel Ligado a Albumina/química , Paclitaxel Ligado a Albumina/farmacologia , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Portadores de Fármacos/química , Portadores de Fármacos/farmacologia , Humanos , Isotiocianatos/química , Isotiocianatos/farmacologia , Camundongos , Nanopartículas/química , Nanopartículas/uso terapêutico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Soroalbumina Bovina/química , Soroalbumina Bovina/farmacologia
16.
Pharm Res ; 36(9): 127, 2019 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-31236836

RESUMO

PURPOSE: Paclitaxel (PTX)-loaded genipin-crosslinked gelatin microspheres (GP-MS) are a prolonged IP delivery system under development for the treatment of peritoneal minimal residual disease (pMRD). Here, we show the use of a pharmacokinetic-pharmacodynamic (PKPD) modelling approach to inform the formulation development of PTX-GP-MS in a mice pMRD model. METHODS: PTX blood concentrations and survival data were obtained in Balb/c Nu mice receiving different single IP doses (7.5 and/or 35 mg/kg) of PTX-ethanolic loaded GP-MS (PTXEtOH-GP-MS), PTX-nanosuspension loaded GP-MS (PTXnano-GP-MS), and immediate release formulation Abraxane®. A population PK model was developed to characterize the PTX blood concentration pattern and to predict PTX concentrations in peritoneum. Afterwards, PKPD relationships between the predicted peritoneal or blood concentrations and survival were explored using time-to-event modelling. RESULTS: A PKPD model was developed that simultaneously describes the competing effects of treatment efficacy (driven by peritoneal concentration) and toxicity (driven by blood concentration) of PTX on survival. Clear survival advantages of PTXnano-GP-MS over PTXEtOH-GP-MS and Abraxane® were found. Simulations of different doses of PTXnano-GP-MS demonstrated that drug-induced toxicity is high at doses between 20 and 35 mg/kg. CONCLUSIONS: The model predicts that the dose range of 7.5-15 mg/kg of PTXnano-GP-MS provides an optimal balance between efficacy and safety.


Assuntos
Paclitaxel Ligado a Albumina/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Neoplasias Peritoneais/tratamento farmacológico , Paclitaxel Ligado a Albumina/química , Paclitaxel Ligado a Albumina/farmacocinética , Animais , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacocinética , Linhagem Celular Tumoral , Reagentes de Ligações Cruzadas/química , Portadores de Fármacos , Gelatina/química , Humanos , Iridoides/química , Camundongos Endogâmicos BALB C , Camundongos Nus , Microesferas , Modelos Biológicos , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Cancer Chemother Pharmacol ; 84(4): 669-677, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31187168

RESUMO

Gastric cancer (GC) is the third cause of cancer-related death worldwide. Patients with unresectable GC can be treated with chemotherapy such as paclitaxel, which is a microtubule stabilizer. The use of nanoparticle albumin-bound paclitaxel (nab-ptx) avoids hypersensitivity reactions due to the absence of solvent needed to dissolve paclitaxel and it can be administered at higher doses. The ABSOLUTE randomized phase-3 clinical trial showed the non-inferiority of the nab-ptx used every week compared to the solvent-based paclitaxel used every week. This review describes the current advancements of the use of nab-ptx in GC in preclinical and clinical study investigations. The possibility of combining nab-ptx with other medications to improve response of patients to their specific molecular needs will also be debated.


Assuntos
Paclitaxel Ligado a Albumina/farmacologia , Neoplasias Gástricas/tratamento farmacológico , Humanos , Nanopartículas/uso terapêutico , Moduladores de Tubulina/farmacologia
18.
Nanomedicine (Lond) ; 14(10): 1323-1341, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31124758

RESUMO

The poor solubility of paclitaxel (PTX), the most commonly used anticancer drug (Taxol®), has long hindered the development of successful formulations. In 2005, the launch of Abraxane®, a human albumin-based preparation of PTX, competed with Taxol® in the commercial market. The success of Abraxane pushed other generic preparations aside, sparking competition among the global pharmaceutical companies to develop the novel and superior PTX nanotechnology-driven formulations. Unsurprisingly, the success underlying with cancer treatment using nano PTX therapy has now entered into a new era of drug development, patentability, preclinical and clinical evaluation, leading eventually to a significant increase in the regulatory approval of the products. The present article aims to provide recent progress in the development of nano PTX formulations by various pharmaceutical companies for safe and effective drug therapies for patients benefit.


Assuntos
Paclitaxel Ligado a Albumina/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Portadores de Fármacos/química , Nanopartículas/química , Paclitaxel Ligado a Albumina/administração & dosagem , Antineoplásicos Fitogênicos/administração & dosagem , Humanos , Polímeros/química , Solubilidade
19.
Small ; 15(5): e1804191, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30549431

RESUMO

Gastric cancer remains one of the most lethal cancers with high incidence and mortality worldwide. The majority of gastric cancer patients are those who have first been diagnosed in advanced stage, in which the standard chemo-radiotherapy produces limited benefit along with severe general toxicity, thus the demand for improved therapeutic efficacy and decreased side effects drives the development of novel therapeutic strategies. Here, a neoadjuvant chemotherapy based on Abraxane/human neutrophils (NEs) cytopharmaceuticals with radiotherapy is presented for effective cancer treatment. Human NEs, the most abundant white blood cells in peripheral blood, are developed to carry Abraxane, the commercial albumin-bound paclitaxel nanoparticle, to form cytopharmaceuticals (Abraxane/NEs) which have been confirmed to maintain the intrinsic functions of human NEs. The modest radiation is applied not only to exert tumor disruption, but also to increase the release of inflammatory factors which guide the NEs homing to the tumoral sites. These amplified inflammatory factors at tumor sites excessively activate Abraxane/NEs to form neutrophil extracellular traps, along with a burst release of Abraxane to induce superior tumor suppression. This adjuvant chemo-radiotherapy based on cytopharmaceuticals may provide new opportunities for advanced cancer treatment, which reveals the huge clinical potential of human neutrophils as drug delivery vectors.


Assuntos
Paclitaxel Ligado a Albumina/uso terapêutico , Neutrófilos/patologia , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/radioterapia , Paclitaxel Ligado a Albumina/farmacologia , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Quimioterapia Adjuvante , Humanos , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Neutrófilos/efeitos dos fármacos
20.
Int J Nanomedicine ; 13: 439-453, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29403275

RESUMO

In this study, we performed the characterization and synthesis of biocompatible and targeted albumin and graphene oxide (GO) dual-carrier paclitaxel (PTX) nanoparticles for photothermal-triggered tumor therapy. PTX absorbed on GO nanosheets as cores were coated with human serum albumin (HSA), following surface conjugation with monoclonal antibodies (mAb) against vascular endothelial growth factor (VEGF; denoted as mAbVEGF) via polyethylene glycol linker to form targeted nanoparticles (PTX-GHP-VEGF). The spherical nanoparticles were 191±5 nm in size with good stability and biocompatibility. GO functioned as the first carrier and a near infrared absorber that can generate photothermal effects under 5-minute 808-nm laser irradiation to thermal trigger the release of PTX from the second carrier HSA nanoparticles. The mechanism of thermal-triggered drug release was also investigated preliminarily, in which the heat generated by GO induced swelling of PTX-GHP-VEGF nanoparticles which released the drugs. In vitro studies found that PTX-GHP-VEGF can efficiently target human SW-13 adrenocortical carcinoma cells as evaluated by confocal fluorescence microscopy as well as transmission electron microscopy, and showed an obvious thermal-triggered antitumor effect, mediated by apoptosis. Moreover, PTX-GHP-VEGF combined with near infrared irradiation showed specific tumor suppression effects with high survival rate after 100 days of treatment. PTX-GHP-VEGF also demonstrated high biosafety with no adverse effects on normal tissues and organs. These results highlight the remarkable potential of PTX-GHP-VEGF in photothermal controllable tumor treatment.


Assuntos
Albuminas/uso terapêutico , Sistemas de Liberação de Medicamentos , Grafite/química , Hipertermia Induzida , Nanopartículas/química , Neoplasias/terapia , Paclitaxel/uso terapêutico , Fototerapia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Paclitaxel Ligado a Albumina/farmacologia , Albuminas/farmacologia , Animais , Apoptose/efeitos dos fármacos , Materiais Biocompatíveis/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Portadores de Fármacos , Liberação Controlada de Fármacos , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , Nanopartículas/administração & dosagem , Nanopartículas/ultraestrutura , Neoplasias/patologia , Óxidos/farmacologia , Paclitaxel/farmacologia , Polietilenoglicóis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...