Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 807
Filtrar
1.
J Pharm Biomed Anal ; 245: 116184, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38692214

RESUMO

The plant of Paeonia lactiflora Pall. belongs to Ranunculaceae, and its root can be divided into two categories according to different processing methods, which included that one was directly dried without peeling the root of the P. lactiflora (PR), and the other was peeled the root of the P. lactiflora (PPR) after boiled and dried. To evaluate the difference of chemical components, UPLC-ESI-Q-Exactive Focus-MS/MS and UPLC-QQQ-MS were applied. The distribution of chemical components in different tissues was located by laser microdissection (LMD), especially the different ingredients. A total of 86 compounds were identified from PR and PPR. Four kind of tissues were isolated from the fresh root of the P. lactiflora (FPR), and 54 compounds were identified. Especially the content of gallic acid, albiflorin, and paeoniflorin with high biological activities were the highest in the cork, but they were lower in PR than that in PPR, which probably related to the process. To illustrate the difference in pharmacological effects of PR and PPR, the tonifying blood and analgesic effects on mice were investigated, and it was found that the tonifying blood and analgesic effects of PPR was superior to that of PR, even though PR had more constituents. The material basis for tonifying blood and analgesic effect of the root of P. lactiflora is likely to be associated with an increase in constituents such as paeoniflorin and paeoniflorin lactone after boiled and peeled. The study was likely to provide some theoretical support for the standard and clinical application.


Assuntos
Glucosídeos , Monoterpenos , Paeonia , Raízes de Plantas , Espectrometria de Massas em Tandem , Paeonia/química , Raízes de Plantas/química , Animais , Camundongos , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida de Alta Pressão/métodos , Glucosídeos/análise , Glucosídeos/química , Masculino , Monoterpenos/farmacologia , Monoterpenos/análise , Monoterpenos/química , Microdissecção/métodos , Ácido Gálico/análise , Ácido Gálico/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Lasers , Analgésicos/farmacologia , Analgésicos/química , Analgésicos/análise , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massa com Cromatografia Líquida , Hidrocarbonetos Aromáticos com Pontes
2.
Int J Nanomedicine ; 19: 3611-3622, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38660022

RESUMO

Background: Mangiferin (MA), a bioactive C-glucosyl xanthone with a wide range of interesting therapeutic properties, has recently attracted considerable attention. However, its application in biomedicine is limited by poor solubility and bioavailability. Carbon dots (CDs), novel nanomaterials, have immense promise as carriers for improving the biopharmaceutical properties of active components because of their outstanding characteristics. Methods: In this study, a novel water-soluble carbon dot (MC-CDs) was prepared for the first time from an aqueous extract of Moutan Cortex Carbonisata, and characterized by various spectroscopies, zeta potential and high-resolution transmission electron microscopy (HRTEM). The toxicity effect was investigated using the CCK-8 assay in vitro. In addition, the potential of MC-CDs as carriers for improving the pharmacokinetic parameters was evaluated in vivo. Results: The results indicated that MC-CDs with a uniform spherical particle size of 1-5 nm were successfully prepared, which significantly increased the solubility of MA in water. The MC-CDs exhibited low toxicity in HT-22 cells. Most importantly, the MC-CDs effectively affected the pharmacokinetic parameters of MA in normal rats. UPLC-MS analysis indicated that the area under the maximum blood concentration of MA from mangiferin-MC-CDs (MA-MC-CDs) was 1.6-fold higher than that from the MA suspension liquid (MA control) after oral administration at a dose of 20 mg/kg. Conclusion: Moutan Cortex-derived novel CDs exhibited superior performance in improving the solubility and bioavailability of MA. This study not only opens new possibilities for the future clinical application of MA but also provides evidence for the development of green biological carbon dots as a drug delivery system to improve the biopharmaceutical properties of insoluble drugs.


Assuntos
Disponibilidade Biológica , Carbono , Paeonia , Tamanho da Partícula , Ratos Sprague-Dawley , Solubilidade , Xantonas , Xantonas/farmacocinética , Xantonas/química , Xantonas/administração & dosagem , Animais , Carbono/química , Carbono/farmacocinética , Masculino , Ratos , Paeonia/química , Medicamentos de Ervas Chinesas/farmacocinética , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/administração & dosagem , Pontos Quânticos/química , Pontos Quânticos/toxicidade , Linhagem Celular , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Sobrevivência Celular/efeitos dos fármacos
3.
Regul Toxicol Pharmacol ; 149: 105620, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38615840

RESUMO

Botanical extracts, widely used in cosmetics, pose a challenge to safety assessment due to their complex compositions. The threshold of toxicological concern (TTC) approach, offering a safe exposure level for cosmetic ingredients, proves to be a promising solution for ensuring the safety of cosmetic ingredients with low exposure level. We assessed the safety of Paeonia lactiflora root extract (PLR), commonly used in skin conditioning products, with the TTC. We identified 50 constituents of PLR extract from the USDA database and literature exploration. Concentration of each constituent of PLR extract was determined with the information from USDA references, literature, and experimental analysis. The genotoxicity of PLR and its constituents was assessed in vitro and in silico respectively. Cramer class of the constituents of the PLR extract was determined with Toxtree 3.1 extended decision tree using ChemTunes®. Systemic exposure of each constituent from leave-on type cosmetic products containing PLR at a 1% concentration was estimated and compared with respective TTC threshold. Two constituents exceeding TTC threshold were further analyzed for dermal absorption using in silico tools, which confirmed the safety of PLR extract in cosmetics. Collectively, we demonstrated that the TTC is a useful tool for assessing botanical extract safety in cosmetics.


Assuntos
Cosméticos , Paeonia , Extratos Vegetais , Raízes de Plantas , Paeonia/química , Extratos Vegetais/toxicidade , Cosméticos/toxicidade , Raízes de Plantas/química , Medição de Risco , Humanos , Animais , Qualidade de Produtos para o Consumidor , Absorção Cutânea , Nível de Efeito Adverso não Observado
4.
Chem Biodivers ; 21(5): e202400337, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38470409

RESUMO

Rice sheath blight (RSB), caused by Rhizoctonia solani, is a significant disease of rice. The negative effects of chemical fungicides have created an urgent need for low-toxicity botanical fungicides. Our previous research revealed that the ethanol crude extract of Moutan Cortex (MC) exhibited superior antifungal activity against R. solani at 1000 µg/mL, resulting in a 100 % inhibition rate. The antifungal properties were mainly found in the petroleum ether extract. However, the active ingredients of the extract are still unclear. In this study, gas chromatography-mass spectrometry (GC-MS) was utilised for the analysis of its chemical components. The mycelium growth rate method was utilized to detect the antifungal activity. The findings indicated that paeonol constituted the primary active component, with a content of more than 96 %. Meanwhile, paeonol was the most significant antifungal active ingredient, the antifungal activity of paeonol (EC50=44.83 µg/mL) was much higher than that of ß-sitosterol and ethyl propionate against R. solani. Observation under an optical microscope revealed that paeonol resulted in abnormal mycelial morphology. This study provided theoretical support for identifying monomer antifungal compounds and developing biological fungicides for R. solani.


Assuntos
Antifúngicos , Testes de Sensibilidade Microbiana , Paeonia , Rhizoctonia , Rhizoctonia/efeitos dos fármacos , Antifúngicos/farmacologia , Antifúngicos/química , Antifúngicos/isolamento & purificação , Paeonia/química , Acetofenonas/farmacologia , Acetofenonas/química , Acetofenonas/isolamento & purificação , Cromatografia Gasosa-Espectrometria de Massas , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/isolamento & purificação , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Relação Dose-Resposta a Droga
5.
Molecules ; 29(5)2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38474505

RESUMO

BACKGROUND: Paeonia lactiflora Pall. (PLP) is a plant with excellent ornamental and therapeutic value that can be utilized in traditional Chinese medicine as Paeoniae Radix Alba (PRA) and Paeoniae Radix Rubra (PRR). PRA must undergo the "peeling" process, which involves removing the cork and a portion of the phloem. PLP's biological function is strongly linked to its secondary metabolites, and the distribution of metabolites in different regions of the PLP rhizome causes changes in efficacy when PLP is processed into various therapeutic compounds. METHODS: The metabolites of the cork (cor), phloem (phl), and xylem (xyl) were examined in the roots of PLP using a metabolomics approach based on UPLC-Q-Exactive-Orbitrap-MS/MS (UPLC-MS/MS), and the differential metabolites were evaluated using multivariate analysis. RESULTS: Significant changes were observed among the cor, phl, and xyl samples. In both positive and negative ion modes, a total of 15,429 peaks were detected and 7366 metabolites were identified. A total of 525 cor-phl differential metabolites, 452 cor-xyl differential metabolites, and 328 phl-xyl differential metabolites were evaluated. Flavonoids, monoterpene glycosides, fatty acids, sugar derivatives, and carbohydrates were among the top 50 dissimilar chemicals. The key divergent metabolic pathways include linoleic acid metabolism, galactose metabolism, ABC transporters, arginine biosynthesis, and flavonoid biosynthesis. CONCLUSION: The cor, phl, and xyl of PLP roots exhibit significantly different metabolite types and metabolic pathways; therefore, "peeling" may impact the pharmaceutical effect of PLP. This study represents the first metabolomics analysis of the PLP rhizome, laying the groundwork for the isolation and identification of PLP pharmacological activity, as well as the quality evaluation and efficacy exploration of PLP.


Assuntos
Medicamentos de Ervas Chinesas , Paeonia , Cromatografia Líquida , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas em Tandem , Paeonia/química , Medicamentos de Ervas Chinesas/química , Medicina Tradicional Chinesa , Metabolômica
6.
J Cosmet Dermatol ; 23(5): 1875-1883, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38450923

RESUMO

BACKGROUND: As a traditional Chinese herbal medicine, Paeonia lactiflora Pall is rich in various active ingredients such as polysaccharides and total flavonoids while having ornamental value. It has potential application value in the development of food and cosmetics. OBJECTIVE: To study the in vitro efficacy of Paeonia lactiflora Pall seeds oil. METHODS: Firstly, the levels of linolenic acid and linoleic acid in Paeonia lactiflora Pall seeds oil were quantified using gas chromatography. The impact of Paeonia lactiflora Pall seeds oil on the proliferation rate of B16F10 cells was assessed through the CCK-8 method, while the melanin content of B16F10 cells was determined using the sodium hydroxide lysis method. The inhibitory effects of Paeonia lactiflora Pall seeds oil on elastase, collagenase and hyaluronidase were evaluated by biochemical techniques in vitro. Lastly, the hen's egg chorioallantoic membrane test (HET-CAM) was conducted to confirm the absence of eye irritation caused by Paeonia lactiflora Pall seeds oil. RESULTS: Paeonia lactiflora Pall seeds oil within a certain volume concentration range (0.5%-4%) had no effect on the proliferation of B16F10 cells. Paeonia lactiflora Pall seeds oil showed significant inhibition of elastase, collagenase and hyaluronidase. Notably, the highest concentration tested, 4% Paeonia lactiflora Pall seed oil, yielded the most pronounced outcomes without causing any irritation. CONCLUSION: A certain concentration of Paeonia lactiflora Pall seeds oil has a significant effect on decreasing the melanin content in B16F10 cells and inhibiting the activities of elastase, collagenase, and hyaluronidase, which can provide a reference for the development of pure natural cosmetics raw materials.


Assuntos
Proliferação de Células , Colagenases , Hialuronoglucosaminidase , Melaninas , Paeonia , Elastase Pancreática , Óleos de Plantas , Sementes , Paeonia/química , Sementes/química , Animais , Camundongos , Melaninas/análise , Elastase Pancreática/metabolismo , Óleos de Plantas/farmacologia , Proliferação de Células/efeitos dos fármacos , Colagenases/metabolismo , Ácido Linoleico/farmacologia , Ácido Linoleico/análise , Cosméticos/química , Cosméticos/farmacologia , Melanoma Experimental/tratamento farmacológico , Ácido alfa-Linolênico/farmacologia , Ácido alfa-Linolênico/análise , Membrana Corioalantoide/efeitos dos fármacos , Linhagem Celular Tumoral , Galinhas
7.
Phytomedicine ; 127: 155483, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38432036

RESUMO

BACKGROUND: Genus Paeonia, which is the main source of Traditional Chinese Medicine (TCM) Paeoniae Radix Rubra (Chishao in Chinese), Paeoniae Radix Alba (Baishao in Chinese) and Moutan Cortex (Mudanpi in Chinese), is rich in active pharmaceutical ingredient such as monoterpenoid glycosides (MPGs). MPGs from Paeonia have extensive pharmacological effects, but the pharmacological effects and molecular mechanisms of MPGs has not been comprehensively reviewed. PURPOSE: MPGs compounds are one of the main chemical components of the genus Paeonia, with a wide variety of compounds and strong pharmacological activities, and the structure of the mother nucleus-pinane skeleton is similar to that of a cage. The purpose of this review is to summarize the pharmacological activity and mechanism of action of MPGs from 2012 to 2023, providing reference direction for the development and utilization of Paeonia resources and preclinical research. METHODS: Keywords and phrases are widely used in database searches, such as PubMed, Web of Science, Google Scholar and X-Mol to search for citations related to the new compounds, extensive pharmacological research and molecular mechanisms of MPGs compounds of genus Paeonia. RESULTS: Modern research confirms that MPGs are the main compounds in Paeonia that exert pharmacological effects. MPGs with extensive pharmacological characteristics are mainly concentrated in two categories: paeoniflorin derivatives and albiflflorin derivatives among MPGs, which contains 32 compounds. Among them, 5 components including paeoniflorin, albiflorin, oxypaeoniflorin, 6'-O-galloylpaeoniflorin and paeoniflorigenone have been extensively studied, while the other 28 components have only been confirmed to have a certain degree of anti-inflammatory and anticomplementary effects. Studies of pharmacological effects are widely involved in nervous system, endocrine system, digestive system, immune system, etc., and some studies have identified clear mechanisms. MPGs exert pharmacological activity through multilateral mechanisms, including anti-inflammatory, antioxidant, inhibition of cell apoptosis, regulation of brain gut axis, regulation of gut microbiota and downregulation of mitochondrial apoptosis, etc. CONCLUSION: This systematic review delved into the pharmacological effects and related molecular mechanisms of MPGs. However, there are still some compounds in MPGs whose pharmacological effects and pharmacological mechanisms have not been clarified. In addition, extensive clinical randomized trials are needed to verify the efficacy and dosage of MPGs.


Assuntos
Medicamentos de Ervas Chinesas , Glucosídeos , Paeonia , Glicosídeos/farmacologia , Paeonia/química , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Monoterpenos/farmacologia , Monoterpenos/química , Anti-Inflamatórios
8.
Phytomedicine ; 128: 155519, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38492365

RESUMO

BACKGROUND: Depression is a common mental illness characterised by abnormal and depressed emotions. Total paeony glycoside (TPG) is a naturally active saponin extracted from the traditional Chinese medicine Radix Paeoniae rubra. However, the antidepressant and neuroinflammatory effects of TPG have not been thoroughly studied. PURPOSE: To study the therapeutic potential of TGP in depression caused by neuronal injury and neuroinflammation and to explore the mechanism of TGP and the relationship between the NLRP3 inflammasome, pyroptosis, and autophagy. STUDY DESIGN: A chronic unpredictable mild stress (CUMS)-induced depression model and a cell model of corticosterone (CORT)-induced hippocampal neuron injury were established to evaluate the therapeutic effects of TPG. METHODS: The composition of TPG was analysed using high-performance liquid chromatography and mass spectrometry. The effects of TPG and fluoxetine on depression-like behaviour, neuronal injury, neuroinflammation, pyroptosis, and mitochondrial autophagy in the mice models were evaluated. RESULTS: TGP alleviated depression-like behaviours in mice and inhibited hippocampal neuronal apoptosis. The secretion of inflammatory cytokines was significantly reduced in CORT-induced hippocampal neuron cells and in the serum of a mouse model of CUMS-induced depression. In addition, TGP treatment reduced the levels of NLRP3 family pyrin structural domains, including NLRP3, pro-caspase-1, caspase-1, and IL-1ß, and the pyroptosis related proteins such as GSDMD-N. Importantly, TPG attenuated mitochondrial dysfunction, promoted the clearance of damaged mitochondria, and the activation of mitochondrial autophagy, which reduced ROS accumulation and NLRP3 inflammasome activation. An in-depth study observed that the regulatory effect of TPG on autophagy was attenuated by the autophagy inhibitor 3-methyladenine (3-MA) in vitro and in vivo. However, administration of the caspase-1 inhibitor Belnacasan (VX-765) successfully inhibited pyroptosis and showed a synergistic therapeutic effect with TPG. CONCLUSION: These results indicate that TPG can repair neuronal damage by activating autophagy, restoring mitochondrial function, and reducing inflammation-mediated pyroptosis, thereby playing an important role in the alleviation of neuroinflammation and depression. This study suggests new potential drugs and treatment strategies for neuroinflammation-related diseases and depression.


Assuntos
Antidepressivos , Autofagia , Depressão , Modelos Animais de Doenças , Glicosídeos , Hipocampo , Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Paeonia , Piroptose , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Autofagia/efeitos dos fármacos , Antidepressivos/farmacologia , Inflamassomos/metabolismo , Inflamassomos/efeitos dos fármacos , Camundongos , Masculino , Glicosídeos/farmacologia , Piroptose/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Depressão/tratamento farmacológico , Paeonia/química , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Doenças Neuroinflamatórias/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia
9.
Nat Prod Res ; 38(10): 1776-1779, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-37254836

RESUMO

The present study focused on water-soluble essential oil recovered from the hydrolate of ten Paeonia × suffruticosa cultivars. Thirty-seven components, mostly oxygenated compounds (94.6-99.6%), were detected by gas chromatography-mass spectrometry (GC-MS) and GC-flame ionisation detector (GC-FID). The geranic acid chemotype was discovered (in cultivar 'Lan BaoShi'). Eight key oxygenated components were analysed in silico with antidepressant targets sodium-dependent serotonin transporter (SERT), 5-hydroxytryptamine receptor 1 A (5-HT1A), and monoamine oxidase type A (MAO-A). Geraniol, nerol, citronellol, and geranic acid presented superior docking properties. Phenylethyl alcohol and 1,3,5-trimethoxybenzene were also well docked. These molecules were bound to the active sites successfully (with partial occupancy in SERT). They might increase serotonin level or mimic its effect in central nervous system. (Z)-3-Hexen-1-ol and 1-hexanol showed weak binding. The in silico analysis revealed for the first time that the key water-soluble essential oil components of P. × suffruticosa potentially targeted antidepressant targets.


Assuntos
Monoterpenos Acíclicos , Óleos Voláteis , Paeonia , Terpenos , Óleos Voláteis/química , Paeonia/química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Antidepressivos , Flores/química
10.
J Nat Med ; 78(2): 267-284, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38133706

RESUMO

Our representative studies to achieve sustainable use of crude drugs and ensure their stable quality are introduced: comprehensive studies on genetic, chemical, and sometimes pharmacological diversity of Asian medicinal plants including Paeonia lactiflora, Glycyrrhiza uralensis, Ephedra spp., Saposhnikovia divaricata, and Curcuma spp., as well as their related crude drugs. (1) For peony root, after genetic and chemical diversity analysis of crude drug samples including white and red peony root in China, the value-added resources with quality similar to red peony root were explored among 61 horticultural P. lactiflora varieties, and two varieties were identified. In addition, an optimized post-harvest processing method, which resulted in high contents of the main active components in the produced root, was developed to promote cultivation and production of brand peony root. (2) Alternative resources of glycyrrhiza, ephedra herb and saposhnikovia root and rhizome of Japanese Pharmacopoeia grade were discovered in eastern Mongolia after field investigation and quality assessment comparing Mongolian plants with Chinese crude drugs. Simultaneously, suitable specimens and prospective regions for cultivation were proposed. (3) Because of the wide distribution and morphological similarities of Curcuma species, classification of some species is debated, which leads to confusion in the use of Curcuma crude drugs. Molecular analyses of the intron length polymorphism (ILP) markers in genes encoding diketide-CoA synthase (DCS) and curcumin synthase (CURS) and trnK sequences, combined with essential oils analysis, were demonstrated as useful for standardization of Curcuma crude drugs. The above studies, representing various facets, can be applied to other crude drugs.


Assuntos
Apiaceae , Glycyrrhiza uralensis , Paeonia , Plantas Medicinais , Plantas Medicinais/genética , Estudos Prospectivos , Rizoma , Paeonia/química , Apiaceae/química , Padrões de Referência
11.
Molecules ; 28(23)2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38067470

RESUMO

In this study, a validated quality evaluation method with peony flower fingerprint chromatogram combined with simultaneous determination of sixteen bioactive constituents was established using UPLC-DAD-MS/MS. The results demonstrated that the method was stable, reliable, and accurate. The UPLC chemical fingerprints of 12 different varieties of peonies were established and comprehensively evaluated by similarity evaluation (SE), hierarchical cluster analysis (HCA), principal component analysis (PCA), and quantification analysis. The results of SE indicated that similar chemical components were present in these samples regardless of variety, but there were significant differences in the content of chemical components and material basis characteristics. The results of HCA and PCA showed that 12 varieties of samples were divided into two groups. Four flavonoids (11, 12, 13, and 16), five monoterpenes and their glycosides (3, 4, 6, 14, and 15), three tannins (7, 9, and 10), three phenolic acids (1, 2, and 5), and one aromatic acid (8) were identified from sixteen common peaks by standards and liquid chromatography-mass spectrometry (LC-MS). The simultaneous quantification of six types of components was conducted with the 12 samples, it was found that the sum contents of analytes varied obviously for peony flower samples from different varieties. The content of flavonoids, tannins, and monoterpenes (≥19.34 mg/g) was the highest, accounting for more than 78.45% of the total compounds. The results showed that the flavonoids, tannins, and monoterpenes were considered to be the key indexes in the classification and quality assessment of peony flower. The UPLC-DAD-MS/MS method coupled with multiple compounds determination and fingerprint analysis can be effectively applied as a feature distinguishing method to evaluate the compounds in peony flower raw material for product quality assurance in the food, pharmaceutical, and cosmetic industries. Moreover, this study provides ideas for future research and the improvement of products by these industries.


Assuntos
Medicamentos de Ervas Chinesas , Paeonia , Espectrometria de Massas em Tandem/métodos , Paeonia/química , Cromatografia Líquida de Alta Pressão/métodos , Taninos/análise , Medicamentos de Ervas Chinesas/química , Flavonoides/química , Monoterpenos/análise
12.
Molecules ; 28(21)2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37959739

RESUMO

Radix Paeoniae Alba (RPA) has been used extensively in Chinese traditional medicine to treat gastrointestinal disorders, immune-modulating diseases, cancers, and numerous other conditions. A few of its active components include paeoniflorin, albiflorin, lactiflorin, and catechin. However, their therapeutic effectiveness is compromised by poor pharmacokinetic profiles, low oral bioavailability, short half-lives, and poor aqueous solubility. In this study, hydroxyethyl cellulose-grafted-2-acrylamido-2-methylpropane sulfonic acid (HEC-g-AMPS) hydrogels were successfully prepared for the controlled release of Radix Paeonia Alba-solid dispersion (RPA-SD). A total of 43 compounds were identified in RPA-SD using UHPLC-Q-TOF-MS analysis. The hydrogel network formation was confirmed by FTIR, TGA, DSC, XRD, and SEM. Hydrogels' swelling and drug release were slightly higher at pH 1.2 (43.31% swelling, 81.70% drug release) than at pH 7.4 (27.73% swelling, 72.46% drug release) after 48 h. The gel fraction, drug release time and mechanical strength of the hydrogels increased with increased polymer and monomer concentration. Furthermore, the hydrogels were porous (84.15% porosity) and biodegradable (8.9% weight loss per week). Moreover, the synthesized hydrogels exhibited excellent antimicrobial and antioxidative properties.


Assuntos
Medicamentos de Ervas Chinesas , Paeonia , Medicamentos de Ervas Chinesas/química , Paeonia/química , Preparações de Ação Retardada , Hidrogéis , Celulose
13.
Molecules ; 28(19)2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37836765

RESUMO

Several monoterpene glycoside compounds were extracted from Paeonia lactiflora Pall. Among them, paeoniflorin, a water-soluble monoterpene glycoside found in the root of Paeonia lactiflora Pall, exhibits excellent antioxidant pharmacological functions. Initially, Sc(CF3SO3)3 was employed as the catalyst for paeoniflorin's dehydration and rearrangement reactions with alcohols. Subsequently, structural modifications were performed on paeoniflorin through a series of responses, including acetylation, deacetylation, and debenzoylation, ultimately yielding 46 monoterpene glycoside derivatives. The potential inhibitory effects on the pro-inflammatory mediators interleukin-1 beta (IL-1ß) and nitric oxide (NO) were assessed in vitro. The results revealed that compounds 29 and 31 demonstrated notable inhibition of NO production, while eight derivatives (3, 8, 18, 20, 21, 29, 34, and 40) displayed substantial inhibitory effects on the secretion of IL-1ß. Computational research was also undertaken to investigate the binding affinity of the ligands with the target proteins. Interactions between the proteins and substrates were elucidated, and corresponding binding energies were calculated accordingly. The findings of this study could provide valuable insights into the design and development of novel anti-inflammatory agents with enhanced pharmacological properties.


Assuntos
Glicosídeos Cardíacos , Paeonia , Glicosídeos/farmacologia , Óxido Nítrico/metabolismo , Interleucina-1beta/metabolismo , Monoterpenos/farmacologia , Paeonia/química
14.
J Nat Med ; 77(4): 792-816, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37432536

RESUMO

Peony root is an important herbal drug used as an antispasmodic analgesic. To evaluate peony roots with different botanical origins, producing areas, and post-harvest processing, 1H NMR-based metabolomics analysis was employed. Five types of monoterpenoids, including albiflorin (4), paeoniflorin (6), and sulfonated paeoniflorin (25), and six other compounds, including 1,2,3,4,6-penta-O-galloyl-ß-D-glucose (18), benzoic acid (21), gallic acid (22), and sucrose (26) were detected in the extracts of peony root samples. Among them, compounds 4, 6, 18, and total monoterpenoids including 21 were quantified by quantitative 1H NMR (qHNMR). Compound 25 was detected in 1H NMR spectra of sulfur-fumigated white peony root (WPR) extracts indicating that 1H NMR was a fast and effective method for identifying sulfur-fumigated WPR. The content of 26, the main factor affecting extract yield, increased significantly in peony root after low-temperature storage for one month, whereas that in WPR did not increase due to the boiling treatment after harvesting. We investigated the impact of preprocessing methods to such analysis for NMR data from commercial samples, resulting that the data matrix transformed from qHNMR spectra and normalized to internal standard were optimum for multivariate analysis. The multivariate analysis demonstrated that among commercial samples derived from P. lactiflora, peony root samples in Japanese market (PR) had high contents of 18 and 22, and red peony root (RPR) samples had high content of monoterpenoids represented by 6; and among RPR samples, those derived from P. veitchii showed higher contents of 18 and 22 than those from P. lactiflora. The 1H NMR-based metabolomics method coupled with qHNMR was useful for evaluation of peony root and would be applicable for other crude drugs.


Assuntos
Paeonia , Extratos Vegetais , Espectroscopia de Ressonância Magnética , Extratos Vegetais/análise , Monoterpenos/análise , Paeonia/química , Enxofre/análise , Metabolômica , Análise Multivariada , Raízes de Plantas/química
15.
Int J Mol Sci ; 24(14)2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37511520

RESUMO

Paeonia peregrina Mill. is a perennial herbaceous plant species, known for the medicinal value of all of its plant parts, although the chemical composition of the petals is unknown. This study aimed to determine the chemical fingerprint of the petals and also establish the optimal extraction parameters, extraction medium, and extraction method for petals collected from different localities in Serbia. The optimization was performed in order to acquire extracts that are rich in the contents of total polyphenol content (TPC) and total flavonoid content (TFC), and also exhibit strong antioxidant activity. In addition, the influence of the extracts on several human skin pathogens was evaluated, as well as their ability to aid wound closure and act as anti-inflammatory agents. Both the extraction medium and the applied technique significantly influenced the skin-beneficial biological activities, while methanol proved to be a more favorable extraction medium. In conclusion, the extraction conditions that yielded the extract with the richest phenolic content with satisfactory biological potential varied between the assays, while the most promising locality in Serbia for the collection of P. peregrina petals was Pancevo (South Banat).


Assuntos
Paeonia , Humanos , Paeonia/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Cromatografia Líquida de Alta Pressão/métodos , Polifenóis/farmacologia , Flavonoides/química , Antioxidantes/farmacologia , Antioxidantes/química
16.
Zhongguo Zhong Yao Za Zhi ; 48(9): 2455-2463, 2023 May.
Artigo em Chinês | MEDLINE | ID: mdl-37282874

RESUMO

This study explored toxicity attenuation processing technology of Rhizoma Dioscoreae Bulbiferae stir-fried with Paeoniae Radix Alba decoction for the first time, and further explored its detoxification mechanism. Nine processed products of Rhizoma Dioscoreae Bulbiferae stir-fried with Paeoniae Radix Alba decoction were prepared by orthogonal experiment with three factors and three levels. Based on the decrease in the content of the main hepatotoxic component diosbulbin B before and after processing of Rhizoma Dioscoreae Bulbiferae by high-performance liquid chromatography, the toxicity attenuation technology was preliminarily screened out. On this basis, the raw and representative processed products of Rhizoma Dioscoreae Bulbiferae were given to mice by gavage with 2 g·kg~(-1)(equival to clinical equivalent dose) for 21 d. The serum and liver tissues were collected after the last administration for 24 h. The serum biochemical indexes reflecting liver function and liver histopathology were combined to further screen out and verify the proces-sing technology. Then, the lipid peroxidation and antioxidant indexes of liver tissue were detected by kit method, and the expressions of NADPH quinone oxidoreductase 1(NQO1) and glutamate-cysteine ligase(GCLM) in mice liver were detected by Western blot to further explore detoxification mechanism. The results showed that the processed products of Rhizoma Dioscoreae Bulbiferae stir-fried with Paeoniae Radix Alba decoction reduced the content of diosbulbin B and improved the liver injury induced by Rhizoma Dioscoreae Bul-biferae to varying degrees, and the processing technology of A_2B_2C_3 reduced the excessive levels of alanine transaminase(ALT) and aspartate transaminase(AST) induced by raw Rhizoma Dioscoreae Bulbiferae by 50.2% and 42.4%, respectively(P<0.01, P<0.01). The processed products of Rhizoma Dioscoreae Bulbiferae stir-fried with Paeoniae Radix Alba decoction reversed the decrease protein expression levels of NQO1 and GCLM in the liver of mice induced by raw Rhizoma Dioscoreae Bulbiferae to varying degrees(P<0.05 or P<0.01), and it also reversed the increasing level of malondialdehyde(MDA) and the decreasing levels of glutathione(GSH), glutathione peroxidase(GPX), and glutathione S-transferase(GST) in the liver of mice(P<0.05 or P<0.01). In summary, this study shows that the optimal toxicity attenuation processing technology of Rhizoma Dioscoreae Bulbiferae stir-fried with Paeoniae Radix Alba decoction is A_2B_2C_3, that is, 10% of Paeoniae Radix Alba decoction is used for moistening Rhizoma Dioscoreae Bulbiferae and processed at 130 ℃ for 11 min. The detoxification mechanism involves enhancing the expression levels of NQO1 and GCLM antio-xidant proteins and related antioxidant enzymes in the liver.


Assuntos
Medicamentos de Ervas Chinesas , Paeonia , Camundongos , Animais , Antioxidantes/análise , Extratos Vegetais/farmacologia , Medicamentos de Ervas Chinesas/química , Rizoma/química , Paeonia/química , Glutationa/análise
17.
Molecules ; 28(12)2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37375146

RESUMO

The Paeonia suffruticosa, known as 'Feng Dan', has been used for thousands of years in traditional Chinese medicine. In our chemical investigation on the root bark of the plant, five new phenolic dimers, namely, paeobenzofuranones A-E (1-5), were characterized. Their structures were determined using spectroscopic analysis including 1D and 2D NMR, HRESIMS, UV, and IR, as well as ECD calculations. Compounds 2, 4, and 5 showed cytotoxicity against three human cancer cell lines, with IC50 values ranging from 6.7 to 25.1 µM. Compounds 1 and 2 showed certain inhibitory activity on NO production. To the best of our knowledge, the benzofuranone dimers and their cytotoxicity of P. suffruticosa are reported for the first time in this paper.


Assuntos
Paeonia , Humanos , Paeonia/química , Fenóis/farmacologia , Fenóis/análise , Espectroscopia de Ressonância Magnética , Raízes de Plantas/química
18.
PeerJ ; 11: e15166, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37073273

RESUMO

Herbaceous peony (Paeonia lactiflora Pall.) is an ancient ornamental crop and, in recent decades, an emerging popular cut flower. Straight stems are a vital criterion for cut herbaceous peony selection, while many cultivars bend as the plant develops. Pectin helps maintain the mechanical strength of the cell wall. However, little is known about its role in the stem bending of herbaceous peony. Two herbaceous peony cultivars with contrasting stem morphologies ('Dong Fang Shao Nv', upright; 'Lan Tian Piao Xiang', bending gradually) at five developmental stages were used as materials to investigate the effects of pectin content and nanostructure on straightness using the carbazole colorimetric method and atomic force microscopy observations. The contents of water-soluble pectin (WSP), CDTA-soluble pectin (CSP), and sodium carbonate-soluble pectin (SSP) differed significantly between the two cultivars, and the contents and angle of the flower and branch showed correlations. For the pectin nanostructure, WSP showed agglomerates and long chains, with a higher proportion of broad agglomerates at the later stages of the bending cultivar than the upright cultivar. CSP showed branched chains, and the proportion of broad chains was higher in the upright cultivar at later stages, while CSP shape changed from agglomerates to chains in the bending cultivar. SSP mainly consisted of short linear main chains, and side chains in the upright stem were stacked, and the bent cultivar had more broad and short chains. It can be concluded that the contents, nanometric shape, and size of the three kinds of pectin are highly likely to affect herbaceous peony stem straightness. This study provides a theoretical basis for the role of pectin in the production and breeding of herbaceous peony cut flowers.


Assuntos
Paeonia , Pectinas , Pectinas/análise , Paeonia/química , Melhoramento Vegetal , Flores , Parede Celular/química
19.
Zhonghua Yi Xue Za Zhi ; 103(9): 689-695, 2023 Mar 07.
Artigo em Chinês | MEDLINE | ID: mdl-36858370

RESUMO

Objective: To investigate the protective effect and its immunoregulatory mechanism of Total Glucosides of Paeony (TGP) against Graves' Disease (GD) model on BALB/c mice. Methods: Fifty female (6 weeks old, weighing 16-18 g) BALB/c mice of specific pathogen free were divided into control group according to random number table method, model group, early low-dose TGP intervention group (250 mg·kg-1·d-1), early high-dose TGP intervention group (500 mg·kg-1·d-1), and late TGP intervention group, with 10 mice in each group. Except the control group, the other 4 groups were immunized 3 times (0, 3rd, and 6th week) with recombinant adenovirus expressing the thyroid stimulating hormone receptor (TSHR) A subunit to establish the GD model. The early low-dose and high-dose intervention group were given diets containing different doses of TGP throughout the whole process, and the late intervention group was given diets containing low doses of TGP from the 1st week after the 2nd immunization (week 4). The levels of thyrotropin receptor antibody (TRAb) and total thyroxine (TT4) were detected in the tail venous blood of mice at the 4th week. At the 10th week, the serum TRAb and TT4 levels and the ratio of regulatory T cells (Treg) in each group were detected, and the pathological changes of thyroid tissue were observed. Serum helper T cell 1(Th1) and Th2 cell-related factors interleukin-2 (IL-2), IL-4, IL-5, IL-10, IL-12p70, granulocyte-macrophage colony-stimulating factor (GM-CSF), interferon-γ (IFN-γ) and tumor necrosis factors-α (TNF-α) were detected to investigate the protective effect of TGP on GD model in BALB/c mice and its mechanism. Results: At the 4th week, The level of TT4 [(55.07±12.89) µg/L] in early high-dose intervention group was lower than that in model group [(74.33±8.63) µg/L] (all P<0.05). The level of TT4 in early low-dose intervention group and late intervention group and model group had no statistical significance (all P>0.05). TRAb level of mice between early low-dose, early high-dose, late intervention groups and model group was no significant difference (all P>0.05). At the 10th week, TRAb [(90.00±26.89) U/L] and TT4[(32.66±8.11) µg/L] levels in the early high-dose intervention group were lower than those in the model group [(396.97±95.35) U/L, (73.70±16.33) µg/L] (all P<0.05). The TRAb and TT4 levels in the early low-dose intervention group and late intervention group were not significantly different from those in the model group (all P>0.05). The thyroid tissue of hyperthyroidism mice in the early high dose intervention group showed focal hypertrophic changes, while the thyroid tissue of other hyperthyroidism mice showed diffuse hypertrophic changes. The CD4+CD25+/CD4+Treg ratio in early high-dose intervention group was higher than that in model group at the 10th week (4 weeks after three recombinant adenovirus immunization) (P<0.05). Compared with the model group at the 10th week, the levels of IL-2, IL-12p70 and IFN-γ in the early high-dose intervention group were all decreased (all P<0.05), and the levels of IL-10 were increased (P<0.05). Conclusion: Early high-dose (500 mg·kg-1·d-1) TGP intervention group displays a protective effect against GD mice, the mechanism of which may be related to regulatory T cell function changes and Th1/Th2 cytokine balance restoration.


Assuntos
Glucosídeos , Doença de Graves , Hipertireoidismo , Animais , Feminino , Camundongos , Glucosídeos/farmacologia , Doença de Graves/tratamento farmacológico , Hipertireoidismo/tratamento farmacológico , Hipertrofia , Interleucina-10 , Interleucina-2 , Paeonia/química
20.
Int J Mol Sci ; 24(5)2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36902364

RESUMO

In this study, the black fertile (BSs) and the red unfertile seeds (RSs) of the Greek endemic Paeonia clusii subsp. rhodia (Stearn) Tzanoud were studied for the first time. Nine phenolic derivatives, trans-resveratol, trans-resveratrol-4'-O-ß-d-glucopyranoside, trans-ε-viniferin, trans-gnetin H, luteolin, luteolin 3'-O-ß-d-glucoside, luteolin 3',4'-di-O-ß-d-glucopyranoside, and benzoic acid, along with the monoterpene glycoside paeoniflorin, have been isolated and structurally elucidated. Furthermore, 33 metabolites have been identified from BSs through UHPLC-HRMS, including 6 monoterpene glycosides of the paeoniflorin type with the characteristic cage-like terpenic skeleton found only in plants of the genus Paeonia, 6 gallic acid derivatives, 10 oligostilbene compounds, and 11 flavonoid derivatives. From the RSs, through HS-SPME and GC-MS, 19 metabolites were identified, among which nopinone, myrtanal, and cis-myrtanol have been reported only in peonies' roots and flowers to date. The total phenolic content of both seed extracts (BS and RS) was extremely high (up to 289.97 mg GAE/g) and, moreover, they showed interesting antioxidative activity and anti-tyrosinase properties. The isolated compounds were also biologically evaluated. Especially in the case of trans-gnetin H, the expressed anti-tyrosinase activity was higher than that of kojic acid, which is a well-known whitening agent standard.


Assuntos
Antioxidantes , Paeonia , Antioxidantes/química , Paeonia/química , Monofenol Mono-Oxigenase , Luteolina , Monoterpenos/análise , Extratos Vegetais/química , Fenóis/análise , Glicosídeos/química , Compostos Fitoquímicos/análise , Sementes/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...