Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 788
Filtrar
1.
Nutrients ; 16(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38732551

RESUMO

The salivary protein, Gustin/carbonic anhydrase VI, has been described as a trophic factor responsible for the growth of taste buds. We found, in a genetically homogeneous population, that the polymorphism rs2274333 (A/G) of the Gustin gene is crucial for the full functionality of the protein and is associated with taste sensitivity. However, other studies have failed to find this evidence. Here, we verified if Gustin gene methylation can affect the salivary levels of the protein, also concerning the polymorphism rs2274333 and PROP bitter responsiveness. The Gustin gene methylation profiling and the quantification of the Gustin salivary levels were determined in sixty-six volunteers genotyped for the polymorphism rs2274333 (A/G) (Ser90Gly in the protein sequence). The fungiform papillae density was also determined. The results confirm our earlier observations by showing that AA genotypes had a greater density of fungiform taste papillae, whereas the GG genotypes showed a lower density. We also found variations in the protein levels in the three genotype groups and an inverse relationship between Gustin gene methylation and the salivary levels of the protein, mostly evident in AA and ST volunteers, i.e., in volunteers who would be carriers of the functional isoform of the protein. These findings could justify the conflicting data in the literature.


Assuntos
Saliva , Papilas Gustativas , Humanos , Masculino , Feminino , Adulto , Papilas Gustativas/metabolismo , Saliva/metabolismo , Anidrases Carbônicas/genética , Anidrases Carbônicas/metabolismo , Metilação de DNA , Genótipo , Adulto Jovem , Polimorfismo de Nucleotídeo Único , Paladar/genética
2.
Nutrients ; 16(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732607

RESUMO

Bitterness from phenylthiocarbamide and 6-n-propylthiouracil (PROP) varies with polymorphisms in the TAS2R38 gene. Three SNPs form two common (AVI, PAV) and four rare haplotypes (AAI, AAV, PVI, and PAI). AVI homozygotes exhibit higher detection thresholds and lower suprathreshold bitterness for PROP compared to PAV homozygotes and heterozygotes, and these differences may influence alcohol and vegetable intake. Within a diplotype, substantial variation in suprathreshold bitterness persists, and some AVI homozygotes report moderate bitterness at high concentrations. A second receptor encoded by a gene containing a functional polymorphism may explain this. Early work has suggested that PROP might activate TAS2R4 in vitro, but later work did not replicate this. Here, we identify three TAS2R4 SNPs that result in three diplotypes-SLN/SLN, FVS/SLN, and FVS/FVS-which make up 25.1%, 44.9%, and 23.9% of our sample. These TAS2R4 haplotypes show minimal linkage disequilibrium with TAS2R38, so we examined the suprathreshold bitterness as a function of both. The participants (n = 243) rated five PROP concentrations in duplicate, interleaved with other stimuli. As expected, the TAS2R38 haplotypes explained ~29% (p < 0.0001) of the variation in the bitterness ratings, with substantial variation within the haplotypes (AVI/AVI, PAV/AVI, and PAV/PAV). Notably, the TAS2R4 diplotypes (independent of the TAS2R38 haplotypes) explained ~7-8% of the variation in the bitterness ratings (p = 0.0001). Given this, we revisited if PROP could activate heterologously expressed TAS2R4 in HEK293T cells, and calcium imaging indicated 3 mM PROP is a weak TAS2R4 agonist. In sum, our data are consistent with the second receptor hypothesis and may explain the recovery of the PROP tasting phenotype in some AVI homozygotes; further, this finding may potentially help explain the conflicting results on the TAS2R38 diplotype and food intake.


Assuntos
Haplótipos , Polimorfismo de Nucleotídeo Único , Propiltiouracila , Receptores Acoplados a Proteínas G , Paladar , Humanos , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Feminino , Paladar/genética , Masculino , Adulto , Homozigoto , Adulto Jovem , Limiar Gustativo/genética
3.
PLoS One ; 19(4): e0300071, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38683826

RESUMO

BACKGROUND: The liking for sweet taste is a powerful driver for consuming added sugars, and therefore, understanding how sweet liking is formed is a critical step in devising strategies to lower added sugars consumption. However, current research on the influence of genetic and environmental factors on sweet liking is mostly based on research conducted with individuals of European ancestry. Whether these results can be generalized to people of other ancestry groups warrants investigation. METHODS: We will determine the differences in allele frequencies in sweet-related genetic variants and their effects on sweet liking in 426 adults of either African or East Asian ancestry, who have the highest and lowest average added sugars intake, respectively, among ancestry groups in the U.S. We will collect information on participants' sweet-liking phenotype, added sugars intake (sweetness exposure), anthropometric measures, place-of-birth, and for immigrants, duration of time living in the U.S. and age when immigrated. Ancestry-specific polygenic scores of sweet liking will be computed based on the effect sizes of the sweet-related genetic variants on the sweet-liking phenotype for each ancestry group. The predictive validity of the polygenic scores will be tested using individuals of African and East Asian ancestry from the UK Biobank. We will also compare sweet liking between U.S.-born individuals and immigrants within each ancestry group to test whether differences in environmental sweetness exposure during childhood affect sweet liking in adulthood. DISCUSSION: Expanding genetic research on taste to individuals from ancestry groups traditionally underrepresented in such research is consistent with equity goals in sensory and nutrition science. Findings from this study will help in the development of a more personalized nutrition approach for diverse populations. TRIAL REGISTRATION: This protocol has been preregistered with the Center for Open Science (https://doi.org/10.17605/OSF.IO/WPR9E).


Assuntos
Asiático , Negro ou Afro-Americano , Preferências Alimentares , Paladar , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem , Frequência do Gene , Polimorfismo de Nucleotídeo Único , Paladar/genética , Paladar/fisiologia , Estados Unidos , Asiático/genética , Negro ou Afro-Americano/genética , Projetos de Pesquisa
4.
Mol Biol Evol ; 41(4)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38649162

RESUMO

Chemical senses, including olfaction, pheromones, and taste, are crucial for the survival of most animals. There has long been a debate about whether different types of senses might influence each other. For instance, primates with a strong sense of vision are thought to have weakened olfactory abilities, although the oversimplified trade-off theory is now being questioned. It is uncertain whether such interactions between different chemical senses occur during evolution. To address this question, we examined four receptor gene families related to olfaction, pheromones, and taste: olfactory receptor (OR), vomeronasal receptor type 1 and type 2 (V1R and V2R), and bitter taste receptor (T2R) genes in Hystricomorpha, which is morphologically and ecologically the most diverse group of rodents. We also sequenced and assembled the genome of the grasscutter, Thryonomys swinderianus. By examining 16 available genome assemblies alongside the grasscutter genome, we identified orthologous gene groups among hystricomorph rodents for these gene families to separate the gene gain and loss events in each phylogenetic branch of the Hystricomorpha evolutionary tree. Our analysis revealed that the expansion or contraction of the four gene families occurred synchronously, indicating that when one chemical sense develops or deteriorates, the others follow suit. The results also showed that V1R/V2R genes underwent the fastest evolution, followed by OR genes, and T2R genes were the most evolutionarily stable. This variation likely reflects the difference in ligands of V1R/V2Rs, ORs, and T2Rs: species-specific pheromones, environment-based scents, and toxic substances common to many animals, respectively.


Assuntos
Evolução Molecular , Família Multigênica , Filogenia , Receptores Odorantes , Roedores , Órgão Vomeronasal , Animais , Receptores Odorantes/genética , Órgão Vomeronasal/metabolismo , Roedores/genética , Receptores Acoplados a Proteínas G/genética , Paladar/genética , Olfato/genética , Receptores de Feromônios/genética , Receptores de Feromônios/metabolismo
5.
PLoS One ; 19(4): e0300061, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38687739

RESUMO

It is known that the perception of bitterness is mediated by type 2 bitter taste receptors (TAS2Rs). However, recent reports have suggested that the carbonic anhydrase 6 (CA6) gene may also influence bitterness sensing. Genetic variants in these genes could influence dietary intake of brassica vegetables, whose increased consumption has been observed in the literature, though inconsistently, to decrease breast cancer (BC) risk. We hypothesized that the estimated odds ratios (ORs) for the association between BC and taster diplotype (PAV/PAV) and/or genotype A/A, will be in the direction of increased BC risk, potentially due to reduced consumption of brassica vegetables. Using a case-control study of BC in Polish women in Poland (210 cases and 262 controls) and Polish immigrant women to USA (78 cases and 170 controls) we evaluated the association of the taster diplotypes in TAS2R38 gene and genotypes in the CA6 gene and BC risk in these two populations individually and jointly. No significant increase in risk was observed for the TAS2R38 PAV/PAV diplotype (tasters) in each population individually or in the joint population. For the CA6 gene, in the joint population, we observed an increased BC risk for the combined G/A and G/G genotypes (non-tasters) vs A/A (tasters), OR = 1.41 (95% CI 1.04-1.90, p = 0.026) which after adjustment for False Discovery Rate (FDR), was not significant at p≤0.05 level. However, for the joint population and for the combined genotype of the two genes AVI/AVI+G* (non-tasters) vs. PAV/*+A/A (tasters), we observed a significant increase in BC risk, OR = 1.77 (95%CI 1.47-2.74, p = 0.01), for the non-tasters, which remained significant after FDR adjustment. In conclusion for the joint population and the joint effect for the two bitter sensing genes, we observed an increase in BC risk for the bitterness non-tasters, association which is in the opposite direction to our original hypothesis.


Assuntos
Neoplasias da Mama , Anidrases Carbônicas , Predisposição Genética para Doença , Receptores Acoplados a Proteínas G , Humanos , Feminino , Polônia/epidemiologia , Estudos de Casos e Controles , Neoplasias da Mama/genética , Neoplasias da Mama/epidemiologia , Receptores Acoplados a Proteínas G/genética , Pessoa de Meia-Idade , Estados Unidos/epidemiologia , Anidrases Carbônicas/genética , Adulto , Emigrantes e Imigrantes , Paladar/genética , Fatores de Risco , Idoso , Polimorfismo de Nucleotídeo Único , Genótipo
6.
J Nutr Biochem ; 128: 109619, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38467201

RESUMO

Gustin, a trophic factor for taste bud development, and its polymorphism at rs2274333 influence taste perception of 6-n-propylthiouracil (PROP) and fungiform papillae (FP) density. The PROP taster status affects dietary fat sensing and body composition. However, there is a paucity of research on the gustin genotype with dietary fat perception, PROP tasting ability, and body mass index (BMI). Thus, taste sensitivity to fat and bitterness was evaluated in 178 healthy individuals. The general labeled magnitude scale was used to determine suprathreshold taste intensity ratings, whereas the alternative forced choice approach was used to estimate the taste-sensing ability. The FP density was assessed by applying blue-colored food dye over the anterior region of the tongue. Restriction fragment length polymorphism was used to detect the genetic polymorphism (rs2274333) in the carbonic anhydrase VI (CA-VI) gene. Fisher's chi-square analysis showed that the CA-VI genotype and allelic frequencies significantly correlated (p<0.001) with the PROP taster status and BMI. Healthy individuals with AA genotypes of the CA-VI polymorphism and PROP super-tasters demonstrated stronger gustatory sensitivity for linoleic acid (LA) with greater FP density in comparison to individuals with AG/GG genotypes and other PROP taster groups. Stepwise forward multiple regression analysis indicates that BMI and PROP taster status significantly influence the LA sensing ability. The suprathreshold intensity rating for LA was also significantly impacted by PROP taster status and CA-VI genotypes, with a variation of 73.3%. Overall, our findings show a relationship between the taste papillae environment and the CA-VI genetic mutation at rs2274333, which influenced the gustatory preference for dietary fat and bitter taste.


Assuntos
Anidrases Carbônicas , Gorduras na Dieta , Propiltiouracila , Papilas Gustativas , Percepção Gustatória , Humanos , Feminino , Masculino , Adulto , Percepção Gustatória/genética , Adulto Jovem , Anidrases Carbônicas/genética , Anidrases Carbônicas/metabolismo , Papilas Gustativas/metabolismo , Polimorfismo de Nucleotídeo Único , Índice de Massa Corporal , Paladar/genética , Genótipo , Frequência do Gene , Análise de Regressão
7.
Sci Rep ; 14(1): 4673, 2024 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-38409357

RESUMO

The TAS2R38 gene is well known for its function in bitter taste sensitivity, but evidence also suggests a role in innate immunity. TAS2R38 may be relevant in coronavirus disease 2019 (COVID-19), but research findings are inconsistent. The objective of this study was to explore whether common TAS2R38 haplotypes are associated with COVID-19 infection and symptomatology in the Canadian Longitudinal Study on Aging (CLSA). Data from the CLSA COVID-19 Questionnaire and Seroprevalence sub-studies were utilized with CLSA genetic data for common TAS2R38 haplotypes related to bitter taste sensitivity. Haplotypes were categorized into three diplotype groups: [P]AV homozygotes, [P]AV/[A]VI heterozygotes, and [A]VI homozygotes. No significant differences were observed between diplotypes and COVID-19 infection frequency. Among self-reported COVID-19 cases (n = 76), and in uncorrected exploratory analyses, heterozygotes were less likely to report experiencing sinus pain compared to [P]AV homozygotes. Among seroprevalence-confirmed cases (n = 177), [A]VI homozygotes were less likely to report experiencing a sore/scratchy throat compared to [P]AV homozygotes. However, both observations were non-significant upon correction for multiple testing. In this study, TAS2R38 haplotypes were not significantly associated with COVID-19 infection or symptomatology. Nevertheless, in light of some exploratory patterns and conflicting evidence, additional research is warranted to evaluate links between TAS2R38 and innate immunity.


Assuntos
COVID-19 , Receptores Acoplados a Proteínas G , Humanos , Envelhecimento/genética , Canadá/epidemiologia , COVID-19/epidemiologia , COVID-19/genética , Estudos Transversais , Haplótipos , Estudos Longitudinais , Receptores Acoplados a Proteínas G/genética , Estudos Soroepidemiológicos , Paladar/genética
8.
Chem Senses ; 492024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-38183495

RESUMO

The peripheral taste system is more complex than previously thought. The novel taste-signaling proteins TRPM4 and PLCß3 appear to function in normal taste responding as part of Type II taste cell signaling or as part of a broadly responsive (BR) taste cell that can respond to some or all classes of tastants. This work begins to disentangle the roles of intracellular components found in Type II taste cells (TRPM5, TRPM4, and IP3R3) or the BR taste cells (PLCß3 and TRPM4) in driving behavioral responses to various saccharides and other sweeteners in brief-access taste tests. We found that TRPM4, TRPM5, TRPM4/5, and IP3R3 knockout (KO) mice show blunted or abolished responding to all stimuli compared with wild-type. IP3R3 KO mice did, however, lick more for glucose than fructose following extensive experience with the 2 sugars. PLCß3 KO mice were largely unresponsive to all stimuli except they showed normal concentration-dependent responding to glucose. The results show that key intracellular signaling proteins associated with Type II and BR taste cells are mutually required for taste-driven responses to a wide range of sweet and carbohydrate stimuli, except glucose. This confirms and extends a previous finding demonstrating that Type II and BR cells are both necessary for taste-driven licking to sucrose. Glucose appears to engage unique intracellular taste-signaling mechanisms, which remain to be fully elucidated.


Assuntos
Glucose , Fosfolipase C beta , Canais de Cátion TRPM , Paladar , Animais , Camundongos , Carboidratos , Glucose/farmacologia , Glucose/metabolismo , Camundongos Knockout , Edulcorantes/farmacologia , Paladar/genética , Paladar/fisiologia , Percepção Gustatória , Canais de Cátion TRPM/genética , Fosfolipase C beta/genética , Fosfolipase C beta/metabolismo
9.
J Cell Physiol ; 239(2): e31179, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38219077

RESUMO

Type 2 taste receptors (TAS2Rs), traditionally known for their role in bitter taste perception, are present in diverse reproductive tissues of both sexes. This review explores our current understanding of TAS2R functions with a particular focus on reproductive health. In males, TAS2Rs are believed to play potential roles in processes such as sperm chemotaxis and male fertility. Genetic insights from mouse models and human polymorphism studies provide some evidence for their contribution to male infertility. In female reproduction, it is speculated that TAS2Rs influence the ovarian milieu, shaping the functions of granulosa and cumulus cells and their interactions with oocytes. In the uterus, TAS2Rs contribute to uterine relaxation and hold potential as therapeutic targets for preventing preterm birth. In the placenta, they are proposed to function as vigilant sentinels, responding to infection and potentially modulating mechanisms of fetal protection. In the cervix and vagina, their analogous functions to those in other extraoral tissues suggest a potential role in infection defense. In addition, TAS2Rs exhibit altered expression patterns that profoundly affect cancer cell proliferation and apoptosis in reproductive cancers. Notably, TAS2R agonists show promise in inducing apoptosis and overcoming chemoresistance in these malignancies. Despite these advances, challenges remain, including a lack of genetic and functional studies. The application of techniques such as single-cell RNA sequencing and clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated endonuclease 9 gene editing could provide deeper insights into TAS2Rs in reproduction, paving the way for novel therapeutic strategies for reproductive disorders.


Assuntos
Papilas Gustativas , Animais , Humanos , Camundongos , Genitália , Receptores Acoplados a Proteínas G/metabolismo , Sêmen , Paladar/genética , Papilas Gustativas/metabolismo
10.
Genes (Basel) ; 15(1)2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38254970

RESUMO

Rice is an important crop in the word, and fat is one of the main important nutrient components of rice. The lipid content and fatty acid composition of grains significantly influences the quality of rice. In this study, 94 homozygous recombination inbred lines (RILs) were developed and the crude fat content of them displayed a normal distribution ranging from 0.44% to 2.62%. Based on their taste quality, a positive association between fat content and eating quality was revealed. Then, two lines (FH and FL) were selected with similar agronomic characteristics and different lipid content and taste quality for RNA sequencing analysis, and a total of 619 differentiable expressed genes were detected, primarily enriched in metabolic pathways such as starch and sucrose metabolism, fatty acid metabolism, and amino acid metabolism. The expression of two genes related to fatty acid synthesis and elongation was significantly up-regulated, while the expression of three genes related to fatty acid degradation was significantly down-regulated in FH grains. By using liquid chromatography, the relative levels of palmitic acid and oleic acid were discovered significantly higher in FH grains. Additionally, the comparative genomic analysis was conducted to visualize genomic differences of five genes. Ultimately, two genes (Os07g0417200 and Os12g0102100) were selected to be the key gene to affect the lipid metabolism, especially for the synthesis of unsaturated fatty acids, significantly changing the eating quality of rice. These results provide a theoretical basis for improving the taste quality of rice.


Assuntos
Oryza , Oryza/genética , Paladar/genética , Perfilação da Expressão Gênica , Expressão Gênica , Ácidos Graxos/genética
11.
Physiol Behav ; 276: 114473, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38262572

RESUMO

Alcohol use disorder in humans is highly heritable, and as a term is synonymous with alcoholism, alcohol dependence, and alcohol addiction. Defined by the NIAAA as a medical condition characterized by an impaired ability to stop or control alcohol use despite adverse social, occupational, or health consequences, the genetic basis of alcohol dependence is much studied. However, an intriguing component to alcohol acceptance exists outside of genetics or social factors. In fact, mice of identical genetic backgrounds without any prior experience of tasting ethanol display widely varying preferences to it, far beyond those seen for typical taste solutions. Here, we hypothesized that a preference for ethanol, which tastes both bitter and sweet to humans, would be influenced by taste function. Using a mouse model of taste behavior, we tested preferences for bitter and sweet in mice that, without training or previous experience, either preferred or avoided ethanol solutions in consumption trials. Data showed clear sex differences, in which male mice that preferred ethanol also preferred a bitter quinine solution, whereas female mice that preferred ethanol also preferred a sweet sucralose solution. Male mice preferring ethanol also exhibited lower expression levels of mRNA for genes encoding the bitter taste receptors T2R26 and T2R37, and the bitter transducing G-protein subunit GNAT3, suggesting that the higher ethanol preference observed in the male mice may be due to bitter signaling, including that arising from ethanol, being weaker in this group. Results further support links between ethanol consumption and taste response, and may be relevant to substance abuse issues in human populations.


Assuntos
Alcoolismo , Paladar , Feminino , Masculino , Humanos , Paladar/genética , Alcoolismo/genética , Percepção Gustatória/genética , Etanol/farmacologia , Consumo de Bebidas Alcoólicas/genética , Preferências Alimentares/fisiologia
12.
J Hazard Mater ; 466: 133497, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38278077

RESUMO

The discernment and aversion of noxious gustatory stimuli profoundly influence homeostasis maintenance and survival of fauna. Cantharidin, a purported aphrodisiac, is a monoterpenoid compound secreted by many species of blister beetle, particularly by the Spanish fly, Lytta vesicatoria. Although the various advantageous functions of cantharidin have been described, its taste analysis and toxic properties in animalshave been rarely explored. Our study using Drosophila melanogaster examines the taste properties of cantharidin along with its potential hazardous effect in the internal organs of animals. Here, we find that cantharidin activates bitter taste receptors. Our findings show that specific ionotropic receptors (IR7g, IR51b, and IR94f) in labellar bitter-sensing neurons, along with co-receptors IR25a and IR76b, are responsible for detecting cantharidin. By introducing the IR7g and IR51b in sweet and bitter neurons, naturally expressing IR76b and IR25a, we show that these genes are sufficient for cantharidin perception. Moreover, we witness the deleterious ramifications of cantharidin on survival and visceral integrities, shedding light on its hazardous effect.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Animais , Drosophila melanogaster/genética , Proteínas de Drosophila/genética , Cantaridina/toxicidade , Paladar/genética , Percepção Gustatória/fisiologia
13.
Nat Ecol Evol ; 8(1): 111-120, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38093021

RESUMO

Taste is a vital chemical sense for feeding behaviour. In mammals, the umami and sweet taste receptors comprise three members of the taste receptor type 1 (T1R/TAS1R) family: T1R1, T1R2 and T1R3. Because their functional homologues exist in teleosts, only three TAS1R genes generated by gene duplication are believed to have been inherited from the common ancestor of bony vertebrates. Here, we report five previously uncharacterized TAS1R members in vertebrates, TAS1R4, TAS1R5, TAS1R6, TAS1R7 and TAS1R8, based on genome-wide survey of diverse taxa. We show that mammalian and teleost fish TAS1R2 and TAS1R3 genes are paralogues. Our phylogenetic analysis suggests that the bony vertebrate ancestor had nine TAS1Rs resulting from multiple gene duplications. Some TAS1Rs were lost independently in descendent lineages resulting in retention of only three TAS1Rs in mammals and teleosts. Combining functional assays and expression analysis of non-teleost fishes we show that the novel T1Rs form heterodimers in taste-receptor cells and recognize a broad range of ligands such as essential amino acids, including branched-chain amino acids, which have not been previously considered as T1R ligands. This study reveals diversity of taste sensations in both modern vertebrates and their ancestors, which might have enabled vertebrates to adapt to diverse habitats on Earth.


Assuntos
Percepção Gustatória , Paladar , Animais , Paladar/genética , Filogenia , Vertebrados/genética , Peixes/genética , Mamíferos
14.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1869(3): 159433, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38007088

RESUMO

Western diet (WD), characterized by a high intake of fats and sugary drinks, is a risk factor for male reproductive impairment. However, the molecular mechanisms underlying this remain unclear. Taste receptor type 1 member 3 (TAS1R3), activated by ligands of WD, is highly expressed in extra-oral tissues, particularly in the testes. Here, we investigated to determine the effects of WD intake on male reproduction and whether TAS1R3 mediates WD-induced impairment in male reproduction. Male C57BL/6 J wild-type (WT) and Tas1r3 knockout (KO) mice were fed either a normal diet and plain water (ND) or a 60 % high-fat-diet and 30 % (w/v) sucrose water (WD) for 18 weeks (n = 7-9/group). Long-term WD consumption significantly impaired sperm count, motility and testicular morphology in WT mice with marked Tas1r3 overexpression, whereas Tas1r3 KO mice were protected from WD-induced reproductive impairment. Testicular transcriptome analysis revealed downregulated AMP-activated protein kinase (AMPK) signaling and significantly elevated AMPK-targeted nuclear receptor 4A1 (Nr4a1) expression in WD-fed Tas1r3 KO mice. In vitro studies further validated that Tas1r3 knockdown in Leydig cells prevented the suppression of Nr4a1 and downstream steroidogenic genes (Star, Cyp11a1, Cyp17a1, and Hsd3b1) caused by high glucose, fructose, and palmitic acid levels, and maintained the levels of testosterone. Additionally, we analyzed the public human dataset to assess the clinical implications of our findings and confirmed a significant association between TAS1R3 and male-infertility-related diseases. Our findings suggest that TAS1R3 regulates WD-induced male reproductive impairment via the AMPK/NR4A1 signaling and can be a novel therapeutic target for male infertility.


Assuntos
Infertilidade Masculina , Paladar , Camundongos , Masculino , Humanos , Animais , Paladar/genética , Proteínas Quinases Ativadas por AMP , Dieta Ocidental/efeitos adversos , Camundongos Endogâmicos C57BL , Sêmen , Camundongos Knockout , Infertilidade Masculina/genética , Água
15.
Int J Food Sci Nutr ; 75(2): 197-206, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38115549

RESUMO

Bitterness-receptor gene TAS2R38 is associated with taste sensitivity and dietary behaviour, and is known to play a critical role in adiposity. However, evidence regarding body composition from a large cohort is lacking. This study aimed to ascertain whether TAS2R38 rs10246939 C > T bitterness genetic variation is associated with body composition in Korean individuals. The TAS2R38 rs10246939 genotypes, anthropometric measurements, and body composition of 1,843 males and 1,801 females from the Korean Genome and Epidemiology Study were analysed. Findings suggested that there was a significant difference in body fat components by TAS2R38 genotype. Furthermore, the bitterness genotype exhibited a positive association with adiposity markers in females. The TT genotype showed greater body mass index, body fat percentage, and degree of obesity than those with the C allele. However, such an association was not observed in males. In conclusion, this study suggests that TAS2R38 rs10246939 is associated with fat tissue markers in Korean females.


Assuntos
Receptores Acoplados a Proteínas G , Paladar , Humanos , Masculino , Feminino , Paladar/genética , Receptores Acoplados a Proteínas G/genética , Genótipo , Obesidade/genética , Adiposidade , Variação Genética , República da Coreia , Polimorfismo de Nucleotídeo Único
16.
J Nutr Sci Vitaminol (Tokyo) ; 69(5): 347-356, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37940575

RESUMO

Human type 2 taste receptor (TAS2R) genes encode bitter-taste receptors that are activated by various bitter ligands. It has been said that TAS2R38 may detect bitter substances and then suppress their intake by controlling gustatory or digestive responses. The major haplotypes of TAS2R38 involve three non-synonymous, closely-linked single-nucleotide polymorphisms (SNPs), leading to three amino acid substitutions (A49P, V262A and I296V) and resulting in a PAV or AVI allele. The allele frequency of AVI/PAV was 0.42/0.58 in this study. The genotype frequency distributions of TAS2R38 were 18.32%, 46.95% and 33.95% for AVI/AVI, AVI/PAV and PAV/PAV, respectively, and were in Hardy-Weinberg equilibrium. Five haplotype combinations of minor alleles were identified: AVI/AAV, AVI/AVV, AAI/PAV, AVI/PVV, AVI/AAI, with corresponding frequencies of 0.49%, 0.10%, 0.10%, 0.05%, 0.05%, respectively, in 2,047 Japanese Tohoku Medical Megabank Organization (ToMMo) subjects (2KJPN). The 16 subjects with these minor alleles were excluded from the questionnaire analysis, which found no significant differences among the major TAS2R38 genotypes (AVI/AVI, AVI/PAV and PAV/PAV) in the intake frequency of cruciferous vegetables or in the frequency of drinking alcohol. This result differs from previous data using American and European subjects. This is the first study to analyze the relationship between TAS2R38 genotype and the eating and drinking habits of Japanese subjects. It was also shown that there were no relationships at all between the genetic polymorphism of TAS2R46 and the phenotypes such as clinical BMI, eating and drinking habits among the 3 genotypes of TAS2R46 (∗/∗, ∗/W, W/W) at position W250∗ (∗stop codon).


Assuntos
População do Leste Asiático , Receptores Acoplados a Proteínas G , Paladar , Humanos , Genótipo , Polimorfismo de Nucleotídeo Único , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Paladar/genética , Comportamento de Ingestão de Líquido , Dieta
17.
Lifestyle Genom ; 16(1): 224-236, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37883944

RESUMO

INTRODUCTION: Despite the prevalence of depression and anxiety worldwide, their aetiologies remain unclear, and they can be difficult to diagnose and treat. Changes in salt-taste perception have been found in both conditions. Single-nucleotide polymorphisms (SNPs) in the salt-taste-related gene, TRPV1, have been associated with alterations to salt-taste perception, preference, and sodium consumption. Diet quality is a known modifier of depression and anxiety and recently, sodium intake has been studied in mental health. However, the relationships between salt-taste genetics, depression, anxiety, and these dietary factors are yet to be elucidated. METHODS: Data from the well-characterized cross-sectional Retirement Health and Lifestyle Study (n = 536, ≥65 y) were used to explore the relationships between the salt-taste SNP TRPV1-rs8065080, levels of depression and anxiety (Hospital Anxiety and Depression Scale, HADS), estimated sodium intake, and diet quality in this secondary analysis. Standard least-squares regression and nominal logistic regression modelling were used to compare continuous and categorical variables, respectively, with analyses stratified by sex. RESULTS: Presence of the TRPV1-rs8065080 variant allele (C) was found to increase the likelihood of having depression (HADS) in the total population and in males. The associations remained significant after adjusting for sodium intake, three diet quality indices, and demographic variables, suggesting that TRPV1-rs8065080 genotype is driving the association with depression. DISCUSSION/CONCLUSION: Future studies should explore extra-oral functions of the SNP and salt-taste receptors in the brain and the roles of neurotransmitters common to both depression and salt taste to improve the management of this increasingly prevalent and difficult-to-treat condition.


Assuntos
Depressão , Paladar , Idoso , Humanos , Masculino , Estudos Transversais , Depressão/epidemiologia , Depressão/genética , Polimorfismo de Nucleotídeo Único , Cloreto de Sódio na Dieta , Paladar/genética , Canais de Cátion TRPV/genética , Feminino
18.
Front Biosci (Landmark Ed) ; 28(9): 201, 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37796686

RESUMO

BACKGROUND: Chicory (Cichorium intybus L.), a member of the Asteraceae family, is known for its numerous health benefits, including its prebiotic, digestive, antioxidant or anti-inflammatory effects. Used as a coffee substitute, chicory roots is also appreciated for its bitterness, which can prove to be a disadvantage for other uses in food. The bitterness of chicory is largely linked to the presence of sesquiterpene lactones (STLs) in the roots. METHODS: In order to create less bitter industrial chicory varieties, CRISPR/Cas9 technology was used to inhibit the first two genes of the STL biosynthetic pathway: germacrene A synthase (CiGAS), short form, and germacrene A oxidase (CiGAO). To determine the impact of these reductions on the perception of bitterness, a sensory analysis of 13 field-grown chicories genotypes, contrasting for their STL composition, allowed the construction of obtain a bitterness scale by correlating STL content with perceived bitterness. The edited chicories were positioned on this scale according to their STL content. RESULTS: Biallelic mutations in two of the copies of CiGAS-short form or in the CiGAO gene led to a reduction in STL content of edited chicories and a reduction in bitterness, or even an absence of perception, was obtained for some mutants. CONCLUSIONS: The use of the CRISPR/Cas9 tool as well as the choice of targets therefore makes it possible to modulate the bitterness of chicory.


Assuntos
Cichorium intybus , Cichorium intybus/genética , Sistemas CRISPR-Cas/genética , Paladar/genética , Mutagênese
19.
Int J Mol Sci ; 24(17)2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37685855

RESUMO

There is wide variation in how individuals perceive the chemosensory attributes of liquid formulations of ibuprofen, encompassing both adults and children. To understand personal variation in the taste and chemesthesis properties of this medicine, and how to measure it, our first scientific strategy centered on utilizing trained adult panelists, due to the complex and time-consuming psychophysical tasks needed at this initial stage. We conducted a double-blind cohort study in which panelists underwent whole-genome-wide genotyping and psychophysically evaluated an over-the-counter pediatric medicine containing ibuprofen. Associations between sensory phenotypes and genetic variation near/within irritant and taste receptor genes were determined. Panelists who experienced the urge to cough or throat sensations found the medicine less palatable and sweet, and more irritating. Perceptions varied with genetic ancestry; panelists of African genetic ancestry had fewer chemesthetic sensations, rating the medicine sweeter, less irritating, and more palatable than did those of European genetic ancestry. We discovered a novel association between TRPA1 rs11988795 and tingling sensations, independent of ancestry. We also determined for the first time that just tasting the medicine allowed predictions of perceptions after swallowing, simplifying future psychophysical studies on diverse populations of different age groups needed to understand genetic, cultural-dietary, and epigenetic factors that influence individual perceptions of palatability and, in turn, adherence and the risk of accidental ingestion.


Assuntos
Ibuprofeno , Paladar , Estudos de Coortes , Variação Genética , Percepção , Sensação , Paladar/genética , Humanos , Administração Oral , Formas de Dosagem
20.
J Nutr ; 153(11): 3270-3279, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37716607

RESUMO

BACKGROUND: Variation in common taste receptor type 2 member 38 (TAS2R38) haplotypes is associated with bitter-taste sensitivity, but associations with dietary intake and risk factors for chronic disease are inconsistent. OBJECTIVES: To determine whether common TAS2R38 haplotypes are associated with dietary intake and risk factors for chronic disease using cross-sectional data from the Canadian Longitudinal Study on Aging (n = 26,090). Outcomes were assessed among the full sample and stratified by sex. METHODS: Taster status was determined from TAS2R38 haplotypes, and the respondents were classified as supertasters, tasters, and nontasters. Primary outcome variables were the consumption frequencies of vegetables, sweet-tasting foods, alcoholic beverages, and visceral adiposity index (VAI). Secondary outcome variables were the individual VAI components. Multivariable regression models adjusted for sociodemographic and lifestyle factors were used to assess associations between the taster status and outcome variables. RESULTS: Among the sample, 5655, 12,821, and 7614 respondents were classified as supertasters, tasters, and nontasters, respectively. Vegetable consumption was significantly higher among nontasters than among supertasters (1.23 ± 0.26 and 1.20 ± 0.22, respectively, P = 0.02). Among males, the consumption of sweet-tasting foods (0.40 ± 8.80 and 0.38 ± 7.55, P = 0.02) and green salad (0.35 ± 0.31 and 0.33 ± 0.27, P = 0.02) was also higher for nontasters than supertasters. Nontasters were more likely to be regular alcohol consumers compared with supertasters among the full sample (odds ratio [95% confidence interval]: 1.12 [1.03, 1.22]; P = 0.01) and among females (OR: 1.13; 95% CI: 1.01, 1.27; P = 0.04). No significant associations were observed between TAS2R38 haplotypes and VAI, although high-density lipoprotein cholesterol was significantly lower among supertasters than nontasters (1.45 ± 0.59 and 1.47 ± 0.63, respectively; P = 0.04). CONCLUSIONS: Among middle- to older-aged adults, minor associations are observed between TAS2R38 haplotypes, dietary intake, and high-density lipoprotein cholesterol. Genetic predisposition to bitter-taste sensitivity is linked to diet; however, further research is needed to understand the relevance for chronic disease risk.


Assuntos
Paladar , Verduras , Canadá/epidemiologia , Colesterol , Estudos Transversais , Ingestão de Alimentos , Haplótipos , Lipoproteínas HDL , Estudos Longitudinais , Receptores Acoplados a Proteínas G/genética , Fatores de Risco , Paladar/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...