Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 143
Filtrar
1.
Sci Rep ; 13(1): 12409, 2023 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-37524844

RESUMO

The tropical rock lobster, Panulirus ornatus, is a commercially important aquaculture species exhibiting complex social interactions in laboratory culture, including cannibalism of moulting conspecifics. Cannibalism of soft-shelled post-moult stage individuals is a major limitation during the juvenile stage of culture. Not limited to P. ornatus, cannibalism is widespread across farmed decapods, limiting stocking densities in crab, freshwater crayfish, and prawn species. To understand the mechanisms driving this behaviour and reduce its prevalence, we have investigated the role of chemoreception via the aesthetasc-bearing region of the lateral antennular flagellum, in the recognition of conspecific moulting cues. Differential expression analysis of several tissues in P. ornatus shows an upregulation of 70 ionotropic receptor isoforms, including co-receptors (IR25a and IR93a) and divergent receptors (IR4, IR7, and IR21a) in the aesthetasc-bearing region of the antennules. Deafferentation of the aesthetascs via deionised water exposure prevents juveniles from responding to conspecific moulting cues in a two-current choice flume, suggesting chemoreception, possibly olfaction, plays a role in identifying moulting juveniles. This is the first step in understanding the mechanisms via which cannibalism is triggered in juvenile P. ornatus culture. Further work in this area will help discover means to limit cannibalism in laboratory and commercial culture.


Assuntos
Palinuridae , Animais , Astacoidea , Flagelos , Muda , Palinuridae/fisiologia , Olfato
2.
Sci Rep ; 12(1): 21474, 2022 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-36509822

RESUMO

Characterising crustacean behaviour in response to conspecific chemical cues contributes to our evolving knowledge of the drivers of their social behaviour. There is particular interest in understanding the chemical and behavioural mechanisms contributing to cannibalism at ecdysis, as this behaviour substantially limits culture productivity of several commercially important crustaceans. Before investigating the role of chemoreception in cannibalism of moulting crustaceans, we must investigate its role in detecting moulting conspecifics. Here we use a two-current choice flume to observe juvenile tropical rock lobster (Panulirus ornatus) behavioural response to conspecific moulting cues and identifying attracted and avoidant behaviours correlating to moult stage and social relationship. Observed cue preferences show inter-moult juveniles are attracted to the moulting cues of lobsters to which they are socially naïve. In contrast, post-moult and inter-moult juveniles avoid the moulting cues of individuals whom they are socially familiar with. Average speed and total distance travelled by lobsters increases in response to conspecific moulting cues. This study demonstrates the suitability of a two-current choice flume for behavioural assays in P. ornatus and characterises clear behavioural patterns in juveniles exposed to conspecific moulting cues. This provides important framework for understanding the role of chemical communication in eliciting cannibalism.


Assuntos
Muda , Palinuridae , Humanos , Animais , Palinuridae/fisiologia , Sinais (Psicologia)
3.
Environ Pollut ; 309: 119699, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35787424

RESUMO

Anthropogenic aquatic noise is recognised as an environmental pollutant with the potential to negatively affect marine organisms. Seismic surveys, used to explore subseafloor oil reserves, are a common source of aquatic noise that have garnered attention due to their intense low frequency inputs and their frequent spatial overlap with coastal fisheries. Commercially important Southern Rock Lobster (Jasus edwardsii) adults have previously shown sensitivity to signals from a single seismic air gun. Here, the sensitivity of J. edwardsii juveniles and puerulus to the signals of a full-scale seismic survey were evaluated to determine if early developmental stages were affected similarly to adults, and the range of impact. To quantify impact, lobster mortality rates, dorsoventral righting reflex and progression through moult cycle were evaluated following exposure. Exposure did not result in mortality in either developmental stage, however, air gun signals caused righting impairment to at least 500 m in lobsters sampled immediately following exposure, as had previously been reported in adults with corresponding sensory system damage following exposure. Impairment resulting from close range (0 m) exposure appeared to be persistent, as previously reported in adults, whereas juveniles exposed at a more distant range (500 m) showed recovery, indicating that exposure at a range of 500 m may not cause lasting impairment to righting. Intermoult duration was (time between moults) significantly increased in juveniles exposed at 0 m from the source, indicating the potential for slowed development, growth, and physiological stress. These results demonstrate that exposure to seismic air gun signals have the potential to negatively impact early life history stages of Southern Rock Lobsters. The similarity of both the impacts and the sound exposure levels observed here compared to previous exposure using a single air gun offer validation for the approach, which opens the potential for accessible field-based experimental work into the impact of seismic surveys on marine invertebrates.


Assuntos
Palinuridae , Animais , Larva/fisiologia , Ruído , Palinuridae/fisiologia , Reflexo de Endireitamento , Alimentos Marinhos
4.
Sci Rep ; 12(1): 4412, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35292683

RESUMO

Marine species not only suffer from direct effects of warming oceans but also indirectly via the emergence of novel species interactions. While metabolic adjustments can be crucial to improve resilience to warming, it is largely unknown if this improves performance relative to novel competitors. We aimed to identify if spiny lobsters-inhabiting a global warming and species re-distribution hotspot-align their metabolic performance to improve resilience to both warming and novel species interactions. We measured metabolic and escape capacity of two Australian spiny lobsters, resident Jasus edwardsii and the range-shifting Sagmariasus verreauxi, acclimated to current average-(14.0 °C), current summer-(17.5 °C) and projected future summer-(21.5 °C) habitat temperatures. We found that both species decreased their standard metabolic rate with increased acclimation temperature, while sustaining their scope for aerobic metabolism. However, the resident lobster showed reduced anaerobic escape performance at warmer temperatures and failed to match the metabolic capacity of the range-shifting lobster. We conclude that although resident spiny lobsters optimise metabolism in response to seasonal and future temperature changes, they may be unable to physiologically outperform their range-shifting competitors. This highlights the critical importance of exploring direct as well as indirect effects of temperature changes to understand climate change impacts.


Assuntos
Palinuridae , Aclimatação , Animais , Austrália , Mudança Climática , Aquecimento Global , Oceanos e Mares , Palinuridae/fisiologia , Temperatura
5.
Sci Rep ; 11(1): 2663, 2021 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-33514853

RESUMO

Marine Protected Areas (MPAs) are designed to enhance biodiversity and ecosystem services. Some MPAs are also established to benefit fisheries through increased egg and larval production, or the spillover of mobile juveniles and adults. Whether spillover influences fishery landings depend on the population status and movement patterns of target species both inside and outside of MPAs, as well as the status of the fishery and behavior of the fleet. We tested whether an increase in the lobster population inside two newly established MPAs influenced local catch, fishing effort, and catch-per-unit-effort (CPUE) within the sustainable California spiny lobster fishery. We found greater build-up of lobsters within MPAs relative to unprotected areas, and greater increases in fishing effort and total lobster catch, but not CPUE, in fishing zones containing MPAs vs. those without MPAs. Our results show that a 35% reduction in fishing area resulting from MPA designation was compensated for by a 225% increase in total catch after 6-years, thus indicating at a local scale that the trade-off of fishing ground for no-fishing zones benefitted the fishery.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Pesqueiros , Palinuridae/fisiologia , Animais , California
6.
Sci Rep ; 10(1): 21235, 2020 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-33277537

RESUMO

In an ocean warming hotspot off south-east Australia, many species have expanded their ranges polewards, including the eastern rock lobster, Sagmariasus verreauxi. This species is likely extending its range via larval advection into Tasmanian coastal waters, which are occupied by the more commercially important southern rock lobster, Jasus edwardsii. Here, thermal tolerances of these lobster species at two life stages were investigated to assess how they may respond to warming ocean temperatures. We found that the pattern, optimum and magnitude of thermal responses differed between performance measures, life stages and species. Sagmariasus verreauxi had a warmer optimal temperature for aerobic scope and escape speed than J. edwardsii. However, J. edwardsii had a higher magnitude of escape speed, indicating higher capacity for escape performance. There were also differences between life stages within species, with the larval stage having higher variation in optimal temperatures between measures than juveniles. This inconsistency in performance optima and magnitude indicates that single performance measures at single life stages are unlikely to accurately predict whole animal performance in terms of life-time survival and fitness. However, combined results of this study suggest that with continued ocean warming, S. verreauxi is likely to continue to extend its distribution polewards and increase in abundance in Tasmania.


Assuntos
Aptidão Genética/fisiologia , Larva/fisiologia , Palinuridae/fisiologia , Adaptação Biológica/fisiologia , Animais , Austrália , Larva/crescimento & desenvolvimento , Consumo de Oxigênio/fisiologia , Palinuridae/crescimento & desenvolvimento , Análise de Regressão , Tasmânia , Temperatura
7.
Sci Rep ; 10(1): 16463, 2020 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-33020553

RESUMO

As coral populations decline across the Caribbean, it is becoming increasingly important to understand the forces that inhibit coral survivorship and recovery. Predation by corallivores, such as the short coral snail Coralliophila abbreviata, are one such threat to coral health and recovery worldwide, but current understanding of the factors controlling corallivore populations, and therefore predation pressure on corals, remains limited. To examine the extent to which bottom-up forces (i.e., coral prey), top-down forces (i.e., predators), and marine protection relate to C. abbreviata distributions, we surveyed C. abbreviata abundance, percent coral cover, and the abundance of potential snail predators across six protected and six unprotected reefs in the Florida Keys. We found that C. abbreviata abundance was lower in protected areas where predator assemblages were also more diverse, and that across all sites snail abundance generally increased with coral cover. C. abbreviata abundance had strong, negative relationships with two gastropod predators-the Caribbean spiny lobster (Panulirus argus) and the grunt black margate (Anisotremus surinamensis), which may be exerting top-down pressure on C. abbreviata populations. Further, we found the size of C. abbreviata was also related to reef protection status, with larger C. abbreviata on average in protected areas, suggesting that gape-limited predators such as P. argus and A. surinamensis may alter size distributions by targeting small snails. Combined, these results provide preliminary evidence that marine protection in the Florida Keys may preserve critical trophic interactions that indirectly promote coral success via control of local populations of the common corallivorous snail C. abbreviata.


Assuntos
Antozoários/fisiologia , Comportamento Predatório/fisiologia , Caramujos/fisiologia , Animais , Região do Caribe , Recifes de Corais , Palinuridae/fisiologia
8.
Sci Rep ; 10(1): 18092, 2020 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-33093550

RESUMO

Anthropogenic inputs into coastal ecosystems are causing more frequent environmental fluctuations and reducing seawater pH. One such ecosystem is Florida Bay, an important nursery for the Caribbean spiny lobster, Panulirus argus. Although adult crustaceans are often resilient to reduced seawater pH, earlier ontogenetic stages can be physiologically limited in their tolerance to ocean acidification on shorter time scales. We used a Y-maze chamber to test whether reduced-pH seawater altered the orientation of spiny lobster pueruli toward chemical cues produced by Laurencia spp. macroalgae, a known settlement cue for the species. We tested the hypothesis that pueruli conditioned in reduced-pH seawater would be less responsive to Laurencia spp. chemical cues than pueruli in ambient-pH seawater by comparing the proportion of individuals that moved to the cue side of the chamber with the proportion that moved to the side with no cue. We also recorded the amount of time (sec) before a response was observed. Pueruli conditioned in reduced-pH seawater were less responsive and failed to select the Laurencia cue. Our results suggest that episodic acidification of coastal waters might limit the ability of pueruli to locate settlement habitats, increasing postsettlement mortality.


Assuntos
Sinais (Psicologia) , Larva/fisiologia , Orientação/fisiologia , Palinuridae/fisiologia , Animais , Região do Caribe , Concentração de Íons de Hidrogênio , Oceanos e Mares
9.
Prev Vet Med ; 183: 105122, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32891901

RESUMO

Southern rock lobster (SRL1, Jasus edwardsii) are caught from the wild waters of southern Australia and form an important commodity economically for the fisheries industry in Australia. Between landing and export, SRL are held in specialised tanks within holding facilities for varying time periods before being exported to China. During the 2015-16 fishing season a lower stock survival rate was reported by some holding facilities when compared to previous fishing seasons. An investigation was undertaken to identify possible causes and favouring factors using a retrospective, single cohort, observational study. A custom questionnaire was built and trialled to collect qualitative and quantitative information on facilities infrastructure and capacity (10 questions), water systems (16 questions), SRL stock and health management (12 questions). Onsite visits and interviews of consenting holding facilities, with active holding operations, were conducted. Facilities were categorised into different capacity and management profiles based on a multivariate factor analysis. The association between facility profiles and perceived sub-optimal survival was then explored using simple logistic regression models. Out of the 83 license holders on record, 63 were in operation at the time of survey and 52 (83%) consented to participate. Perceived sub-optimal survival was reported in 22 (42%) facilities. The capacity, bio-filtration and water management practices across the surveyed facilities was highly variable but did not appear to be associated with survival. However, 'Intensive holding' facilities compared to the 'Extensive holding' facilities were significantly associated with an increased risk of sub-optimal survival (OR = 7.0, 95% CI: 2.1-26.13, P = 0.002). 'Intensive holding' facilities were more likely to hold higher annual tonnage sourced from distant, diverse and higher number of sources, to multiple handle and stock SRL in crates (as opposed to free swimming in tanks), and hold them for longer time periods. Holding practices are highly diverse across the SRL industry with little evidence of impact on survival, however, intensive and large scale holding practices appeared to be at higher risk of sub-optimal survival. A longitudinal and finer scale study is warranted to identify which one(s) of the stock management practices directly impact SRL survival during holding.


Assuntos
Aquicultura , Longevidade , Palinuridae/fisiologia , Animais , Estudos de Coortes , Pesqueiros , Estudos Retrospectivos , Fatores de Risco , Estações do Ano , Austrália do Sul , Tasmânia , Vitória
10.
PLoS One ; 15(8): e0236200, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32846430

RESUMO

Indo-Pacific lionfish have become invasive throughout the western Atlantic. Their predatory effects have been the focus of much research and are suggested to cause declines in native fish abundance and diversity across the invaded range. However, little is known about their non-consumptive effects, or their effects on invertebrates. Lionfish use shelters on the reef, thus there is potential for competition with other shelter-dwelling organisms. We demonstrate similar habitat associations between invasive lionfish, native spiny lobsters (Panulirus argus) and native long-spined sea urchins (Diadema antillarum), indicating the potential for competition. We then used a laboratory experiment to compare activity and shelter use of each species when alone and when lionfish were paired with each native species. Spiny lobsters increased their activity but did not change their shelter use in the presence of a lionfish, whilst long-spined sea urchins changed neither their activity nor shelter use. However, lionfish reduced their shelter use in the presence of spiny lobsters and long-spined sea urchins. This study highlights the importance not only of testing for the non-consumptive effects of invasive species, but also exploring whether native species exert non-consumptive effects on the invasive.


Assuntos
Peixes/fisiologia , Comportamento de Retorno ao Território Vital , Espécies Introduzidas , Palinuridae/fisiologia , Ouriços-do-Mar/fisiologia , Distribuição Animal , Animais , Região do Caribe , Recifes de Corais , Dinâmica Populacional
11.
Sci Rep ; 10(1): 7943, 2020 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-32439882

RESUMO

The detection ranges of broadband sounds produced by marine invertebrates are not known. To address this deficiency, a linear array of hydrophones was built in a shallow water area to experimentally investigate the propagation features of the sounds from various sizes of European spiny lobsters (Palinurus elephas), recorded between 0.5 and 100 m from the animals. The peak-to-peak source levels (SL, measured at one meter from the animals) varied significantly with body size, the largest spiny lobsters producing SL up to 167 dB re 1 µPa2. The sound propagation and its attenuation with the distance were quantified using the array. This permitted estimation of the detection ranges of spiny lobster sounds. Under the high ambient noise conditions recorded in this study, the sounds propagated between 5 and 410 m for the smallest and largest spiny lobsters, respectively. Considering lower ambient noise levels and different realistic propagation conditions, spiny lobster sounds can be detectable up to several kilometres away from the animals, with sounds from the largest individuals propagating over 3 km. Our results demonstrate that sounds produced by P. elephas can be utilized in passive acoustic programs to monitor and survey this vulnerable species at kilometre scale in coastal waters.


Assuntos
Comunicação Animal , Palinuridae/fisiologia , Animais , Comportamento Animal , Ruído , Som
12.
Sci Rep ; 10(1): 4219, 2020 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-32144341

RESUMO

Many marine animals have evolved sensory abilities to use electric and magnetic cues in essential aspects of life history, such as to detect prey, predators and mates as well as to orientate and migrate. Potential disruption of vital cues by human activities must be understood in order to mitigate potential negative influences. Cable deployments in coastal waters are increasing worldwide, in capacity and number, owing to growing demands for electrical power and telecommunications. Increasingly, the local electromagnetic environment used by electro- and magneto-sensitive species will be altered. We quantified biologically relevant behavioural responses of the presumed, magneto-receptive American lobster and the electro-sensitive Little skate to electromagnetic field (EMF) emissions of a subsea high voltage direct current (HVDC) transmission cable for domestic electricity supply. We demonstrate a striking increase in exploratory/foraging behaviour in skates in response to EMF and a more subtle exploratory response in lobsters. In addition, by directly measuring both the magnetic and electric field components of the EMF emitted by HVDC cables we found that there were DC and unexpectedly AC components. Modelling, restricted to the DC component, showed good agreement with measured results. Our cross-disciplinary study highlights the need to integrate an understanding of the natural and anthropogenic EMF environment together with the responses of sensitive animals when planning future cable deployments and predicting their environmental effects.


Assuntos
Comportamento Animal/efeitos da radiação , Biodiversidade , Campos Eletromagnéticos/efeitos adversos , Exposição Ambiental/efeitos adversos , Palinuridae/fisiologia , Rajidae/fisiologia , Animais , Oceanos e Mares , Palinuridae/efeitos da radiação
13.
Mar Environ Res ; 156: 104918, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32174338

RESUMO

Spiny lobster post-larvae undertake an extensive migration from the open ocean to the coast, during which time their swimming is fueled solely by energy reserves accumulated through their preceding larval phase. We assessed the influence of future ocean temperatures on the swimming behavior and energy use of migrating post-larvae of Sagmariasus verreauxi, by experimentally swimming post-larvae for up to 6 days at three temperatures and measuring the lipid and protein used, and observing their time spent actively swimming. Increasing the temperature from 17 °C to 23 °C doubled the energy utilized by post-larvae while swimming, while also reducing the time they spent swimming by three times. Therefore, increasing ocean temperatures appear to greatly affect the energetic cost and efficiency of shoreward migration of post-larvae in this lobster species, with the potential to markedly impact post-larval recruitment into coastal populations under future scenarios of ocean warming.


Assuntos
Migração Animal , Metabolismo Energético , Palinuridae/fisiologia , Água do Mar , Temperatura , Animais , Monitoramento Ambiental , Larva/fisiologia , Lipídeos , Oceanos e Mares , Proteínas
14.
Invert Neurosci ; 20(1): 2, 2020 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-31980901

RESUMO

Members of the decapod infraorder Achelata, specifically species from the genus Panulirus, have storied histories as models for investigating the basic principles governing the generation, maintenance, and modulation of rhythmic motor behavior, including modulation by locally released and circulating peptides. Despite their contributions to our understanding of peptidergic neuromodulation, little is known about the identity of the native neuropeptides and neuronal peptide receptors present in these crustaceans. Here, a Panulirus argus nervous system-specific transcriptome was used to help fill this void, providing insight into the neuropeptidome and neuronal peptide receptome of this species. A neuropeptidome consisting of 266 distinct peptides was predicted using the P. argus assembly, 128 having structures placing them into a generally recognized arthropod peptide family: agatoxin-like peptide, allatostatin A (AST-A), allatostatin B, allatostatin C, bursicon, CCHamide, crustacean cardioactive peptide, crustacean hyperglycemic hormone/molt-inhibiting hormone, diuretic hormone 31 (DH31), ecdysis-triggering hormone (ETH), FMRFamide-like peptide (FLP), glycoprotein hormone (GPH), GSEFLamide, inotocin, leucokinin, myosuppressin, natalisin, neuroparsin, neuropeptide F, orcokinin, orcomyotropin, periviscerokinin, pigment-dispersing hormone, pyrokinin, red pigment-concentrating hormone, RYamide, short neuropeptide F (sNPF), SIFamide, sulfakinin, tachykinin-related peptide (TRP), and trissin. Twenty-five putative neuronal receptors, encompassing 15 peptide groups, were also identified from the P. argus transcriptome: AST-A, bursicon, CCHamide, DH31, diuretic hormone 44, ETH, FLP, GPH, inotocin, insulin-like peptide, myosuppressin, natalisin, periviscerokinin, sNPF, and TRP. Collectively, the reported data provide a powerful resource for expanding studies of neuropeptidergic control of physiology and behavior in members of the genus Panulirus specifically, and decapods generally.


Assuntos
Neuropeptídeos/metabolismo , Palinuridae/fisiologia , Transdução de Sinais/fisiologia , Animais
15.
Sci Rep ; 10(1): 202, 2020 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-31937868

RESUMO

Understanding mechanisms of thermal sensitivity is key to predict responses of marine organisms to changing temperatures. Sustaining heart function is critical for complex organisms to oxygenate tissues, particularly under temperature stress. Yet, specific mechanisms that define thermal sensitivity of cardiac function remain unclear. Here we investigated whole animal metabolism, cardiac performance and mitochondrial function in response to elevated temperatures for temperate, subtropical and tropical spiny lobster species. While oxygen demands increased with rising temperatures, heart function became limited or declined in all three species of lobsters. The decline in cardiac performance coincided with decreases in mitochondrial efficiency through increasing mitochondrial proton leakage, which predicts impaired compensation of ATP production. Species differences were marked by shifts in mitochondrial function, with the least thermal scope apparent for tropical lobsters. We conclude that acute temperature stress of spiny lobsters, irrespective of their climatic origin, is marked by declining cellular energetic function of the heart, contributing to an increasing loss of whole animal performance. Better understanding of physiological thermal stress cascades will help to improve forecasts of how changing environmental temperatures affect the fitness of these ecologically and commercially important species.


Assuntos
Coração/fisiopatologia , Mitocôndrias/patologia , Oxigênio/metabolismo , Palinuridae/fisiologia , Fenômenos Fisiológicos Respiratórios , Estresse Fisiológico , Temperatura , Aclimatação , Animais , Respiração Celular , Mitocôndrias/metabolismo , Palinuridae/classificação
16.
PLoS One ; 14(11): e0225144, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31710648

RESUMO

The size at which sexual maturity is reached is a key population parameter used to guide the setting of minimum legal size limits in fisheries. Understanding spatial and temporal variations in size at maturity is fundamental to management because the relationship between size at maturity and minimum legal size limits affects the fraction of the mature population biomass that is harvested, and resulting egg production, larval settlement and recruitment. This study measured the size at maturity of female Southern Rock Lobster (Jasus edwardsii) across South Australia between 1991 and 2015 in relation to known oceanographic characteristics, surface and subsurface temperature data, and relative changes in lobster abundance. There was pronounced north to south spatial variation in estimates of size at maturity. Larger average size at maturity was recorded in warmer north-western areas of the fishery relative to the cooler waters of the south-east. Estimates of size at maturity also differed over 25 years across the fishery. However, the nature of temporal responses varied spatially, and were more consistent with variations in surface and subsurface water temperature at local-scales than changes in lobster density. In the well-mixed waters of the north-western, western and south-eastern parts of the fishery, relatively high rates of increase in sea-surface temperature and size at maturity were recorded since 1991, indicating that size at maturity may be responding to ocean warming associated with global climate change. In more central parts of the fishery, contrasting temporal signals in sea-surface temperature (positive) and bottom temperature (negative) indicated increases in upwelling strength over the study period, and formation of a bottom cold pool below a warm surface layer, with corresponding decreases in size at maturity recorded. The spatio-temporal changes in size at maturity measured in this study highlight the need for oceanographic information to be integrated into future stock assessment models to enhance harvest strategy development, allow timely adaptive management decisions and increase the resilience of fisheries to the impacts of climate change.


Assuntos
Palinuridae/anatomia & histologia , Palinuridae/fisiologia , Animais , Tamanho Corporal , Mudança Climática , Feminino , Pesqueiros , Maturidade Sexual , Análise Espaço-Temporal
17.
Proc Biol Sci ; 286(1907): 20191424, 2019 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-31337309

RESUMO

The effects of anthropogenic aquatic noise on marine invertebrates are poorly understood. We investigated the impact of seismic surveys on the righting reflex and statocyst morphology of the palinurid rock lobster, Jasus edwardsii, using field-based exposure to air gun signals. Following exposure equivalent to a full-scale commercial assay passing within 100-500 m, lobsters showed impaired righting and significant damage to the sensory hairs of the statocyst. Reflex impairment and statocyst damage persisted over the course of the experiments-up to 365 days post-exposure and did not improved following moulting. These results indicate that exposure to air gun signals caused morphological damage to the statocyst of rock lobsters, which can in turn impair complex reflexes. This damage and impairment adds further evidence that anthropogenic aquatic noise has the potential to harm invertebrates, necessitating a better understanding of possible ecological and economic impacts.


Assuntos
Ruído/efeitos adversos , Palinuridae/fisiologia , Acústica , Animais , Feminino , Armas de Fogo , Palinuridae/efeitos da radiação , Reflexo de Endireitamento/fisiologia , Reflexo de Endireitamento/efeitos da radiação , Órgãos dos Sentidos/fisiologia , Órgãos dos Sentidos/efeitos da radiação
18.
Fish Shellfish Immunol ; 93: 752-762, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31163297

RESUMO

The West Coast rock lobster (WCRL), Jasus lalandii, inhabits highly variable environments frequented by upwelling events, episodes of hypercapnia and large temperature variations. Coupled with the predicted threat of ocean acidification and temperature change for the coming centuries, the immune response in this crustacean will most likely be affected. We therefore tested the hypothesis that chronic exposure to hypercapnia and elevated seawater temperature will alter immune function of the WCRL. The chronic effects of four combinations of two stressors (seawater pCO2 and temperature) on the total number of circulating haemocytes (THC) as well as on the lobsters' ability to clear (inactivate) an injected dose of Vibrio anguillarum from haemolymph circulation were assessed. Juvenile lobsters were held in normocapnic (pH 8.01) or hypercapnic (pH 7.34) conditions at two temperatures (15.6 and 18.9 °C) for 48 weeks (n = 30 lobster per treatment), after which a subsample of lobsters (n = 8/treatment), all at a similar moult stage, were selected from each treatment for the immune challenge. Baseline levels of haemocytes (THC ml-1) and bacteria (CFU ml-1) in their haemolymph were quantified 24 h prior to bacterial challenge. Lobsters were then challenged by injecting 4 × 104V. anguillarum per g body weight directly into the cardiac region of each lobster and circulating haemocyte and culturable bacteria were measured at 20 min post challenge. No significant differences in THC ml-1 (p < 0.05) were observed between any of the treatment groups prior to the bacterial challenge. However lobsters chronically exposed to a combination of hypercapnia and low temperature had significantly higher (p < 0.05) THCs post-challenge in comparison with lobsters chronically exposed to hypercapnia and high temperature. A significant interactive effect was recorded between temperature and pH for the post-challenge THC data (two-way ANOVA, p = 0.0025). Lobster were very efficient at rendering an injected dose of bacteria non-culturable, with more than 83% of the theoretical challenge dose (∼1.7 × 105Vibrio ml-1 haemolymph) inactivated within the first 10 min following injection. Although differences in the inactivation of V. anguillarum were observed between treatment groups, none of these differences were significant. Clearance efficiency was in the following order: Hypercapnia/low temperature > normocapnia/high temperature > normocapnia/low temperature > hypercapnia/high temperature. This study demonstrated that despite chronic exposure to combinations of reduced seawater pH and high temperature, the WCRL was still capable of rapidly rendering an injected dose of bacteria non-culturable.


Assuntos
Dióxido de Carbono/sangue , Hemolinfa/química , Imunidade Inata/fisiologia , Palinuridae/imunologia , Animais , Temperatura Alta/efeitos adversos , Concentração de Íons de Hidrogênio , Palinuridae/química , Palinuridae/fisiologia , Água do Mar/química
19.
J Comp Physiol B ; 189(3-4): 351-365, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31101978

RESUMO

Metabolism in aquatic ectotherms evaluated by oxygen consumption rates reflects energetic costs including those associated with protein synthesis. Metabolism is influenced by nutritional status governed by feeding, nutrient intake and quality, and time without food. However, little is understood about contribution of protein synthesis to crustacean energy metabolism. This study is the first using a protein synthesis inhibitor cycloheximide to research contribution of cycloheximide-sensitive protein synthesis to decapod crustacean metabolism. Juvenile Sagmariasus verreauxi were subject to five treatments: 2-day fasted lobsters sham injected with saline; 2-day fasted lobsters injected with cycloheximide; 10-day starved lobsters injected with cycloheximide; post-prandial lobsters fed with squid Nototodarus sloanii with no further treatment; and post-prandial lobsters injected with cycloheximide. Standard and routine metabolic rates in starved lobsters were reduced by 32% and 41%, respectively, compared to fasted lobsters, demonstrating metabolic downregulation with starvation. Oxygen consumption rates of fasted and starved lobsters following cycloheximide injection were reduced by 29% and 13%, respectively, demonstrating protein synthesis represents only a minor component of energy metabolism in unfed lobsters. Oxygen consumption rate of fed lobsters was reduced by 96% following cycloheximide injection, demonstrating protein synthesis in decapods contributes a major proportion of specific dynamic action (SDA). SDA in decapods is predominantly a post-absorptive process likely related to somatic growth. This work extends previously limited knowledge on contribution of protein synthesis to crustacean metabolism, which is crucial to explore the relationship between nutritional status and diet quality and how this will affect growth potential in aquaculture species.


Assuntos
Cicloeximida/farmacologia , Privação de Alimentos , Consumo de Oxigênio/fisiologia , Palinuridae/fisiologia , Biossíntese de Proteínas/efeitos dos fármacos , Inanição/metabolismo , Animais , Regulação da Expressão Gênica/efeitos dos fármacos , Estado Nutricional , Consumo de Oxigênio/efeitos dos fármacos
20.
Sci Rep ; 9(1): 4375, 2019 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-30867504

RESUMO

Florida Bay is home to a network of shallow mud-banks which act as barriers to circulation creating small basins that are often subject to extremes in temperature and salinity. Florida bay is also important juvenile habitat for the Caribbean spiny lobster Panulirus argus. While our understanding of the effect of environmental changes on the survival, growth, and movement of spiny lobsters is growing, the effect on their chemosensory abilities has not yet been investigated. Lobsters rely heavily on chemical cues for many biological and ecological activities, and here we report on the effect of extreme environmental events in temperature (32 °C), salinity (45ppt), and pH (7.65 pH) on social behavior and sheltering preference in P. argus. Under normal conditions, chemical cues from conspecifics are used by spiny lobsters to identify suitable shelter and cues from stone crabs and diseased individuals are used to determine shelters to be avoided. In all altered conditions, lobsters lost the ability to aggregate with conspecifics and avoid stone crabs and diseased conspecifics. Thus, seasonal extreme events, and potentially future climate change conditions, alter the chemosensory-driven behavior of P. argus and may result in decreased survivorship due to impaired shelter selection or other behaviors.


Assuntos
Células Quimiorreceptoras/fisiologia , Sinais (Psicologia) , Concentração de Íons de Hidrogênio , Palinuridae/fisiologia , Salinidade , Temperatura , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...