Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 235
Filtrar
1.
Yi Chuan ; 46(3): 242-255, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38632102

RESUMO

To understand the genome-wide information of the GRF family genes in broomcorn millet and their expression profile in the vegetative meristems, bioinformatic methods and transcriptome sequencing were used to analyze the characteristics, physical and chemical properties, phylogenetic relationship, chromosome distribution, gene structure, cis-acting elements and expression profile in stem meristem for the GRF family members. The results showed that the GRF gene family of millet contains 21 members, and the PmGRF gene is unevenly distributed on 12 chromosomes. The lengths of PmGRF proteins vary from 224 to 618 amino acids, and the isoelectric points are between 4.93-9.69. Each member of the family has 1-4 introns and 2-5 exons. The protein PmGRF13 is localized in both the nucleus and chloroplast, and the rest PmGRF proteins are located in the nucleus. Phylogenetic analysis showed that the 21 GRF genes were divided into 4 subfamilies (A,B,C and D) in broomcorn millet. The analysis of cis-acting elements showed that there were many cis-acting elements involved in light response, hormone response, drought induction, low temperature response and other environmental stress responses in the 2000 bp sequence upstream of the GRF genes. Transcriptome sequencing and qRT-PCR analyses showed that the expression levels of PmGRF3 and PmGRF12 in the dwarf variety Zhang778 were significantly higher than those of the tall variety Longmi12 in the internode and node meristems at the jointing stage, while the expression patterns of PmGRF4, PmGRF16 and PmGRF21 were reverse. In addition, the expression levels of PmGRF2 and PmGRF5 in the internode of Zhang778 were significantly higher than Longmi12. The other GRF genes were not or insignificantly expressed. These results indicated that seven genes, PmGRF2, PmGRF3, PmGRF4, PmGRF5, PmGRF12, PmGRF16 and PmGRF21, were related to the formation of plant height in broomcorn millet.


Assuntos
Panicum , Filogenia , Panicum/química , Panicum/genética , Fatores de Transcrição/genética , Meristema , Genoma de Planta
2.
Int J Biol Macromol ; 262(Pt 2): 130222, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38365145

RESUMO

Understanding the mechanism by which Triticeae improves the quality of broomcorn millet (BM) is key to expanding the use of this crop to address food crises and food security. This study aimed to explore the effects of Triticeae on the disulfide bonds, secondary structures, microstructure, and rheological properties of BM dough, and to investigate the potential food applications of BM. Gluten protein, intermolecular SS, and ß-Sheets content of the reconstituted doughs were significantly improved compared with BM dough, which improved disorderly accumulation of starch and gluten-starch interaction in BM dough. CLSM analysis showed that broomcorn millet-common wheat (BM-CW) and broomcorn millet-durum wheat (BM-DW) also possessed larger protein areas, smaller lacunarities, and better gluten-starch interactions in the reconstituted doughs. Disulfide bonds were positively correlated with the gluten network structure, and more disulfide bonds were formed in BM-CW (3.86 µmol/g), which promoted stronger mechanical resistance in BM-CW. Therefore, the combination of BM flour with CW and DW flours had better dough elasticity and stability. Finally, a potential evaluation and optimization scheme for BM as a cooked wheaten food is proposed to improve the reference for future food security and dietary structure adjustment of residents.


Assuntos
Panicum , Amido , Amido/química , Glutens/química , Panicum/química , Triticum/química , Dissulfetos , Farinha
3.
Nat Genet ; 55(12): 2243-2254, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38036791

RESUMO

Broomcorn millet (Panicum miliaceum L.) is an orphan crop with the potential to improve cereal production and quality, and ensure food security. Here we present the genetic variations, population structure and diversity of a diverse worldwide collection of 516 broomcorn millet genomes. Population analysis indicated that the domesticated broomcorn millet originated from its wild progenitor in China. We then constructed a graph-based pangenome of broomcorn millet based on long-read de novo genome assemblies of 32 representative accessions. Our analysis revealed that the structural variations were highly associated with transposable elements, which influenced gene expression when located in the coding or regulatory regions. We also identified 139 loci associated with 31 key domestication and agronomic traits, including candidate genes and superior haplotypes, such as LG1, for panicle architecture. Thus, the study's findings provide foundational resources for developing genomics-assisted breeding programs in broomcorn millet.


Assuntos
Panicum , Panicum/genética , Panicum/química , Domesticação , Melhoramento Vegetal , Fenótipo , Genômica
4.
Food Res Int ; 173(Pt 2): 113444, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37803769

RESUMO

The present work aimed to study the influence of atmospheric pressure pin-to-plate cold plasma on the physicochemical (pH, moisture, and amylose content), functional (water & oil binding capacity, solubility & swelling power, paste clarity on storage, pasting), powder flow, thermal and structural (FTIR, XRD, and SEM) characteristics at an input voltage of 170-230 V for 5-15 min. The starch surface modification by cold plasma was seen in the SEM images which cause the surge in WBC (1.54 g/g to 1.93 g/g), OBC (2.22 g/g to 2.79 g/g), solubility (3.05-5.38% at 70 °C; 37.11-52.98% at 90 °C) and swelling power (5.39-7.83% at 70 °C; 25.67-35.33% at 90 °C) of starch. Reduction in the amylose content (27.82% to 25.07%) via plasma-induced depolymerization resists the retrogradation tendency, thereby increasing the paste clarity (up to Ì´ 39%) during the 5 days of refrigerated storage. However, the paste viscosity is reduced after cold plasma treatment yielding low-strength starch pastes. The relative crystallinity of starch increased (37.35% to 45.36%) by the plasma-induced fragmented starch granules which would aggregate and broaden the gelatinization temperature, but these starch fragments reduced the gelatinization enthalpy. The fundamental starch structure is conserved as seen in FTIR spectra. Thus, cold plasma aids in the production of soluble, low-viscous, stable, and clear paste-forming depolymerized proso-millet starch.


Assuntos
Panicum , Gases em Plasma , Amido/química , Amilose/química , Milhetes , Panicum/química
5.
Int J Biol Macromol ; 249: 126115, 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37541463

RESUMO

Field experiments were conducted to evaluate the morphology, granule size, fine structure, thermal properties, and pasting properties of starch from a waxy (139) and a non-waxy (297) varieties of proso millet grown in Yulin (YY) and Yangling (YL). Compared with the starches from the two varieties grown in YY, the starches from the two varieties grown in YL exhibited higher relative crystallinities, 1045/1022 cm-1 ratio, and amounts of amylopectin long branch chains (APL) but lower 1022/995 cm -1 ratio, amounts of amylopectin short branch chains (APs), and APs/APL ratios. Starches from YL also synthesized long branch-chain amylopectin to enhance intermolecular interactions and form a stable granular structure, which resulted in increased starch gelatinization temperature, enhanced shear resistance, and reduced setback viscosity. Starch from the waxy (139) variety has good application prospects in the food industry because of its high gelatinization temperature and light transmittance and low setback value, which can be ascribed to its extremely low amylose content, polydispersity index, high molecular weight, and dispersed molecular density. It may serve as a reference for applying proso millet starches in the food industry and developing breeding programs to improve starch quality.


Assuntos
Panicum , Amido , Amido/química , Amilopectina/química , Panicum/química , Melhoramento Vegetal , Amilose/química , Viscosidade
6.
Int J Biol Macromol ; 243: 125246, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37301340

RESUMO

To investigate the effect of electron beam irradiation (EBI) pretreatment on the multiscale structure and physicochemical properties of esterified starch, this study used EBI pretreatment to prepare glutaric anhydride (GA) esterified proso millet starch. GA starch did not show the corresponding distinct thermodynamics peaks. However, it had a high pasting viscosity and transparency (57.46-74.25 %). EBI pretreatment increased the degree of glutaric acid esterification (0.0284-0.0560) and changed its structure and physicochemical properties. EBI pretreatment disrupted its short-range ordering structure, reducing the crystallinity, molecular weight and pasting viscosity of glutaric acid esterified starch. Moreover, it produced more short chains and increased the transparency (84.28-93.11 %) of glutaric acid esterified starch. This study could offer a rationale for using EBI pretreatment technology to maximize the functional properties of GA modified starch and enlarge its implementation in modified starch.


Assuntos
Panicum , Amido , Amido/química , Panicum/química , Elétrons , Viscosidade
7.
Environ Pollut ; 334: 121993, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37301453

RESUMO

Proso millet (Panicum miliaceum L.) is a cereal crop with potential resistance to drought and heat stress, making it a promising alternative crop for regions with hot and dry climates. Because of its importance, it is crucial to investigate pesticide residues in proso millet and assess their potential risks to the environment and human health to protect it from insects or pathogens. This study aimed to develop a model for predicting pesticide residues in proso millet using dynamiCROP. The field trials consisted of four plots, with each plot containing three replicates of 10 m2. The applications of pesticides were conducted two or three times for each pesticide. The residual concentrations of the pesticides in the millet grains were quantitatively analyzed using gas and liquid chromatography-tandem mass spectrometry. The dynamiCROP simulation model, which calculates the residual kinetics of pesticides in plant-environment systems, was employed for predicting pesticide residues in proso millet. Crop-specific, environment-specific, and pesticide-specific parameters were utilized to optimize the model. Half-lives of pesticides in grain of proso millet, which were needed to input for dynamiCROP, were estimated using a modified first-order equation. Proso millet-specific parameters were obtained from previous studies. The accuracy of the dynamiCROP model was assessed using statistical criteria, including the coefficient of correlation (R), coefficient of determination (R2), mean absolute error (MAE), relative root mean square error (RRMSE), and root mean square logarithmic error (RMSLE). The model was then validated using additional field trial data, which showed that it could accurately predict pesticide residues in proso millet grain under different environmental conditions. The results demonstrated the accuracy of the model in predicting pesticide residues in proso millet after multiple applications.


Assuntos
Panicum , Resíduos de Praguicidas , Humanos , Resíduos de Praguicidas/análise , Panicum/química , Secas , Clima , Meia-Vida
8.
Int J Biol Macromol ; 240: 124375, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37028630

RESUMO

This study aimed to elucidate the effect of the accelerating storage (40 °C, 10 weeks) of foxtail millet on the edible and cooking quality of its porridge. The structural alteration of the in-situ protein and starch in foxtail millet, as well as the physicochemical properties were investigated. Both the homogeneity and palatability of millet porridge were significantly improved after 8-week storage of millet, while its proximate compositions remained unchanged. Meanwhile, the accelerating storage increased the water absorption and swelling of millet by 20 % and 22 %, respectively. The morphological studies (using the SEM, CLSM and TEM) revealed that the starch granules in the stored millet became easier to swell and melt, leading to better gelatinization with a higher coverage extension in protein bodies. FTIR results showed that the protein hydrogen bonds in the stored millet became stronger and the starch ordered degree was reduced. Compared to the native foxtail millet, the peak, trough, final, and setback viscosity of the stored sample increased by 27 %, 76 %, 115 % and 143 %, respectively, while the onset, peak, and conclusion temperature increased by 0.80, 1.10 and 0.80 °C, respectively. Besides, the G' and G″ of the stored foxtail millet were significantly higher than its native counterpart.


Assuntos
Panicum , Setaria (Planta) , Amido/química , Setaria (Planta)/química , Fenômenos Químicos , Viscosidade , Panicum/química , Culinária , Milhetes
9.
Int J Biol Macromol ; 230: 123155, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36610580

RESUMO

Broomcorn millet is a popular cereal with health benefits, and its grains are rich in starch. However, the differences in the pathway and key genes involved in starch biosynthesis of waxy and non-waxy broomcorn millet grain remain unclear. Therefore, the grain and starch physicochemical index and transcriptomic analyses of two genotypes of broomcorn millet were conducted at 3, 6, 9, 12, 15, 18, and 21 days after pollination. The phenotypic and physiological results indicated that the starch synthetic process of non-waxy and waxy broomcorn millet was significantly different. The amylose, amylopectin, and total starch contents of non-waxy broomcorn millet were 1.99, 4.74, and 6.73 mg/grain, while those of waxy broomcorn millet were 0.34, 5.94, and 6.28 mg/grain, respectively. The transcriptomic analysis revealed that 106 differentially expressed genes were identified, which were mainly enriched in the "amino sugar and nucleotide sugar metabolism", "pyruvate metabolism", "galactose metabolism", and "starch and sucrose metabolism" pathways. The WGCNA suggested that a total of 31 hub genes were correlated with starch biosynthesis. These findings provide a new approach to studying the starch synthesis in broomcorn millet.


Assuntos
Panicum , Panicum/genética , Panicum/química , Ceras , Amido/química , Amilopectina , Grão Comestível/metabolismo , Perfilação da Expressão Gênica
10.
Carbohydr Polym ; 302: 120423, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36604085

RESUMO

Understanding the effect of nitrogen fertilization on the quality of proso millet is key to expanding the use of this crop to address water scarcity and food security. Therefore, this study determined the impact of nitrogen fertilization on the proso millet quality. Nitrogen fertilization significantly increased the NR and GS activities and decreased the GBSSase activity, resulting in an increase in protein content and reduction in amylose content and L*, which decreased the appearance quality. Nitrogen fertilization increased the proportion of short amylopectin chains, resulting in a more disordered carbohydrate structure, and decreased the proportion of hydrophilic functional groups, contributing to an increase in setback viscosity and decrease in pasting temperature in the waxy (w139) variety. In contrast, the non-waxy (n297) variety exhibited a larger proportion of long amylopectin chains, lower ordered structure and hydrophobic functional groups after nitrogen fertilization, which strengthened the inter- and intramolecular forces of starch colloids.


Assuntos
Amilopectina , Panicum , Panicum/química , Panicum/metabolismo , Fertilizantes , Nitrogênio/metabolismo , Ceras , Amido/química , Amilose
11.
Nat Prod Res ; 37(10): 1595-1600, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-35867043

RESUMO

Two new tetralin compounds were isolated from the aerial parts of Panicum turgidum Forssk. Their structures were elucidated by comprehensive 1 D and 2 D NMR experiments as well as high resolution ESI mass spectrometry. In addition, these two compounds have been tested for in vitro cytotoxicity against SKOV3 (Ovarian Carcinoma) and BT-549 (Breast Carcinoma). Compound 1 showed good cytotoxic activities against SKOV3 and BT 549 with IC50 value of 5.65 ± 0.31 and 10.3 ± 0.56 µg/mL, respectively.


Assuntos
Antineoplásicos , Panicum , Panicum/química , Antineoplásicos/farmacologia , Espectroscopia de Ressonância Magnética , Espectrometria de Massas por Ionização por Electrospray , Linhagem Celular Tumoral
12.
Cell Biochem Biophys ; 81(1): 141-149, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36261690

RESUMO

In proso millet, in certain circumstances, drought stress greatly influences growth and metabolisms. Thus, the present study was aimed to examine morphological, biochemical and ROS mechanisms between plant and drought stress in Panicum miliaceum L. To create the drought condition, water irrigation was done at different time intervals including 4, 7, 10, 13 days and control. All the experiments were carried out at different maturity stages such as 30, 50, and 70 days (after sowing). The results demonstrated that the root length, proline, glycine betaine, amino acid and superoxide dismutase, catalase and peroxidase activities were boosted in all treatments as compared with control. As the proso millet matured, the length of shoots and the amount of chlorophyll pigment in the leaves reduced in all treatments as compared to control. Induced reduction of shoot growth, chlorophyll estimation and increases of root growth, osmolyte accumulations, antioxidant enzymes, were found to be drought-tolerant adaptative mechanisms in this study.


Assuntos
Antioxidantes , Panicum , Antioxidantes/metabolismo , Secas , Panicum/química , Panicum/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Clorofila/metabolismo
13.
Int J Biol Macromol ; 224: 594-603, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36270398

RESUMO

The structural, physicochemical, gel textural, rheological, and in vitro digestibility properties as well as their relationships of non-waxy proso millet starch (NPMS) and waxy proso millet starch (WPMS) were evaluated by taking normal corn starch (CS) and potato starch (PS) as controls. Proso millet starch was mostly polygonal or spherical, with an A-type crystalline structure. Proso millet starch contained more short-branched chains (DP 6-24) compared with CS and PS. WPMS possessed higher crystallinity and more short-range ordered structures than NPMS. NPMS displayed higher pasting temperature, retrogradation rate and shear thinning degree, and lower gelatinization temperature and enthalpy than WPMS. The hardness and chewiness of starch gel formed by NPMS were higher than those of WPMS. All starch samples exhibited shear thinning behavior in the steady-flow test and typical elastic solid behavior in the dynamic rheological test. Moreover, NPMS was considered a potential formula for functional foods, with its lower rapidly digestible starch (RDS) and higher resistant starch (RS) contents than WPMS, CS, and PS. This paper revealed the influence of amylose content and structure on the physicochemical properties of different proso millet starch.


Assuntos
Panicum , Panicum/química , Amilopectina/química , Amido/química , Amilose/química , Temperatura
14.
J Texture Stud ; 54(1): 92-104, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36101011

RESUMO

Proso millet is a nutritious, sustainable, and gluten free food which is currently underutilized. They can be incorporated into the grain industry and provide much needed healthy alternatives. Efficient grinding method should be adopted for easy incorporation. This study aimed to investigate the effect of three different methods of grinding namely, roller milling (RM), pin milling (PM), and hammer milling (HM) on proso millet flour rheology and baking properties for food application. The milling flow sheet was developed toward the production of the quality whole grain flour. The particle size distribution of all the flours showed bi-modal distribution except for the RM flour. The PM produced the flour with the finest particles with geometric mean diameter of 82 µm. The study also revealed that starch damage in the PM flour (4.64%) was higher than RM (2.46%) and HM flour (2.51%). The nutritional composition was not significantly affected by different grinding methods. Pasting properties of the flour were also affected by the grinding method applied. Rapid Visco Analysis profile showed pin mill flour to have a higher peak viscosity (PV) (2,295 cP) compared to HM (2,065 cP) and RM flour (2,130 cP). Finally, this study demonstrated that the production of bread from proso millet flour with desirable quality and texture is possible. The grinding method did not affect the specific volume of bread loaves and C-cell characteristics. The specific volume of the breads ranged from 2.40 to 2.52 cm3 /g. This study will help in promoting and producing value-added proso millet food products with enhanced nutritional quality.


Assuntos
Farinha , Panicum , Farinha/análise , Panicum/química , Amido/química , Viscosidade , Reologia
15.
PeerJ ; 10: e14024, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36097526

RESUMO

Broomcorn millet, a C4 cereal, has better tolerance to environmental stresses. Although elevated atmospheric CO2 concentration has led to grain nutrition reduction in most staple crops, studies evaluating its effects on broomcorn millet are still scarce. The yield, nutritional quality and metabolites of broomcorn millet were investigated under ambient CO2 (aCO2, 400 µmol mol-1) and elevated CO2 (eCO2, aCO2+ 200 µmol mol-1) for three years using open-top chambers (OTC). The results showed that the yield of broomcorn millet was markedly increased under eCO2 compared with aCO2. On average, eCO2 significantly increased the concentration of Mg (27.3%), Mn (14.6%), and B (21.2%) over three years, whereas it did not affect the concentration of P, K, Fe, Ca, Cu or Zn. Protein content was significantly decreased, whereas starch and oil concentrations were not changed by eCO2. With the greater increase in grain yield, eCO2 induced increase in the grain accumulations of P (23.87%), K (29.5%), Mn (40.08%), Ca (22.58%), Mg (51.31%), Zn (40.95%), B (48.54%), starch (16.96%) and oil (28.37%) on average for three years. Flavonoids such as kaempferol, apigenin, eriodictyol, luteolin, and chrysoeriol were accumulated under eCO2. The reduction in L-glutamine and L-lysine metabolites, which were the most representative amino acid in grain proteins, led to a reduction of protein concentration under eCO2. Broomcorn millet has more desirable nutritional traits for combating hidden hunger. This may potentially be useful for breeding more nutritious plants in the era of climate change.


Assuntos
Panicum , Panicum/química , Dióxido de Carbono , Melhoramento Vegetal , Grão Comestível , Segurança Alimentar , Amido
16.
J Agric Food Chem ; 70(26): 8010-8023, 2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35729681

RESUMO

Switchgrass (Panicum virgatum L.) is a bioenergy crop that grows productively on lands not suitable for food production and is an excellent target for low-pesticide input biomass production. We hypothesize that resistance to insect pests and microbial pathogens is influenced by low-molecular-weight compounds known as specialized metabolites. We employed untargeted liquid chromatography-mass spectrometry, quantitative gas chromatography-mass spectrometry (GC-MS), and nuclear magnetic resonance spectroscopy to identify differences in switchgrass ecotype metabolomes. This analysis revealed striking differences between upland and lowland switchgrass metabolomes as well as distinct developmental profiles. Terpenoid- and polyphenol-derived specialized metabolites were identified, including steroidal saponins, di- and sesqui-terpenoids, and flavonoids. The saponins are particularly abundant in switchgrass extracts and have diverse aglycone cores and sugar moieties. We report seven structurally distinct steroidal saponin classes with unique steroidal cores and glycosylated at one or two positions. Quantitative GC-MS revealed differences in total saponin concentrations in the leaf blade, leaf sheath, stem, rhizome, and root (2.3 ± 0.10, 0.5 ± 0.01, 2.5 ± 0.5, 3.0 ± 0.7, and 0.3 ± 0.01 µg/mg of dw, respectively). The quantitative data also demonstrated that saponin concentrations are higher in roots of lowland (ranging from 3.0 to 6.6 µg/mg of dw) than in upland (from 0.9 to 1.9 µg/mg of dw) ecotype plants, suggesting ecotypic-specific biosynthesis and/or biological functions. These results enable future testing of these specialized metabolites on biotic and abiotic stress tolerance and can provide information on the development of low-input bioenergy crops.


Assuntos
Panicum , Saponinas , Ecótipo , Genótipo , Metabolômica , Panicum/química , Saponinas/metabolismo
17.
Int J Biol Macromol ; 212: 146-154, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35605718

RESUMO

In this study, proso millet starch was isolated and subjected to treatment with ultra-high pressure (UHP), cold plasma (CP), or their combination to modify its functional properties. The changes in structural, physicochemical, and digestive properties of proso millet starch after these treatments were investigated. The proso millet native starch granules showed irregular and polygonal shapes with a smooth surface. Treatments with CP or UHP at low pressures did not change the morphological properties or crystalline structure type of proso millet starch granules, while the treatment with UHP at 600 MPa and CP resulted in a complete gelatinization of starch. Also, UHP treatment at high pressure, followed by CP treatment, destroyed the partial crystalline region and reduced the short-range order of proso millet starch. Besides, a combination of UHP and CP treatment promoted the depolymerization of long chains in proso millet starch. Moreover, the combined treatments could enhance the resistance to high temperature and shearing and improve the pasting stability of starch. Furthermore, the combined treatment could increase the slowly digestible starch content. Therefore, the combination of UHP and CP treatment can be suggested for modifying the functional properties of proso millet starch and promoting its industrial applications.


Assuntos
Panicum , Gases em Plasma , Digestão , Panicum/química , Amido/química , Temperatura
18.
Plant J ; 108(4): 1053-1068, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34514645

RESUMO

Specialized diterpenoid metabolites are important mediators of plant-environment interactions in monocot crops. To understand metabolite functions in plant environmental adaptation that ultimately can enable crop improvement strategies, a deeper knowledge of the underlying species-specific biosynthetic pathways is required. Here, we report the genomics-enabled discovery of five cytochrome P450 monooxygenases (CYP71Z25-CYP71Z29) that form previously unknown furanoditerpenoids in the monocot bioenergy crop Panicum virgatum (switchgrass). Combinatorial pathway reconstruction showed that CYP71Z25-CYP71Z29 catalyze furan ring addition directly to primary diterpene alcohol intermediates derived from distinct class II diterpene synthase products. Transcriptional co-expression patterns and the presence of select diterpenoids in switchgrass roots support the occurrence of P450-derived furanoditerpenoids in planta. Integrating molecular dynamics, structural analysis and targeted mutagenesis identified active site determinants that contribute to the distinct catalytic specificities underlying the broad substrate promiscuity of CYP71Z25-CYP71Z29 for native and non-native diterpenoids.


Assuntos
Vias Biossintéticas , Sistema Enzimático do Citocromo P-450/metabolismo , Diterpenos/metabolismo , Genoma de Planta/genética , Panicum/enzimologia , Biocatálise , Produtos Biológicos/química , Produtos Biológicos/metabolismo , Domínio Catalítico , Sistema Enzimático do Citocromo P-450/genética , Diterpenos/química , Panicum/química , Panicum/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/química , Raízes de Plantas/enzimologia , Raízes de Plantas/genética
19.
Int J Biol Macromol ; 191: 9-18, 2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34537297

RESUMO

Starch is a biopolymer containing hydrophilic groups and is used in hydrogels preparation. Amino acids are multifunctional monomers of proteins that can be used as a cross linker to modify the starch by incorporating new functional groups into its chains. In this study, the Kutki millet starch was isolated and modified with lysine (positively charged), aspartic acid (negatively charged), and threonine (neutral) at varying pH levels. These modified starches were characterized for their various functional, structural, pasting, and textural properties. Hydrogels prepared from Lys9-KMS, Thr9-KMS, and AA11-KMS, possessing less adhesiveness, strong integrity, and hardness were then characterized for their XRD and morphological characterization. The principal component analysis (PCA) biplot showed that the samples modified at higher pH levels are positively correlated with the textural properties, swelling power and amylose content (I and IV quadrants), than those modified at lower pH. It may be inferred that starch modified with amino acid at higher pH have good textural properties than those at lower pH. Results of the overall investigation indicated that among these three amino acids, lysine could be a better cross linker for modification of Kutki millet starch and preparation of their gels for the delivery of nutraceuticals.


Assuntos
Aminoácidos/química , Hidrogéis/química , Panicum/química , Amido/análogos & derivados , Adesivos/química , Reagentes de Ligações Cruzadas/química , Concentração de Íons de Hidrogênio
20.
Int J Biol Macromol ; 190: 960-968, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34536472

RESUMO

Previously proso-millet, considered an underutilized cereal, has drawn considerable attention due to health benefits like good nutritional profile, low glycemic index, and gluten-free. The present review discusses starch extractability, structural characteristics, morphology, and physicochemical properties. Starch properties mainly depend on the amylose and amylopectin composition and distribution of brained chains. A very diverse starch structure and morphology were observed among the waxy and non-waxy cultivars. The amylose content ranged from 0.75 to 28.3% in many varieties, but exceptionally Hongmeizi variety showed a 32.3% as per the reported evidence. There are a positive correlation between the amylose content and cooking quality, thermal and pasting properties. The size and shape of smallest to largest starch granules varied between 0.3 and 17 µm and round to polygonal, respectively. The non-waxy starch varieties of proso-millet are widely used in food processing due to high resistance to swelling during heat treatment. Few food applications of proso-millet are bakery products like gluten-free bread, porridge, pasta, ready-to-eat breakfast cereals, infant foods, and distilleries. We can conclude that proso millet is an alternative to existing starch for its quality characteristics and provides insight to many food processing industries.


Assuntos
Panicum/química , Fenômenos Químicos , Solubilidade , Amido/química , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...