Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plant Dis ; 102(11): 2277-2284, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30211657

RESUMO

Downy mildew is a serious threat to opium poppy production globally. In recent years, two pathogen species, Peronospora somniferi and Peronospora meconopsidis, which induce distinct symptoms, have been confirmed in Australia. In order to manage the spread of these pathogens, identifying the sources of inoculum is essential. In this study, we assessed pathogen presence associated with poppy seed. We developed PCR and qPCR assays targeting the coxI and coxII gene regions, for the detection, differentiation, and quantification of P. somniferi and P. meconopsidis in poppy seed. These results were complemented and compared with direct seed histological examination and a seed washing combined with viability staining for oospore detection. The majority of seed lots from all harvest years contained detectable P. meconopsidis, the earliest (1987) predating the first official record of the disease in Tasmania (1996). In contrast, only seed lots harvested in 2012 or later contained P. somniferi, evidence of its more recent introduction. P. meconopsidis contamination was estimated to be as high as 33.04 pg DNA/g of seed and P. somniferi as high as 35.17 pg DNA/g of seed. Incidence of pathogen contamination of seeds, estimated via a group testing protocol, ranged from 0 to 9% (P. meconopsidis) or 0 to 11% (P. somniferi). Mycelia were predominately found external to the seed coat. Seed washing and viability staining demonstrated that putatively viable oospores were present in the majority of seed lots. Transmission testing confirmed both pathogens can be successfully transmitted from infested seed to infected seedling. PCR and qPCR pathogen assays were found to be reliable and offer a routine test for determining pathogen inoculum in poppy seeds.


Assuntos
Papaver/parasitologia , Peronospora/isolamento & purificação , Doenças das Plantas/parasitologia , Peronospora/genética , Reação em Cadeia da Polimerase , Reação em Cadeia da Polimerase em Tempo Real , Plântula/parasitologia , Sementes/parasitologia , Especificidade da Espécie
2.
J Genet ; 89(1): 9-19, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20505242

RESUMO

Downy mildew (DM) caused by Peronospora arborescens, is a serious disease in opium poppy (Papaver somniferum), which has a world-wide spread. The establishment of DM-resistant cultivars appears to be a sustainable way to control the In this paper, we present the results of a study aimed at the identification of amplified fragment length polymorphism (AFLP) markers for DM-resistance in opium poppy. Three opium poppy genotypes (inbred over about 10 years): Pps-1 (DM-resistant), Jawahar-16 (DM-susceptible) and H-9 (DM-susceptible) were crossed in a diallel manner and the F(1) progeny along with the parents were subjected to AFLP analysis of chloroplast (cp) and nuclear DNA with seven and nine EcoRI / MseI primer combinations, respectively. cpDNA AFLP analysis identified 24 Pps-1 (DM-resistant)-specific unique fragments that were found to be maternally inherited in both the crosses, Pps-1 x Jawahar-16 and Pps-1 x H-9. In the case of nuclear DNA AFLP analysis, it was found that 17 fragments inherited from Pps-1 were common to the reciprocal crosses of both (i) Pps-1 and Jawahar-16 as well as (ii) Pps-1 and H-9. This is the first molecular investigation on the identification of polymorphism between DM-resistant and DM-susceptible opium poppy genotypes and development of DM-resistant opium poppy genotypespecific AFLP markers. These AFLP markers could be used in future genetic studies for analysis of linkage to the downy mildew resistance trait.


Assuntos
Análise do Polimorfismo de Comprimento de Fragmentos Amplificados/métodos , Imunidade Inata/genética , Papaver/genética , Papaver/parasitologia , Peronospora/fisiologia , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Núcleo Celular/genética , Cruzamentos Genéticos , Ácidos Graxos Insaturados/genética , Marcadores Genéticos , Genótipo , Hibridização Genética , Padrões de Herança/genética , Ópio , Papaver/imunologia , Doenças das Plantas/parasitologia
3.
J Hered ; 100(1): 76-85, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-18815118

RESUMO

Two accessions of opium poppy, Pps-1 (dark green leaves, highly resistant to downy mildew [DM]) and H-9 (yellowish green leaves, susceptible to DM), which originated from common progenitor SPS49 were selected, and their F(1) and F(2) progenies showed that leaf color trait was governed by single recessive nuclear gene, whereas DM resistance appeared to be the interaction between cytoplasmic and nuclear genes. Chloroplast DNA (cpDNA) analysis of these 2 accessions through arbitrarily-primed polymerase chain reaction generated a unique fragment in Pps-1. Subsequent sequence analysis upon cloning of this cpDNA fragment revealed its similarity with the plastid-encoded RNA polymerase beta' subunit (rpoCI). Full-length rpoCI DNA was therefore isolated from both the genotypes that was 2707 bp long with a 658-bp intron (436-1093) and a 2049-bp open reading frame encoding 682 amino acid long polypeptide. Comparative sequence analysis of the rpoC1 gene from both the genotypes, revealed 4 single-nucleotide substitutions at 4 positions that caused 3 amino acid changes in the protein sequence--1) A to C transversion at position 825 (Glu275Asp), 2) A to G transition at position 1203 (Ile401Met), and 3) T to C transition at position 1422 and G to A transition at position 1423 both in same codon of the reading frame (Ala475Thr). This investigation is the first report indicating base substitution changes in the plastid-encoded rpoCI gene in DM-resistant genotypes of opium poppy. This finding may lead to implication of possible role of RNA polymerase beta' subunit in resistance to DM caused by Peronospora arborescens.


Assuntos
Cloroplastos/enzimologia , Cloroplastos/genética , RNA Polimerases Dirigidas por DNA/genética , Variação Genética , Genótipo , Imunidade Inata/genética , Papaver/genética , Peronospora , Doenças das Plantas/genética , Sequência de Aminoácidos , Sequência de Bases , DNA de Plantas/genética , Genes de Plantas , Dados de Sequência Molecular , Papaver/parasitologia , Plastídeos/genética , Alinhamento de Sequência
4.
J Exp Biol ; 204(Pt 17): 3027-38, 2001 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-11551991

RESUMO

The black-bean aphid Aphis fabae bears populations of coccoid symbiotic bacteria Buchnera spp. at 2.0-3.2 x 10(7)cells mg(-1)aphid mass and rod-shaped secondary symbionts of uncertain taxonomic affiliation at 0.1-0.6 x 10(7)cells mg(-1)aphid mass. Buchnera provides essential amino acids, supplementing the poor supply in the aphid diet of plant phloem sap. Comparison of the performance of A. fabae containing and experimentally deprived of their bacteria showed that the bacteria caused increased larval mass of aphids reared on Chenopodium album and Papaver dubium plants, but not when reared on Lamium purpureum. In the aphids reared on L. purpureum, the density of the bacteria, especially the secondary symbionts, was significantly elevated, and bacterial-mediated production of the essential amino acid threonine was reduced, even though the essential amino acid content of phloem exudates from L. purpureum had a low threonine content. It is proposed that the shortfall in threonine, possibly compounded by the high density of secondary symbionts, may contribute to the poor performance of the aphids on L. purpureum. This study offers the first evidence to suggest plant-mediated interference with the nutritional function of symbiotic bacteria in any phytophagous insect.


Assuntos
Afídeos/microbiologia , Buchnera/fisiologia , Fabaceae/parasitologia , Lamiaceae/parasitologia , Papaver/parasitologia , Simbiose , Aminoácidos/análise , Aminoácidos/biossíntese , Aminoácidos/metabolismo , Animais , Afídeos/crescimento & desenvolvimento , Afídeos/metabolismo , Buchnera/metabolismo , Contagem de Colônia Microbiana , Fabaceae/metabolismo , Lamiaceae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA