Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arch Oral Biol ; 60(10): 1533-44, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26276267

RESUMO

AIMS: To analyze expression patterns of IGF-1, caspase-3 and HSP-70 in human incisor and canine tooth germs during the late bud, cap and bell stages of odontogenesis. MATERIALS AND METHODS: Head areas or parts of jaw containing teeth from 10 human fetuses aged between 9th and 20th developmental weeks were immunohistochemically analyzed using IGF-1, active caspase-3 and HSP-70 markers. Semi-quantitative analysis of each marker's expression pattern was also performed. RESULTS: During the analyzed period, IGF-1 and HSP-70 were mostly expressed in enamel organ. As development progressed, expression of IGF-1 and HSP-70 became more confined to differentiating tissues in the future cusp tip area, as well as in highly proliferating cervical loops. Few apoptotic bodies highly positive to active caspase-3 were observed in enamel organ and dental papilla from the cap stage onward. However, both enamel epithelia moderately expressed active caspase-3 throughout the investigated period. CONCLUSIONS: Expression patterns of IGF-1, active caspase-3 and HSP-70 imply importance of these factors for early human tooth development. IGF-1 and HSP-70 have versatile functions in control of proliferation, differentiation and anti-apoptotic protection of epithelial parts of human enamel organ. Active caspase-3 is partially involved in formation and apoptotic removal of primary enamel knot, although present findings might reflect its ability to perform other non-death functions such as differentiation of hard dental tissues secreting cells and guidance of ingrowth of proliferating cervical loops.


Assuntos
Caspase 3/biossíntese , Proteínas de Choque Térmico HSP70/biossíntese , Fator de Crescimento Insulin-Like I/biossíntese , Germe de Dente/metabolismo , Diferenciação Celular , Dente Canino/citologia , Dente Canino/embriologia , Dente Canino/metabolismo , Esmalte Dentário/metabolismo , Papila Dentária/citologia , Papila Dentária/embriologia , Papila Dentária/crescimento & desenvolvimento , Papila Dentária/metabolismo , Órgão do Esmalte/citologia , Órgão do Esmalte/embriologia , Órgão do Esmalte/metabolismo , Feto , Humanos , Imuno-Histoquímica , Incisivo/embriologia , Incisivo/metabolismo , Odontogênese , Germe de Dente/citologia , Germe de Dente/embriologia
2.
Sci Rep ; 5: 9903, 2015 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-25952286

RESUMO

Odontogenesis is accomplished by reciprocal signaling between the epithelial and mesenchymal compartments. It is generally accepted that the inductive mesenchyme is capable of inducing the odontogenic commitment of both dental and non-dental epithelial cells. However, the duration of this signal in the developing dental mesenchyme and whether adult dental pulp tissue maintains its inductive capability remain unclear. This study investigated the contribution of growth factors to regulating the inductive potential of the dental mesenchyme. Human oral epithelial cells (OEs) were co-cultured with either human dental mesenchymal/papilla cells (FDPCs) or human dental pulp cells (ADPCs) under 2-dimensional or 3-dimensional conditions. Odontogenic-associated genes and proteins were detected by qPCR and immunofluorescence, respectively, and significant differences were observed between the two co-culture systems. The BMP7 and EREG expression levels in FDPCs were significantly higher than in ADPCs, as indicated by human growth factor PCR arrays and immunofluorescence analyses. OEs co-cultured with ADPCs supplemented with BMP7 and EREG expressed ameloblastic differentiation genes. Our study suggests that BMP7 and EREG expression in late bell-stage human dental papilla contributes to the inductive potential of dental mesenchyme. Furthermore, adult dental pulp cells supplemented with these two growth factors re-established the inductive potential of postnatal dental pulp tissue.


Assuntos
Proteína Morfogenética Óssea 7/farmacologia , Epirregulina/farmacologia , Mesoderma/efeitos dos fármacos , Mesoderma/embriologia , Odontogênese/efeitos dos fármacos , Amelogenina/genética , Técnicas de Cultura de Células , Diferenciação Celular , Análise por Conglomerados , Técnicas de Cocultura , Proteínas do Esmalte Dentário/genética , Papila Dentária/citologia , Papila Dentária/embriologia , Papila Dentária/metabolismo , Polpa Dentária/citologia , Polpa Dentária/embriologia , Polpa Dentária/metabolismo , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Humanos , Mesoderma/citologia , Fator de Transcrição PAX9/genética
3.
Int J Oral Sci ; 6(4): 205-11, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25394593

RESUMO

Histone methylation is one of the most widely studied post-transcriptional modifications. It is thought to be an important epigenetic event that is closely associated with cell fate determination and differentiation. To explore the spatiotemporal expression of histone H3 lysine 4 trimethylation (H3K4me3) and histone H3 lysine 27 trimethylation (H3K27me3) epigenetic marks and methylation or demethylation transferases in tooth organ development, we measured the expression of SET7, EZH2, KDM5B and JMJD3 via immunohistochemistry and quantitative polymerase chain reaction (qPCR) analysis in the first molar of BALB/c mice embryos at E13.5, E15.5, E17.5, P0 and P3, respectively. We also measured the expression of H3K4me3 and H3K27me3 with immunofluorescence staining. During murine tooth germ development, methylation or demethylation transferases were expressed in a spatial-temporal manner. The bivalent modification characterized by H3K4me3 and H3K27me3 can be found during the tooth germ development, as shown by immunofluorescence. The expression of SET7, EZH2 as methylation transferases and KDM5B and JMJD3 as demethylation transferases indicated accordingly with the expression of H3K4me3 and H3K27me3 respectively to some extent. The bivalent histone may play a critical role in tooth organ development via the regulation of cell differentiation.


Assuntos
Histonas/metabolismo , Odontogênese/fisiologia , Processamento de Proteína Pós-Traducional/fisiologia , Animais , Diferenciação Celular/fisiologia , Proteínas de Ligação a DNA/análise , Papila Dentária/embriologia , Embrião de Mamíferos , Órgão do Esmalte/embriologia , Proteína Potenciadora do Homólogo 2 de Zeste , Epigênese Genética/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Histona-Lisina N-Metiltransferase/análise , Histona Desmetilases com o Domínio Jumonji/análise , Lisina/metabolismo , Metilação , Camundongos , Camundongos Endogâmicos BALB C , Complexo Repressor Polycomb 2/análise , Germe de Dente/embriologia
4.
Ann Anat ; 195(6): 581-5, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23932767

RESUMO

Numerous studies have attempted to characterize the dental pulp stem cells. However, studies performed on prenatal human tissues have not been performed to evaluate the in situ characterization and topography of progenitor cells. We aimed to perform such a study using of antibodies for CD117/c-kit and multiplex antibody for Ki67+ caspase 3. Antibodies were applied on samples dissected from five human midterm fetuses. Positive CD117/c-kit labeling was found in mesenchymal derived tissues, such as the dental follicle and the dental papilla. The epithelial tissues, that is, dental lamina, enamel organ and oral epithelia, also displayed isolated progenitor cells which were CD117/c-kit positive. Interestingly, CD117/c-kit positive cells of mesenchymal derived tissues extended multiple prolongations building networks; the most consistent of such networks were those of the dental follicle and the perivascular networks of the dental papilla. However, the mantle of the dental papilla was also positive for CD117/c-kit positive stromal networks. The CD117/c-kit cell populations building networks appeared mostly with a Ki67 negative phenotype. The results suggest that CD117/c-kit progenitor cells of the prenatal tooth germ tissues might be involved in intercellular signaling.


Assuntos
Feto/anatomia & histologia , Feto/metabolismo , Proteínas Proto-Oncogênicas c-kit/metabolismo , Germe de Dente/embriologia , Germe de Dente/metabolismo , Adulto , Autopsia , Diferenciação Celular , Esmalte Dentário/embriologia , Esmalte Dentário/crescimento & desenvolvimento , Papila Dentária/embriologia , Papila Dentária/crescimento & desenvolvimento , Saco Dentário/embriologia , Saco Dentário/crescimento & desenvolvimento , Ectoderma/crescimento & desenvolvimento , Ectoderma/fisiologia , Epitélio/embriologia , Epitélio/crescimento & desenvolvimento , Feminino , Idade Gestacional , Humanos , Imuno-Histoquímica , Antígeno Ki-67/análise , Mesoderma/crescimento & desenvolvimento , Mesoderma/fisiologia , Gravidez , Receptor Cross-Talk/fisiologia , Células-Tronco/metabolismo , Fixação de Tecidos , Dente/embriologia , Dente/crescimento & desenvolvimento
5.
Cell Tissue Res ; 350(1): 95-107, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22868911

RESUMO

Epiprofin/Specificity Protein 6 (Epfn) is a Krüppel-like family (KLF) transcription factor that is critically involved in tooth morphogenesis and dental cell differentiation. However, its mechanism of action is still not fully understood. We have employed both loss-of-function and gain-of-function approaches to address the role of Epfn in the formation of cell junctions in dental cells and in the regulation of junction-associated signal transduction pathways. We have evaluated the expression of junction proteins in bell-stage incisor and molar tooth sections from Epfn(-/-) mice and in dental pulp MDPC-23 cells overexpressing Epfn. In Epfn(-/-) mice, a dramatic reduction occurs in the expression of tight junction and adherens junction proteins and of the adherens-junction-associated ß-catenin protein, a major effector of canonical Wnt signaling. Loss of cell junctions and ß-catenin in Epfn(-/-) mice is correlated with a clear decrease in bone morphogenetic protein 4 (BMP-4) expression, a decrease in nestin in the tooth mesenchyme, altered cell proliferation, and failure of ameloblast cell differentiation. Overexpression of Epfn in MDPC-23 cells results in an increased cellular accumulation of ß-catenin protein, indicative of upregulation of canonical Wnt signaling. Together, these results suggest that Epfn enhances canonical Wnt/ß-catenin signaling in the developing dental pulp mesenchyme, a condition that promotes the activity of other downstream signaling pathways, such as BMP, which are fundamental for cellular induction and ameloblast differentiation. These altered signaling events might underlie some of the most prominent dental defects observed in Epfn(-/-) mice, such as the absence of ameloblasts and enamel, and might throw light on developmental malformations of the tooth, including hyperdontia.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Junções Intercelulares/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Transdução de Sinais , Dente/embriologia , Dente/metabolismo , Proteínas Wnt/metabolismo , Junções Aderentes/efeitos dos fármacos , Junções Aderentes/metabolismo , Ameloblastos/citologia , Ameloblastos/efeitos dos fármacos , Ameloblastos/metabolismo , Animais , Biomarcadores/metabolismo , Proliferação de Células/efeitos dos fármacos , Esmalte Dentário/citologia , Esmalte Dentário/efeitos dos fármacos , Esmalte Dentário/embriologia , Esmalte Dentário/metabolismo , Papila Dentária/citologia , Papila Dentária/efeitos dos fármacos , Papila Dentária/embriologia , Papila Dentária/metabolismo , Polpa Dentária/citologia , Polpa Dentária/efeitos dos fármacos , Polpa Dentária/embriologia , Polpa Dentária/metabolismo , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Quinase 3 da Glicogênio Sintase/metabolismo , Incisivo/citologia , Incisivo/efeitos dos fármacos , Incisivo/embriologia , Incisivo/metabolismo , Junções Intercelulares/efeitos dos fármacos , Fatores de Transcrição Kruppel-Like/deficiência , Proteínas de Membrana/metabolismo , Camundongos , Dente Molar/citologia , Dente Molar/efeitos dos fármacos , Dente Molar/embriologia , Dente Molar/metabolismo , Morfogênese/efeitos dos fármacos , Odontoblastos/citologia , Odontoblastos/efeitos dos fármacos , Odontoblastos/metabolismo , Oximas/farmacologia , Proteínas Recombinantes/metabolismo , Transdução de Sinais/efeitos dos fármacos , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/metabolismo , Dente/citologia , beta Catenina/metabolismo
6.
Dev Biol ; 366(2): 244-54, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-22542602

RESUMO

At the bud stage of tooth development the neural crest derived mesenchyme condenses around the dental epithelium. As the tooth germ develops and proceeds to the cap stage, the epithelial cervical loops grow and appear to wrap around the condensed mesenchyme, enclosing the cells of the forming dental papilla. We have fate mapped the dental mesenchyme, using in vitro tissue culture combined with vital cell labelling and tissue grafting, and show that the dental mesenchyme is a much more dynamic population then previously suggested. At the bud stage the mesenchymal cells adjacent to the tip of the bud form both the dental papilla and dental follicle. At the early cap stage a small population of highly proliferative mesenchymal cells in close proximity to the inner dental epithelium and primary enamel knot provide the major contribution to the dental papilla. These cells are located between the cervical loops, within a region we have called the body of the enamel organ, and proliferate in concert with the epithelium to create the dental papilla. The condensed dental mesenchymal cells that are not located between the body of the enamel organ, and therefore are at a distance from the primary enamel knot, contribute to the dental follicle, and also the apical part of the papilla, where the roots will ultimately develop. Some cells in the presumptive dental papilla at the cap stage contribute to the follicle at the bell stage, indicating that the dental papilla and dental follicle are still not defined populations at this stage. These lineage-tracing experiments highlight the difficulty of targeting the papilla and presumptive odontoblasts at early stages of tooth development. We show that at the cap stage, cells destined to form the follicle are still competent to form dental papilla specific cell types, such as odontoblasts, and produce dentin, if placed in contact with the inner dental epithelium. Cell fate of the dental mesenchyme at this stage is therefore determined by the epithelium.


Assuntos
Mesoderma/citologia , Odontogênese/fisiologia , Animais , Linhagem da Célula , Esmalte Dentário/citologia , Esmalte Dentário/embriologia , Papila Dentária/citologia , Papila Dentária/embriologia , Camundongos , Dente/citologia , Dente/embriologia
7.
Arch Oral Biol ; 57(5): 531-8, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22134060

RESUMO

OBJECTIVE: Syndecan-1 plays an important role in cell proliferation in dental papilla during tooth development. This study aimed to clarify the transcription mechanisms that regulate syndecan-1 gene expression in dental papilla. DESIGN: We analysed genomic conservation and putative transcriptional factor binding sites of syndecan-1 gene loci using the bioinformatics tool VISTA. To identify the region responsible for syndecan-1 gene expression in mouse dental papilla cells (MDPCs) in vitro, the 1.5-kb upstream region of the mouse syndecan-1 coding region was inserted upstream of the enhanced green fluorescent protein (EGFP) or luciferase gene, and promoter activity was examined by transient reporter gene expression assay in cultured MDPCs. To examine the binding of the upstream binding factor, we performed chromatin immunoprecipitation (ChIP) assay. RESULTS: VISTA analysis showed that the 1.5-kb upstream region was highly conserved amongst species, and three GC-rich motifs, as well as a TATA-box-like motif, were identified in this region. Reporter gene assay showed that the 1.5-kb upstream region of mouse syndecan-1 induced reporter gene expression in MDPCs. Deletion of the promoter from the 5'-end to 339 bp upstream reduced luciferase activity by nearly half vs. the 1.5-kb sequence. Further deletion up to 68 bp resulted in further loss of luciferase activity. On ChIP assay, we found direct recruitment of Sp3 transcription factor to the GC-rich motif region. CONCLUSION: The 1.5-kb upstream region of the syndecan-1 gene was sufficient to induce its expression in dental papilla, and binding of Sp3 transcription factor may play a pivotal role in this syndecan-1 induction.


Assuntos
Papila Dentária/embriologia , Odontogênese/genética , Sindecana-1/genética , Região 5'-Flanqueadora , Animais , Sítios de Ligação/genética , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Imunoprecipitação da Cromatina , Elementos Facilitadores Genéticos , Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Genes Reporter/genética , Proteínas de Fluorescência Verde , Luciferases , Camundongos , Regiões Promotoras Genéticas , Deleção de Sequência , Fatores de Transcrição/genética , Transcrição Gênica
8.
Acta Odontol Scand ; 69(6): 360-6, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21449687

RESUMO

OBJECTIVE: To investigate and compare the cellular expression of non-secreted Fgf11-14 and secreted Fgf15-18 and -20 mRNAs during tooth formation. MATERIALS AND METHODS: mRNA expression was analyzed from the morphological initiation of the mouse mandibular first molar development to the onset of crown calcification using sectional in situ hybridization. RESULTS: This study found distinct, differentially regulated expression patterns for the Fgf11-13, -15-17 and -20, in particular in the epithelial-mesenchymal interface, whereas Fgf14 and 18 mRNAs were not detected. Fgf11, -15, -16, -17 and -20 were seen in the epithelium, whereas Fgf12 and -13 signals were restricted to the mesenchymal tissue component of the tooth. Fgf11 was observed in the putative epithelial signaling areas, the tertiary enamel knots and enamel free areas of the calcifying crown. Fgf15, Fgf17 and -20 were transiently colocalized in the thickened dental epithelium at E11.5. Later Fgf15 and -20 were exclusively expressed in the epithelial enamel knot signaling centers. In contrast, Fgf13 was present in the dental mesenchyme including odontoblasts cell lineage, whereas Fgf12 appeared transiently in the preodontoblasts. CONCLUSIONS: The expression of the Fgf11-13, -15, -17 and -20 in the epithelial signaling centers and/or epithelial-mesenchymal interfaces at key stages of the tooth formation suggest important functions in odontogenesis. Future analyses of the transgenic mice will help elucidate in vivo functions of the studied Fgfs during odontogenesis and whether any of the functions of the tooth expressed epithelial and mesenchymal Fgfs of different sub-families are redundant.


Assuntos
Fatores de Crescimento de Fibroblastos/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Dente Molar/embriologia , Odontogênese/genética , Ameloblastos/citologia , Animais , Linhagem da Célula , Papila Dentária/embriologia , Órgão do Esmalte/embriologia , Epitélio/embriologia , Fatores de Crescimento de Fibroblastos/análise , Hibridização In Situ , Mesoderma/embriologia , Camundongos , Odontoblastos/citologia , Calcificação de Dente/genética , Coroa do Dente/embriologia , Germe de Dente/embriologia
9.
Int J Dev Biol ; 55(1): 59-64, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21425080

RESUMO

Teeth develop from epithelium and neural crest-derived mesenchyme via a series of reciprocal epithelial-mesenchymal interactions. The majority of the dental papilla of the tooth has been demonstrated to be of neural crest origin. However, non-neural crest cells have also been observed in this region from the bud stage of tooth development onwards. The number of these non-neural crest-derived cells rises as the dental papilla develops. However, their origin is unknown. We have followed migration of cells into the tooth in vitro using DiI to fate map regions surrounding the developing tooth. To identify the contribution of mesodermally-derived cells, we have utilised Mesp1cre/R26R transgenic reporter mice. We document that cells outside the early tooth primordium migrate into the developing dental papilla from the late cap stage of development. Here, we show that migrating cells are mesodermally-derived and create a network of endothelial cells, forming the blood vessels of the tooth. No cells of mesodermal origin were present in the condensed mesenchyme surrounding the dental epithelium until the cap stage of tooth development. Mesodermally-derived cells start invading the dental papilla at the late cap stage, providing the blood supply to the dental pulp. Endothelial cells are able to invade the developing dental papilla in vitro using the slice culture method. Understanding the origin and timing of migration of the mesodermally-derived cells is an important advance in our understanding of how a tooth develops and is particularly relevant to studies which aim to create bioengineered teeth.


Assuntos
Papila Dentária/embriologia , Mesoderma/embriologia , Crista Neural/embriologia , Dente/embriologia , Animais , Animais Recém-Nascidos , Movimento Celular , Papila Dentária/crescimento & desenvolvimento , Papila Dentária/metabolismo , Embrião de Mamíferos/citologia , Embrião de Mamíferos/embriologia , Embrião de Mamíferos/metabolismo , Feminino , Imunofluorescência , Galactosídeos/metabolismo , Histocitoquímica , Masculino , Mesoderma/crescimento & desenvolvimento , Mesoderma/metabolismo , Camundongos , Camundongos Transgênicos , Crista Neural/crescimento & desenvolvimento , Crista Neural/metabolismo , Odontogênese , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Gravidez , Fatores de Tempo , Técnicas de Cultura de Tecidos , Dente/crescimento & desenvolvimento , Dente/metabolismo
10.
J Endod ; 37(3): 340-5, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21329818

RESUMO

INTRODUCTION: Sclerostin is the product of the SOST gene. Loss-of-function mutations in the SOST gene result in a high bone mass phenotype, thus confirming that sclerostin is a negative regulator of bone mass. SOST knockdown in humans also causes oral and dental malformations. However, the relationship between sclerostin and tooth development is unclear. METHODS: Using immunohistochemical techniques, we investigated sclerostin expression during fetal mouse tooth development and adult mouse tooth morphogenesis. RESULTS: Sclerostin was expressed in the secretory odontoblasts located along the ameloblasts of fetal mouse tooth germ and adult incisor. Sclerostin expression was also observed in the fetal and adult osteocytes in the jaw bone. CONCLUSION: These results suggest that sclerostin, one of the important regulatory factors of differentiated odontoblast function, may usable in vital pulp therapy.


Assuntos
Proteínas Morfogenéticas Ósseas/antagonistas & inibidores , Glicoproteínas/análise , Odontoblastos/citologia , Odontogênese/fisiologia , Germe de Dente/embriologia , Proteínas Adaptadoras de Transdução de Sinal , Ameloblastos/citologia , Animais , Animais Recém-Nascidos , Diferenciação Celular/fisiologia , Papila Dentária/citologia , Papila Dentária/embriologia , Dentina/embriologia , Epitélio/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Idade Gestacional , Imuno-Histoquímica , Incisivo/citologia , Incisivo/embriologia , Peptídeos e Proteínas de Sinalização Intercelular , Mandíbula/citologia , Mandíbula/embriologia , Maxila/citologia , Maxila/embriologia , Camundongos , Camundongos Endogâmicos ICR , Dente Molar/citologia , Dente Molar/embriologia , Osteoblastos/citologia , Osteócitos/citologia , Germe de Dente/citologia
11.
Gene Expr Patterns ; 11(3-4): 163-70, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21073982

RESUMO

Recent studies have demonstrated the existence of dental stem cells in the continuously growing tooth. However, much remains to be learned about the complex mechanism involving stem cells during tooth development. We determined the expression patterns of four stem cell markers ABCG2, Bmi-1, Oct-3/4, and Yap in the developing mouse incisors between embryonic day (E) 11 and postnatal day (PN) 20. ABCG2 was localized strongly in the perivascular region of the incisor mesenchyme from E11 to PN20, and in the odontoblasts from E18 to PN20. Bmi-1 was expressed in both the dental epithelium and mesenchyme from E11 to E14. The expression of Bmi-1 was noticeably reduced at E16, and was restricted to the apical bud from E16 to PN20. Oct-3/4 was localized in the nucleus of the cells in the superficial layer and stellate reticulum within the dental epithelium from E11 to E14 and in the apical bud from E16 to PN20. Meanwhile, once the ameloblasts and odontoblasts began to appear at E16, they expressed Oct-3/4 in the cytoplasm. Yap was expressed in most of the basal cells of the incisor dental epithelium from E11 to E14, but was expressed mainly in the transit-amplifying (TA) cells within the basal cell layer from E16 to PN20. The unique and overlapping expression patterns of ABCG2, Bmi-1, Oct-3/4, and Yap suggest the independent and interactive functions of the four stem cell markers in the developing mouse incisor.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Incisivo/embriologia , Incisivo/crescimento & desenvolvimento , Proteínas Nucleares/genética , Fator 3 de Transcrição de Octâmero/genética , Fosfoproteínas/genética , Proteínas Proto-Oncogênicas/genética , Proteínas Repressoras/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Antígenos de Diferenciação/metabolismo , Proteínas de Ciclo Celular , Papila Dentária/embriologia , Papila Dentária/crescimento & desenvolvimento , Papila Dentária/metabolismo , Células-Tronco Embrionárias/metabolismo , Epitélio/embriologia , Epitélio/crescimento & desenvolvimento , Epitélio/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Incisivo/metabolismo , Camundongos , Camundongos Endogâmicos ICR , Proteínas Nucleares/metabolismo , Fator 3 de Transcrição de Octâmero/metabolismo , Fosfoproteínas/metabolismo , Complexo Repressor Polycomb 1 , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Repressoras/metabolismo , Proteínas de Sinalização YAP
12.
Eur J Oral Sci ; 118(6): 559-65, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21083616

RESUMO

In order to gain insight into possible cellular functions of the prion protein (PrP) during normal development, the expression of Prnp (encoding the PrP) and the distribution of the PrP were studied in murine tooth germs. Expression of Prnp in the mouse first molar tooth germ was highly dynamic, increasing several-fold during the secretory phase of odontogenesis, exhibiting a time-course of expression similar to that of genes coding for other extracellular proteins [e.g. enamel matrix proteins (Amelx, Ambn, Enam), Aplp1, Clstn1, and Clu]. Western blot analysis suggested that the amounts of PrP and amyloid beta (A4) precursor-like protein 1 (APLP1) in the tooth germ followed time-courses similar to those of the corresponding mRNAs. Immunohistochemical studies of the distribution of PrP in murine molar and incisor tooth germs at embryonic day (E)18.5 suggested that this protein was located in the cervical loop, outer enamel epithelium, pre-ameloblasts, and dental papilla. Different degrees of immunolabelling of pre-ameloblasts on the mesial and distal aspects of a lower molar cusp may be related to different enamel configurations on the two aspects. It is concluded that the dynamic patterns of expression of Prnp, and of distribution of PrP, suggest that PrP may have functions during secretory odontogenesis, perhaps in relation to amelogenesis.


Assuntos
Dente Molar/embriologia , Odontogênese/fisiologia , Príons/genética , Germe de Dente/embriologia , Proteínas Adaptadoras de Transdução de Sinal/análise , Ameloblastos/citologia , Amelogênese/genética , Amelogênese/fisiologia , Amelogenina/análise , Precursor de Proteína beta-Amiloide/análise , Animais , Animais Recém-Nascidos , Western Blotting , Proteínas de Ligação ao Cálcio/análise , Clusterina/análise , Esmalte Dentário/embriologia , Proteínas do Esmalte Dentário/análise , Papila Dentária/embriologia , Epitélio/embriologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Idade Gestacional , Imuno-Histoquímica , Incisivo/embriologia , Camundongos , Camundongos Endogâmicos , Proteínas do Tecido Nervoso/análise , Odontogênese/genética , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas Priônicas , Príons/análise
13.
Arch Oral Biol ; 55(12): 995-1006, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20813348

RESUMO

OBJECTIVE: Versican is a large, aggregating chondroitin sulphate proteoglycan. In dental tissue, versican expression occurs primarily in mesenchymal tissue but rarely in epithelial tissue. We investigated the expression, localisation and synthesis of versican in the enamel organ of the developing tooth germ. DESIGN: To elucidate versican localisation in vivo, in situ hybridisation and immunohistochemistry were conducted in foetal ICR mice at E11.5-E18.5. Epithelium and mesenchyme from the lower first molars at E16.0 were enzymatically separated and versican mRNA expression was investigated by semi-quantitative RT-PCR. Organ culture of the separated samples combined with metabolic labelling with [(35)S], followed by gel filtration, was performed to analyse secreted proteoglycans. RESULTS: Versican mRNA was first expressed in the thickened dental epithelium at E12.0 and continued to be expressed in the enamel organ until the bell stage. Versican immunostaining was detected in the stellate reticulum areas from the bud stage to the apposition stage. The enamel organ at E16.0 expressed versican mRNA at a level comparable to that in dental mesenchyme. Furthermore, when compared to dental mesenchyme, about 1/2-3/4 of the [(35)S]-labelled versican-like large proteoglycan was synthesised and released into tissue explants by the enamel organ. CONCLUSIONS: The dental epithelium of developing tooth germ is able to synthesise significant amounts of versican.


Assuntos
Órgão do Esmalte/embriologia , Germe de Dente/embriologia , Versicanas/análise , Animais , Sulfatos de Condroitina/análise , Cromatografia em Gel , Papila Dentária/embriologia , Saco Dentário/embriologia , Órgão do Esmalte/metabolismo , Epitélio/embriologia , Idade Gestacional , Imuno-Histoquímica , Hibridização In Situ , Queratina-14/análise , Mesoderma/embriologia , Camundongos , Camundongos Endogâmicos ICR , Dente Molar/embriologia , Técnicas de Cultura de Órgãos , Proteoglicanas/análise , Compostos Radiofarmacêuticos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Radioisótopos de Enxofre , Germe de Dente/metabolismo , Versicanas/biossíntese , Vimentina/análise
14.
Arch Oral Biol ; 55(12): 1007-16, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20732674

RESUMO

OBJECTIVE: To investigate the spatial and temporal expression of proliferation Ki-67 marker, pro-apoptotic Bax and anti-apoptotic Bcl-2 proteins during early development of the human tooth. MATERIALS AND METHODS: Histological sections of eight human conceptuses, 5-10 postovulatory weeks old, were used for immunolocalization for Ki-67, Bax and Bcl-2 markers. Quantification was performed by calculating the fraction of Ki-67 positive cells, expressed as a mean ± SD, and analysed by Mann-Whitney test, Kruskal-Wallis and Dunn's post hoc test. RESULTS: In 6th-7th developmental weeks, the tooth germ and dental crest contained 37% of proliferating cells, which increased to 40% in the 8th week, and then decreased to 15% in the 10th week, whilst the proliferation in the ectomesenchyme subsequently dropped from 37% to 23%. Epithelial parts of the enamel organ displayed similar proliferation activity (31-36%), dental crest 10%, whilst enamel knot showed no proliferating activity. The tooth ectomesenchyme contained more proliferating cells (50%) than the jaw ectomesenchyme (35%), and both dropped to 28% in the 10th week. Ectomesenchyme between the tooth germs contained 23%, whilst the jaw ectomesenchyme contained 15% of proliferating cells. Bcl-2 expression had following pattern: strong in proliferating cells, moderate in tooth germs and dental crest, and weak in the ectomesenchyme. Bax co-expressed with Bcl-2 in the tooth germ and dental crest. In the reticulum and inner enamel epithelium Bcl-2 had prevalent expression, whilst Bax prevailed in the outer enamel epithelium and tooth ectomesenchyme. CONCLUSIONS: Proliferating cells most likely influence growth of the tooth germ, Bcl-2 affects proliferation and differentiation of specific cell lineages, whilst Bax influences process of cell death.


Assuntos
Antígeno Ki-67/análise , Proteínas Proto-Oncogênicas c-bcl-2/análise , Germe de Dente/embriologia , Proteína X Associada a bcl-2/análise , Morte Celular/fisiologia , Diferenciação Celular/fisiologia , Linhagem da Célula , Proliferação de Células , Esmalte Dentário/citologia , Esmalte Dentário/embriologia , Papila Dentária/citologia , Papila Dentária/embriologia , Saco Dentário/citologia , Saco Dentário/embriologia , Ectoderma/citologia , Ectoderma/embriologia , Órgão do Esmalte/citologia , Órgão do Esmalte/embriologia , Células Epiteliais/citologia , Epitélio/embriologia , Imunofluorescência , Idade Gestacional , Humanos , Imuno-Histoquímica , Mesoderma/citologia , Mesoderma/embriologia , Morfogênese/fisiologia , Odontogênese/fisiologia , Germe de Dente/citologia
15.
J Dent Res ; 89(7): 679-83, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20448247

RESUMO

Important factors involved in odontogenesis in mouse dental papillae disappear between the pre- and post-natal stages of development. Therefore, we hypothesized that certain genes involved in odontogenesis in dental papillae were subject to pre-/post-natal down-regulation. Our goal was to identify, by microarray analysis, which genes were down-regulated. Dental papillae were isolated from embryonic 16-day-, 18-day- (E16, E18), and post-natal 3-day-old (P3) murine first mandibular molar germs and analyzed by microarray. The number of down-regulated genes was 2269 between E16 and E18, and 3130 between E18 and P3. Drastic down-regulation (fold change > 10.0) of Adamts4, Aldha1a2, and Lef1 was observed at both E16 and E18, and quantitative RT-PCR revealed a post-natal reduction in their expression (Adamts4, 1/3; Aldh1a2, 1/13; and Lef1, 1/37). These results suggest that down-regulation of these three genes is an important factor in normal odontogenesis in dental papillae.


Assuntos
Papila Dentária/citologia , Polpa Dentária/citologia , Regulação para Baixo/genética , Odontogênese/genética , Proteínas ADAM/análise , Proteínas ADAM/genética , Proteína ADAMTS4 , Aldeído Desidrogenase/análise , Aldeído Desidrogenase/genética , Família Aldeído Desidrogenase 1 , Animais , Morte Celular/genética , Papila Dentária/embriologia , Polpa Dentária/embriologia , Células Epiteliais/citologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Hibridização In Situ , Fator 1 de Ligação ao Facilitador Linfoide/análise , Fator 1 de Ligação ao Facilitador Linfoide/genética , Camundongos , Camundongos Endogâmicos ICR , Odontoblastos/citologia , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase , Pró-Colágeno N-Endopeptidase/análise , Pró-Colágeno N-Endopeptidase/genética , Retinal Desidrogenase , Calcificação de Dente/genética , Germe de Dente/citologia , Germe de Dente/embriologia
16.
Arch Oral Biol ; 54(9): 846-50, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19545854

RESUMO

AIM: Recently a novel gene, FAM83H, was identified by a genetic linkage study in the hypocalcified form of the amelogenesis imperfecta family with an autosomal dominant hereditary pattern. Little is known about this novel gene, and so we investigated the expression pattern of Fam83h in murine tooth development using serial sectional in situ hybridisation. METHODS AND MATERIALS: Using mandibles of ICR mouse at specific developmental stages, in situ hybridisation was performed by DIG-labeled RNA probe. RESULTS: Faint expression was detected in limited cells at embryonic day 14 (E14) in the molar. At the bell stage, E16, Fam83h was localised in the outer and inner enamel epithelium, as well as dental papilla. Fam83h expression begins on E15 in the developing incisor. At E18, Fam83h was expressed in the inner enamel epithelium of the apical bud, ameloblasts and odontoblasts. The expression was stronger in the presecretory stages than the secretory stages. CONCLUSION: Fam83h was detected in the ameloblasts from the presecretory to the secretory stage, and also the odontoblasts layer and surrounding alveolar bone.


Assuntos
Amelogênese Imperfeita/genética , Odontogênese/genética , Proteínas/genética , Processo Alveolar/embriologia , Ameloblastos/citologia , Animais , Esmalte Dentário/embriologia , Papila Dentária/embriologia , Epitélio/embriologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Hibridização In Situ , Incisivo/embriologia , Mesoderma/citologia , Camundongos , Camundongos Endogâmicos ICR , Dente Molar/embriologia , Odontoblastos/citologia , Proteínas/análise , Germe de Dente/embriologia
17.
Arch Oral Biol ; 48(11): 745-52, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14550376

RESUMO

Sections from the frontal part of the mandible of 43 human foetuses from 9 to 39 weeks of prenatal age, which contained two, three and sometimes four lower incisors were immunohistochemically examined using protein gene product and neuron specific enolase (NSE) antibodies in order to establish the time of appearance of nerve fibres in the developing tooth germ and to define their topography. Nerve fibres were first detected in the dental follicle in the 11th week of intrauterine life. Their presence in the dental papilla was confirmed in the 18th week when the first layers of dentine and enamel were deposited. In the 24th week of intrauterine life, the nerve fibres first reached the subodontoblastic region. In the subsequent weeks, an increase in the number of nerve fibres accompanying blood vessels in the central portion of the dental papilla resulted in the formation of neuro-vascular bundles. Moreover, the progressive deposition of enamel and dentine was accompanied by branching of papillary nerves, which thereby formed a fan-pattern. In the foetal period, no evidence was found for the formation of a subodontoblastic plexus. However, we did observe single nerve fibres in close proximity to the odontoblast layer at the end of intrauterine life. Nerve fibres were not detected in either predentine or dentine throughout foetal life.


Assuntos
Incisivo/embriologia , Odontogênese , Dente Decíduo/embriologia , Papila Dentária/embriologia , Papila Dentária/inervação , Desenvolvimento Embrionário e Fetal , Idade Gestacional , Humanos , Técnicas Imunoenzimáticas , Incisivo/inervação , Fibras Nervosas/fisiologia , Germe de Dente/embriologia , Germe de Dente/inervação , Dente Decíduo/inervação
18.
Histochem J ; 34(3-4): 105-9, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12495215

RESUMO

This study examined the detailed gene expression pattern of three different heat shock proteins (HSPs), Hsc73, Hsj2, and Hsp86, by means of an in situ hybridization method. Hsc73, Hsj2, and Hsp86 were shown in our previous study to be differentially expressed in the mouse embryonic mandible at day 10.5 (E10.5) gestational age. These HSP genes showed similar expression patterns during development of the mouse lower first molar. HSPs-expressing cells were widely distributed in both the epithelial and underlying ectomesenchymal cells at E10.5, and then were slightly localized at E12 in an area where the tooth germ of the lower first molar is estimated to be formed. A strong expression of HSPs was observed in the tooth germ at E13.5. At the cap stage, HSPs were expressed in the enamel organ and dental papilla. At the bell stage, HSPs were distinctly expressed in the inner enamel epithelium and dental papilla cells facing the inner enamel epithelial layer, which later differentiate into ameloblasts and odontoblasts, respectively. This study is the first report in which Hsc73, Hsj2, and Hsp86 were distinctly expressed in the developing tooth germ, thus suggesting these HSPs are related to the development and differentiation of odontogenic cells.


Assuntos
Proteínas de Choque Térmico HSP70 , Proteínas de Choque Térmico/biossíntese , Dente Molar/enzimologia , Dente Molar/metabolismo , Germe de Dente/embriologia , Germe de Dente/metabolismo , Animais , Esmalte Dentário/embriologia , Papila Dentária/embriologia , Feminino , Proteínas de Choque Térmico HSC70 , Proteínas de Choque Térmico HSP90/biossíntese , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico/genética , Hibridização In Situ , Camundongos , Camundongos Endogâmicos BALB C , Odontogênese/fisiologia , Gravidez
19.
Arch Oral Biol ; 47(11): 805-13, 2002 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12446188

RESUMO

This study employed in situ hybridisation using a probe recognising all isoforms of the molecule. Expression of the molecule in tooth germs started at embryonic day 13, when they were at the bud stage. Both inner cells of the epithelial bud and peripheral cells of the dental mesenchyme were positive. At the cap stage, positive cells were found in the inner part of the enamel organ but only in a limited area near the outer enamel epithelium. In the mesenchyme at the cap stage, expression was weak in the dental papilla and strong in the follicle. From the bell stage onward, epithelial cells in the enamel organ were negative except for the cells of the stratum intermedium, which were transiently positive at early and late bell stages. In the dental papilla, expression had mostly ceased during and after the bell stage, although transient expression was found in cuspal areas at the early bell stage. The dental follicle strongly expressed neural cell-adhesion molecule (NCAM) to the end of the experimental period, at post-natal day 4. In contrast to the first molar at its earliest stage of appearance, in which both the thickened epithelium and surrounding mesenchyme were negative for the expression of the molecule, the second molar appeared as a combination of extending epithelial thickenings and mesenchymal cells strongly positive for its expression. This study newly identifies the dental papilla and the stratum intermedium as NCAM-expressing sites.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Dente Molar/embriologia , Moléculas de Adesão de Célula Nervosa/metabolismo , Odontogênese/genética , RNA Mensageiro/metabolismo , Animais , Papila Dentária/embriologia , Papila Dentária/metabolismo , Órgão do Esmalte/embriologia , Órgão do Esmalte/metabolismo , Técnica Indireta de Fluorescência para Anticorpo , Hibridização In Situ , Mesoderma/metabolismo , Camundongos , Camundongos Endogâmicos , Dente Molar/metabolismo , Moléculas de Adesão de Célula Nervosa/genética , Germe de Dente/embriologia , Germe de Dente/metabolismo
20.
Mech Dev ; 107(1-2): 155-7, 2001 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-11520671

RESUMO

The shape and diversity of the mammalian molar teeth is suggested to be regulated by the primary and secondary enamel knots, which are putative epithelial signaling centers of the tooth. In search of novel molecules involved in tooth morphogenesis, we analyzed mRNA expression of Slit1, -2 and -3, earlier characterized as secreted signals needed for axonal pathfinding and their two receptors Robo1 and -2 (Roundabout1 and -2) in the developing mouse first molar. In situ hybridization analysis showed that Slit1 mRNAs were expressed in the primary enamel knot of the bud and cap stage tooth germ and later the expression continued in the secondary enamel knots of the late cap and bell stage tooth. In contrast, expression of Slit2 and -3 as well Robo1, and -2 was largely restricted to mesenchymal tissue components of the tooth until the bell stage. At the late bud stage, however, Robo1 transcripts were evident in the primary enamel knot, and at the cap stage a pronounced expression was noted in the middle of the tooth germ covering the primary enamel knot and dental papilla mesenchyme. During the bell stage, Robo1 and Slit2 expression became restricted to the dental epithelia, while Slit3 continued in the dental mesenchyme. Prior to birth, Robo1 and -2 were co-localized in the predontoblasts. These results indicate that Slits and Robos display distinct, developmentally regulated expression patterns during tooth morphogenesis. In addition, our results show that Slit1 is the second known gene specifically located in the primary and secondary enamel knots.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Proteínas do Tecido Nervoso/genética , Odontogênese , Germe de Dente/metabolismo , Animais , Esmalte Dentário/embriologia , Esmalte Dentário/metabolismo , Papila Dentária/embriologia , Papila Dentária/metabolismo , Hibridização In Situ , Peptídeos e Proteínas de Sinalização Intercelular , Proteínas de Membrana/genética , Camundongos , Dente Molar/embriologia , Dente Molar/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores Imunológicos/genética , Germe de Dente/embriologia , Proteínas Roundabout
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...