Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Parasit Vectors ; 14(1): 296, 2021 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-34082796

RESUMO

Parasites, including viruses, bacteria, fungi, protists, helminths, and arthropods, are ubiquitous in the animal kingdom. Consequently, hosts are frequently infected with more than one parasite species simultaneously. The assessment of such co-infections is of fundamental importance for disease ecology, but relevant studies involving non-domesticated animals have remained scarce. Many amphibians are in decline, and they generally have a highly diverse parasitic fauna. Here we review the literature reporting on field surveys, veterinary case studies, and laboratory experiments on co-infections in amphibians, and we summarize what is known about within-host interactions among parasites, which environmental and intrinsic factors influence the outcomes of these interactions, and what effects co-infections have on hosts. The available literature is piecemeal, and patterns are highly diverse, so that identifying general trends that would fit most host-multiparasite systems in amphibians is difficult. Several examples of additive, antagonistic, neutral, and synergistic effects among different parasites are known, but whether members of some higher taxa usually outcompete and override the effects of others remains unclear. The arrival order of different parasites and the time lag between exposures appear in many cases to fundamentally shape competition and disease progression. The first parasite to arrive can gain a marked reproductive advantage or induce cross-reaction immunity, but by disrupting the skin and associated defences (i.e., skin secretions, skin microbiome) and by immunosuppression, it can also pave the way for subsequent infections. Although there are exceptions, detrimental effects to the host are generally aggravated with increasing numbers of co-infecting parasite species. Finally, because amphibians are ectothermic animals, temperature appears to be the most critical environmental factor that affects co-infections, partly via its influence on amphibian immune function, partly due to its direct effect on the survival and growth of parasites. Besides their importance for our understanding of ecological patterns and processes, detailed knowledge about co-infections is also crucial for the design and implementation of effective wildlife disease management, so that studies concentrating on the identified gaps in our understanding represent rewarding research avenues.


Assuntos
Anfíbios/parasitologia , Coinfecção/parasitologia , Interações Hospedeiro-Parasita , Doenças Parasitárias em Animais/microbiologia , Doenças Parasitárias em Animais/virologia , Animais , Animais Selvagens/parasitologia , Coinfecção/microbiologia , Coinfecção/virologia , Parasitos/microbiologia , Parasitos/virologia
2.
PLoS Pathog ; 17(3): e1009354, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33735302

RESUMO

Globally visceral leishmaniasis (VL) causes thousands of human deaths every year. In South America, the etiologic agent, Leishmania infantum, is transmitted from an infected canine reservoir to human hosts by the bite of the sand fly vector; predominantly Lutzomyia longipalpis. Previous evidence from model rodent systems have suggested that the odour of infected hosts is altered by the parasite making them more attractive to the vector leading to an increased biting rate and improved transmission prospects for the pathogen. However, there has been no assessment of the effect of Le infantum infection on the attractiveness of dogs, which are the natural reservoirs for human infection. Hair collected from infected and uninfected dogs residing in a VL endemic city in Brazil was entrained to collect the volatile chemical odours present in the headspace. Female and male Lu. longipalpis sand flies were offered a choice of odour entrained from infected and uninfected dogs in a series of behavioural experiments. Odour of uninfected dogs was equally attractive to male or female Lu. longipalpis when compared to a solvent control. Female Lu. longipalpis were significantly more attracted to infected dog odour than uninfected dog odour in all 15 experimental replicates (average 45.7±0.87 females attracted to infected odour; 23.9±0.82 to uninfected odour; paired T-test, P = 0.000). Male Lu. longipalpis did not significantly prefer either infected or uninfected odour (average 36.1±0.4 males to infected odour; 35.7±0.6 to uninfected odour; paired T-test, P = 0.722). A significantly greater proportion of females chose the infected dog odour compared to the males (paired T-test, P = 0.000). The results showed that the odour of dogs infected with Le. infantum was significantly more attractive to blood-seeking female sand flies than it was to male sand flies. This is strong evidence for parasite manipulation of the host odour in a natural transmission system and indicates that infected dogs may have a disproportionate significance in maintaining infection in the canine and human population.


Assuntos
Leishmania infantum/microbiologia , Leishmaniose Visceral/parasitologia , Parasitos/microbiologia , Fatores Sexuais , Animais , Cães , Feminino , Humanos , Insetos Vetores/parasitologia , Leishmania infantum/imunologia , Masculino , Odorantes/prevenção & controle , Psychodidae/parasitologia
3.
Am Nat ; 197(2): 216-235, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33523784

RESUMO

AbstractHyperparasitism denotes the natural phenomenon where a parasite infecting a host is in turn infected by its own parasite. Hyperparasites can shape the dynamics of host-parasite interactions and often have a deleterious impact on pathogens, an important class of parasites, causing a reduction in their virulence and transmission rate. Hyperparasitism thus could be an important tool of biological control. However, host-parasite-hyperparasite systems have so far been outside the mainstream of modeling studies, especially those dealing with eco-evolutionary aspects of species interactions. Here, we theoretically explore the evolution of life-history traits in a generic host-parasite-hyperparasite system, focusing on parasite virulence and the positive impact that hyperparasitism has on the host population. We also explore the coevolution of life-history traits of the parasite and hyperparasite, using adaptive dynamics and quantitative genetics frameworks to identify evolutionarily singular strategies. We find that in the presence of hyperparasites, the evolutionarily optimal pathogen virulence generally shifts toward more virulent strains. However, even in this case the use of hyperparasites in biocontrol could be justified, since overall host mortality decreases. An intriguing possible outcome of the evolution of the hyperparasite can be its evolutionary suicide.


Assuntos
Evolução Biológica , Interações Hospedeiro-Patógeno/fisiologia , Virulência , Animais , Bactérias/virologia , Coevolução Biológica , Características de História de Vida , Modelos Teóricos , Parasitos/microbiologia , Parasitos/parasitologia , Vírus
4.
Parasitol Res ; 119(10): 3145-3164, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32748037

RESUMO

Parasites and bacteria have co-evolved with humankind, and they interact all the time in a myriad of ways. For example, some bacterial infections result from parasite-dwelling bacteria as in the case of Salmonella infection during schistosomiasis. Other bacteria synergize with parasites in the evolution of human disease as in the case of the interplay between Wolbachia endosymbiont bacteria and filarial nematodes as well as the interaction between Gram-negative bacteria and Schistosoma haematobium in the pathogenesis of urinary bladder cancer. Moreover, secondary bacterial infections may complicate several parasitic diseases such as visceral leishmaniasis and malaria, due to immunosuppression of the host during parasitic infections. Also, bacteria may colonize the parasitic lesions; for example, hydatid cysts and skin lesions of ectoparasites. Remarkably, some parasitic helminths and arthropods exhibit antibacterial activity usually by the release of specific antimicrobial products. Lastly, some parasite-bacteria interactions are induced as when using probiotic bacteria to modulate the outcome of a variety of parasitic infections. In sum, parasite-bacteria interactions involve intricate processes that never cease to intrigue the researchers. However, understanding and exploiting these interactions could have prophylactic and curative potential for infections by both types of pathogens.


Assuntos
Infecções Bacterianas/complicações , Filarioidea/microbiologia , Doenças Parasitárias/complicações , Schistosoma haematobium/microbiologia , Wolbachia/crescimento & desenvolvimento , Animais , Antibacterianos/uso terapêutico , Artrópodes/microbiologia , Humanos , Parasitos/microbiologia , Probióticos/uso terapêutico , Simbiose , Neoplasias da Bexiga Urinária/microbiologia , Neoplasias da Bexiga Urinária/parasitologia , Neoplasias da Bexiga Urinária/patologia
5.
Emerg Top Life Sci ; 4(1): 59-76, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32558901

RESUMO

Parasites are linked to the decline of some bee populations; thus, understanding defense mechanisms has important implications for bee health. Recent advances have improved our understanding of factors mediating bee health ranging from molecular to landscape scales, but often as disparate literatures. Here, we bring together these fields and summarize our current understanding of bee defense mechanisms including immunity, immunization, and transgenerational immune priming in social and solitary species. Additionally, the characterization of microbial diversity and function in some bee taxa has shed light on the importance of microbes for bee health, but we lack information that links microbial communities to parasite infection in most bee species. Studies are beginning to identify how bee defense mechanisms are affected by stressors such as poor-quality diets and pesticides, but further research on this topic is needed. We discuss how integrating research on host traits, microbial partners, and nutrition, as well as improving our knowledge base on wild and semi-social bees, will help inform future research, conservation efforts, and management.


Assuntos
Anti-Infecciosos/metabolismo , Abelhas/imunologia , Abelhas/fisiologia , Parasitos/microbiologia , Viroses/imunologia , Animais , Comportamento Animal , Biodiversidade , Dieta , Ecossistema , Interações Hospedeiro-Parasita , Imunidade , Microbiota , Praguicidas/metabolismo
6.
Int J Mol Sci ; 20(19)2019 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-31574995

RESUMO

Group 2 innate lymphoid cells (ILC2s) are a member of the ILC family and are involved in protective and pathogenic type 2 responses. Recent research has highlighted their involvement in modulating tissue and immune homeostasis during health and disease and has uncovered critical signaling circuits. While interactions of ILC2s with the bacterial microbiome are rather sparse, other microbial members of our microbiome, including helminths and protozoans, reveal new and exciting mechanisms of tissue regulation by ILC2s. Here we summarize the current field on ILC2 activation by the tissue and immune environment and highlight particularly new intriguing pathways of ILC2 regulation by protozoan commensals in the intestinal tract.


Assuntos
Imunidade Inata , Ativação Linfocitária/imunologia , Subpopulações de Linfócitos/imunologia , Subpopulações de Linfócitos/metabolismo , Microbiota/imunologia , Parasitos/microbiologia , Animais , Biomarcadores , Citocinas , Humanos , Imunomodulação , Transdução de Sinais
8.
PLoS One ; 14(10): e0223667, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31613914

RESUMO

BACKGROUND: Bartonellae are intracellular bacteria, which can cause persistent bacteraemia in humans and a variety of animals. Several rodent-associated Bartonella species are human pathogens but data on their global distribution and epidemiology are limited. The aims of the study were to: 1) determine the prevalence of Bartonella infection in rodents and fleas; 2) identify risk factors for Bartonella infection in rodents; and 3) characterize the Bartonella genotypes present in these rodent and flea populations. METHODS AND RESULTS: Spleen samples collected from 381 rodents representing six different species were tested for the presence of Bartonella DNA, which was detected in 57 individuals (15.0%; 95% CI 11.3-18.5), of three rodent species (Rattus rattus n = 54, Mastomys natalensis n = 2 and Paraxerus flavovottis n = 1) using a qPCR targeting the ssrA gene. Considering R. rattus individuals only, risk factor analysis indicated that Bartonella infection was more likely in reproductively mature as compared to immature individuals (OR = 3.42, p <0.001). Bartonella DNA was also detected in 53 of 193 Xenopsylla cheopis fleas (27.5%: 95% CI 21.3-34.3) collected from R.rattus individuals. Analysis of ssrA and gltA sequences from rodent spleens and ssrA sequences from fleas identified multiple genotypes closely related (≥ 97% similar) to several known or suspected zoonotic Bartonella species, including B. tribocorum, B. rochalimae, B. elizabethae and B. quintana. CONCLUSIONS: The ssrA and gltA sequences obtained from rodent spleens and ssrA sequences obtained from fleas reveal the presence of a diverse set of Bartonella genotypes and increase our understanding of the bartonellae present in Tanzanian. Further studies are needed to fully characterise the prevalence, genotypes and diversity of Bartonella in different host populations and their potential impacts on human health.


Assuntos
Bartonella/genética , Parasitos/microbiologia , Roedores/microbiologia , Roedores/parasitologia , Animais , Genes Bacterianos , Genótipo , Geografia , Filogenia , Fatores de Risco , Sifonápteros/microbiologia , Baço/microbiologia , Tanzânia
9.
PLoS One ; 13(8): e0202270, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30148833

RESUMO

Arthropod vectors are responsible for the transmission of human pathogens worldwide. Several arthropod species are bird ectoparasites, however, no study to date has characterized their microbiota as a whole. We sampled hematophagous ectoparasites that feed on migratory birds and performed 16S rRNA gene metabarcoding to characterize their microbial community. A total of 194 ectoparasites were collected from 115 avian hosts and classified into three groups: a) Hippoboscidae diptera; b) ticks; c) other arthropods. Metabarcoding showed that endosymbionts were the most abundant genera of the microbial community, including Wolbachia for Hippoboscidae diptera, Candidatus Midichloria for ticks, Wolbachia and Arsenophonus for the other arthropod group. Genera including pathogenic species were: Rickettsia, Borrelia, Coxiella, Francisella, Bartonella, Anaplasma. Co-infection with Borrelia-Rickettsia and Anaplasma-Rickettsia was also observed. A global overview of the microbiota of ectoparasites sampled from migratory birds was obtained with the use of 16S rRNA gene metabarcoding. A novel finding is the first identification of Rickettsia in the common swift louse fly, Crataerina pallida. Given their possible interaction with pathogenic viruses and bacteria, the presence of endosymbionts in arthropods merits attention. Finally, molecular characterization of genera, including both pathogenic and symbiont species, plays a pivotal role in the design of targeted molecular diagnostics.


Assuntos
Artrópodes/microbiologia , Bactérias/isolamento & purificação , Doenças das Aves/parasitologia , Ectoparasitoses/veterinária , Microbiota , Parasitos/microbiologia , Migração Animal , Animais , Aves/parasitologia , Biologia Computacional , Ectoparasitoses/parasitologia , Itália , Tipagem Molecular , RNA Ribossômico 16S , Carrapatos/microbiologia
10.
Parasitology ; 145(10): 1261-1264, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30086814

RESUMO

Thanks to modern molecular biology methods, our understanding of the impact of (endo)symbiotic bacteria on parasitic protists and helminths is growing fast. In this issue, 9 papers have been brought together that describe various facets of the relationships between these microorganisms, reveal their range and high frequency, as well as their capacity to create novel biological complexity. Comparative analyses of these host-endosymbiont interactions indicate that there may be no discrete types of relationships but rather a continuum ranging from a dispensable endosymbiont minimally integrated within the host cell to organelles, such as mitochondria and plastids that evolved into an indispensable, deeply integrated components of the cell. We hope that this series of studies on parasites and (endo)symbiotic bacteria will increase awareness about these relationships and their representation in microbial ecology models.


Assuntos
Parasitos/microbiologia , Simbiose , Animais , Evolução Biológica , Organelas
11.
PLoS One ; 13(6): e0198629, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29870549

RESUMO

The family Streblidae comprises a monophyletic group of Hippoboscoidea, hematophagous dipterans that parasitize bats. Bartonella spp. and Rickettsia spp. have been reported in bats sampled in Europe, Africa, Asia, North, Central and South America. However, there are few reports on the Bartonella and Rickettsia bacteria infecting Hippoboscoidea flies and mites. While Spinturnicidae mites are ectoparasites found only in bats, those belonging to the family Macronyssidae comprise mites that also parasitize other mammal species. This study investigates the occurrence and assesses the phylogenetic positioning of Bartonella spp. and Rickettsia spp. found in Streblidae flies and Spinturnicidae and Macronyssidae mites collected from bats captured in Brazil. From May 2011 to April 2012 and September 2013 to December 2014, 400 Streblidae flies, 100 Macronyssidaes, and 100 Spinturnicidae mites were collected from bats captured in two sites in northeastern Nova Iguaçu, Rio de Janeiro, southeastern Brazil. Forty (19.8%) out of 202 Streblidae flies were positive for Bartonella spp. in qPCR assays based on the nuoG gene. Among the flies positive for the bacterium, six (18%) were Paratrichobius longicrus, seven (29%) Strebla guajiro, two (40%) Aspidoptera phyllostomatis, five (11%) Aspidoptera falcata, one (10%) Trichobius anducei, one (25%) Megistopoda aranea, and 18 (32%) Trichobius joblingi, and collected from bats of the following species: Artibeus lituratus, Carollia perspicillata, Artibeus planirostris, Sturnira lilium, and Artibeus obscurus. Six sequences were obtained for Bartonella (nuoG [n = 2], gltA [n = 2], rpoB [n = 1], ribC = 1]). The phylogenetic analysis based on gltA (750pb) gene showed that the Bartonella sequences clustered with Bartonella genotypes detected in bats and ectoparasites previously sampled in Latin America, including Brazil. Only one sample (0.49%) of the species Trichobius joblingi collected from a specimen of Carollia perspicillata was positive for Rickettsia sp. in cPCR based on the gltA gene (401bp). This sequence was clustered with a 'Candidatus Rickettsia andaenae" genotype detected in an Amblyomma parvum tick collected from a rodent in the southern region of Brazilian Pantanal. The sampled Macronyssidae and Spinturnicidae mites were negative for Bartonella spp. and Rickettsia spp. This study demonstrated the first occurrence of Bartonella spp. and Rickettsia spp. DNA in Streblidae flies collected from bats in Brazil.


Assuntos
Bartonella/isolamento & purificação , Quirópteros/parasitologia , Ectoparasitoses/parasitologia , Parasitos/microbiologia , Rickettsia/isolamento & purificação , Animais , Bartonella/genética , Brasil , DNA Bacteriano/isolamento & purificação , Dípteros/microbiologia , Ectoparasitoses/veterinária , Ácaros/microbiologia , Filogenia , Reação em Cadeia da Polimerase em Tempo Real , Rickettsia/genética , Análise de Sequência de DNA
12.
Parasitology ; 145(10): 1294-1303, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29642965

RESUMO

Animals are common hosts of mutualistic, commensal and pathogenic microorganisms. Blood-feeding parasites feed on a diet that is nutritionally unbalanced and thus often rely on symbionts to supplement essential nutrients. However, they are also of medical importance as they can be infected by pathogens such as bacteria, protists or viruses that take advantage of the blood-feeding nutritional strategy for own transmission. Since blood-feeding evolved multiple times independently in diverse animals, it showcases a gradient of host-microbe interactions. While some parasitic lineages are possibly asymbiotic and manage to supplement their diet from other food sources, other lineages are either loosely associated with extracellular gut symbionts or harbour intracellular obligate symbionts that are essential for the host development and reproduction. What is perhaps even more diverse are the pathogenic lineages that infect blood-feeding parasites. This microbial diversity not only puts the host into a complicated situation - distinguishing between microorganisms that can greatly decrease or increase its fitness - but also increases opportunity for horizontal gene transfer to occur in this environment. In this review, I first introduce this diversity of mutualistic and pathogenic microorganisms associated with blood-feeding animals and then focus on patterns in their interactions, particularly nutrition, immune cross-talk and gene exchange.


Assuntos
Artrópodes/genética , Interações Hospedeiro-Patógeno/imunologia , Parasitos/genética , Simbiose , Animais , Artrópodes/microbiologia , Sangue , Comportamento Alimentar , Transferência Genética Horizontal , Interações Hospedeiro-Patógeno/genética , Microbiota , Nematoides/genética , Nematoides/microbiologia , Parasitos/microbiologia , Filogenia , RNA Ribossômico 16S/genética
13.
Sci Adv ; 4(3): eaap7399, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29546242

RESUMO

Intestinal dwelling parasites have evolved closely with the complex intestinal microbiota of their host, but the significance of the host microbiota for metazoan pathogens and the role of their own intestinal microbiota are still not fully known. We have found that the parasitic nematode Trichuris muris acquired a distinct intestinal microbiota from its host, which was required for nematode fitness. Infection of germ-free mice and mice monocolonized with Bacteroides thetaiotaomicron demonstrated that successful T. muris infections require a host microbiota. Following infection, T. muris-induced alterations in the host intestinal microbiota inhibited subsequent rounds of infection, controlling parasite numbers within the host intestine. This dual strategy could promote the long-term survival of the parasite within the intestinal niche necessary for successful chronic nematode infection.


Assuntos
Interações Hospedeiro-Parasita , Microbiota , Parasitos/microbiologia , Tricuríase/microbiologia , Trichuris/fisiologia , Imunidade Adaptativa/efeitos dos fármacos , Animais , Antibacterianos/farmacologia , Interações Hospedeiro-Parasita/efeitos dos fármacos , Interações Hospedeiro-Parasita/imunologia , Intestinos/microbiologia , Intestinos/parasitologia , Camundongos Endogâmicos C57BL , Microbiota/efeitos dos fármacos , Parasitos/efeitos dos fármacos , Parasitos/imunologia , Tricuríase/imunologia , Trichuris/efeitos dos fármacos
14.
Mol Ecol ; 26(18): 4644-4656, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28664982

RESUMO

The composition and diversity of bacteria forming the microbiome of parasitic organisms have implications for differential host pathogenicity and host-parasite co-evolutionary interactions. The microbiome of pathogens can therefore have consequences that are relevant for managing disease prevalence and impact on affected hosts. Here, we investigate the microbiome of an invasive parasitic fly Philornis downsi, recently introduced to the Galápagos Islands, where it poses extinction threat to Darwin's finches and other land birds. Larvae infest nests of Darwin's finches and consume blood and tissue of developing nestlings, and have severe mortality impacts. Using 16s rRNA sequencing data, we characterize the bacterial microbiota associated with P. downsi adults and larvae sourced from four finch host species, inhabiting two islands and representing two ecologically distinct groups. We show that larval and adult microbiomes are dominated by the phyla Proteobacteria and Firmicutes, which significantly differ between life stages in their distributions. Additionally, bacterial community structure significantly differed between larvae retrieved from strictly insectivorous warbler finches (Certhidea olivacea) and those parasitizing hosts with broader dietary preferences (ground and tree finches, Geospiza and Camarhynchus spp., respectively). Finally, we found no spatial effects on the larval microbiome, as larvae feeding on the same host (ground finches) harboured similar microbiomes across islands. Our results suggest that the microbiome of P. downsi changes during its development, according to dietary composition or nutritional needs, and is significantly affected by host-related factors during the larval stage. Unravelling the ecological significance of bacteria for this parasite will contribute to the development of novel, effective control strategies.


Assuntos
Tentilhões/parasitologia , Microbiota , Muscidae/microbiologia , Animais , Equador , Espécies Introduzidas , Ilhas , Larva/microbiologia , Parasitos/microbiologia , RNA Ribossômico 16S/genética
15.
Sci Rep ; 7(1): 6056, 2017 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-28729657

RESUMO

Parasitism is certainly one of the most important driving biotic factors of cyanobacterial blooms which remains largely understudied. Among these parasites, fungi from the phylum Chytridiomycota (i.e. chytrids) are the only eukaryotic microorganisms infecting cyanobacteria. Here, we address spatiotemporal dynamics of the cyanobacterial host Dolichospermum macrosporum (syn. Anabaena macrospora) and its associated chytrid parasites, Rhizosiphon spp., in an eutrophic lake by studying spatial (vertical, horizontal) and temporal (annual and inter-annual) variations. Our results show homogenous chytrid infection patterns along the water column and across sampling stations. However, the prevalence of infection presented drastic changes with time, at both intra- and inter-annual scales. In 2007, a maximum of 98% of vegetative cells were infected by R. crassum whereas this fungal species was not reported seven years later. In opposite, R. akinetum, a chytrid infecting only akinetes, increased its prevalence by 42% during the same period. High chytrid infection rate on the akinetes might have sizeable consequences on host recruitment (and proliferation) success from year to year, as supported by the recorded inter-annual host dynamics (affecting also the success of other chytrid parasites). The spatial homogenous chytrid infection on this cyanobacterium, coupled to both seasonal and inter-annual changes indicates that time, rather than space, controls such highly dynamic host-parasite relationships.


Assuntos
Cianobactérias/fisiologia , Interações Hospedeiro-Patógeno , Parasitos/microbiologia , Animais , França , Lagos/microbiologia , Análise Espaço-Temporal , Microbiologia da Água
16.
Mar Drugs ; 15(2)2017 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-28125065

RESUMO

Little is known about the role of chemotaxis in the location and attachment of chytrid zoospores to potential diatom hosts. Hypothesizing that environmental stress parameters affect parasite-host recognition, four chytrid-diatom tandem cultures (Chytridium sp./Navicula sp., Rhizophydium type I/Nitzschia sp., Rhizophydium type IIa/Rhizosolenia sp., Rhizophydium type IIb/Chaetoceros sp.) were used to test the chemotaxis of chytrid zoospores and the presence of potential defense molecules in a non-contact-co-culturing approach. As potential triggers in the chemotaxis experiments, standards of eight carbohydrates, six amino acids, five fatty acids, and three compounds known as compatible solutes were used in individual and mixed solutions, respectively. In all tested cases, the whole-cell extracts of the light-stressed (continuous light exposure combined with 6 h UV radiation) hosts attracted the highest numbers of zoospores (86%), followed by the combined carbohydrate standard solution (76%), while all other compounds acted as weak triggers only. The results of the phytochemical screening, using biomass and supernatant extracts of susceptible and resistant host-diatom cultures, indicated in most of the tested extracts the presence of polyunsaturated fatty acids, phenols, and aldehydes, whereas the bioactivity screenings showed that the zoospores of the chytrid parasites were only significantly affected by the ethanolic supernatant extract of the resistant hosts.


Assuntos
Organismos Aquáticos/fisiologia , Quitridiomicetos/fisiologia , Diatomáceas/fisiologia , Interações Hospedeiro-Parasita/fisiologia , Parasitos/microbiologia , Estresse Fisiológico/fisiologia , Animais , Organismos Aquáticos/microbiologia , Quimiotaxia/fisiologia , Diatomáceas/microbiologia , Fitoplâncton/microbiologia , Fitoplâncton/fisiologia
17.
Arch Med Res ; 48(8): 690-700, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29290328

RESUMO

The human gut is a highly complex ecosystem with an extensive microbial community, and the influence of the intestinal microbiota reaches the entire host organism. For example, the microbiome regulates fat storage, stimulates or renews epithelial cells, and influences the development and maturation of the brain and the immune system. Intestinal microbes can protect against infection by pathogenic bacteria, viruses, fungi and parasites. Hence, the maintenance of homeostasis between the gut microbiota and the rest of the body is crucial for health, with dysbiosis affecting disease. This review focuses on intestinal protozoa, especially those still representing a public health problem in Mexico, and their interactions with the microbiome and the host. The decrease in prevalence of intestinal helminthes in humans left a vacant ecological niche that was quickly occupied by protozoa. Although the mechanisms governing the interaction between intestinal microbiota and protozoa are poorly understood, it is known that the composition of the intestinal bacterial populations modulates the progression of protozoan infection and the outcome of parasitic disease. Most reports on the complex interactions between intestinal bacteria, protozoa and the immune system emphasize the protective role of the microbiota against protozoan infection. Insights into such protection may facilitate the manipulation of microbiota components to prevent and treat intestinal protozoan infections. Here we discuss recent findings about the immunoregulatory effect of intestinal microbiota with regards to intestinal colonization by protozoa, focusing on infections by Entamoeba histolytica, Blastocystis spp, Giardia duodenalis, Toxoplasma gondii and Cryptosporidium parvum. The possible consequences of the microbiota on parasitic, allergic and autoimmune disorders are also considered.


Assuntos
Disbiose/imunologia , Microbioma Gastrointestinal/imunologia , Parasitos/imunologia , Parasitos/microbiologia , Infecções por Protozoários/etiologia , Animais , Disbiose/microbiologia , Disbiose/parasitologia , Homeostase , Humanos , México , Infecções por Protozoários/imunologia , Infecções por Protozoários/microbiologia
18.
Genome Biol ; 17(1): 226, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27842572

RESUMO

BACKGROUND: Genomes are composed of long strings of nucleotide monomers (A, C, G and T) that are either scavenged from the organism's environment or built from metabolic precursors. The biosynthesis of each nucleotide differs in atomic requirements with different nucleotides requiring different quantities of nitrogen atoms. However, the impact of the relative availability of dietary nitrogen on genome composition and codon bias is poorly understood. RESULTS: Here we show that differential nitrogen availability, due to differences in environment and dietary inputs, is a major determinant of genome nucleotide composition and synonymous codon use in both bacterial and eukaryotic microorganisms. Specifically, low nitrogen availability species use nucleotides that require fewer nitrogen atoms to encode the same genes compared to high nitrogen availability species. Furthermore, we provide a novel selection-mutation framework for the evaluation of the impact of metabolism on gene sequence evolution and show that it is possible to predict the metabolic inputs of related organisms from an analysis of the raw nucleotide sequence of their genes. CONCLUSIONS: Taken together, these results reveal a previously hidden relationship between cellular metabolism and genome evolution and provide new insight into how genome sequence evolution can be influenced by adaptation to different diets and environments.


Assuntos
Ração Animal , Bactérias/genética , Composição de Bases , Códon , Células Eucarióticas , Genoma , Nitrogênio , Animais , Células Eucarióticas/metabolismo , Expressão Gênica , Interação Gene-Ambiente , Genes de RNAr , Interações Hospedeiro-Patógeno , Nitrogênio/metabolismo , Parasitos/classificação , Parasitos/microbiologia , Parasitos/fisiologia , Filogenia , Plantas/parasitologia , Biossíntese de Proteínas , RNA Mensageiro/genética , Seleção Genética
19.
J Exp Biol ; 219(Pt 19): 2984-2990, 2016 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-27707863

RESUMO

The success of maternally transmitted endosymbiotic bacteria, such as Wolbachia, is directly linked to their host reproduction but in direct conflict with other parasites that kill the host before it reaches reproductive maturity. Therefore, symbionts that have evolved strategies to increase their host's ability to evade lethal parasites may have high penetrance, while detrimental symbionts would be selected against, leading to lower penetrance or extinction from the host population. In a natural population of the parasitoid wasp Hyposoter horticola in the Åland Islands (Finland), the Wolbachia strain wHho persists at an intermediate prevalence (∼50%). Additionally, there is a negative correlation between the prevalence of Wolbachia and a hyperparasitoid wasp, Mesochorus cf. stigmaticus, in the landscape. Using a manipulative field experiment, we addressed the persistence of Wolbachia at this intermediate level, and tested whether the observed negative correlation could be due to Wolbachia inducing either susceptibility or resistance to parasitism. We show that infection with Wolbachia does not influence the ability of the wasp to parasitize its butterfly host, Melitaea cinxia, but that hyperparasitism of the wasp increases in the presence of wHho. Consequently, the symbiont is detrimental, and in order to persist in the host population, must also have a positive effect on fitness that outweighs the costly burden of susceptibility to widespread parasitism.


Assuntos
Parasitos/microbiologia , Vespas/microbiologia , Wolbachia/fisiologia , Animais , Borboletas/parasitologia , Resistência à Doença , Estônia , Finlândia , Interações Hospedeiro-Patógeno , Larva/parasitologia , Especificidade da Espécie , Virulência , Vespas/patogenicidade
20.
PLoS One ; 11(3): e0152077, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26999518

RESUMO

In addition to several emerging viruses, bats have been reported to host multiple bacteria but their zoonotic threats remain poorly understood, especially in Africa where the diversity of bats is important. Here, we investigated the presence and diversity of Bartonella and Rickettsia spp. in bats and their ectoparasites (Diptera and Siphonaptera) collected across South Africa and Swaziland. We collected 384 blood samples and 14 ectoparasites across 29 different bat species and found positive samples in four insectivorous and two frugivorous bat species, as well as their Nycteribiidae flies. Phylogenetic analyses revealed diverse Bartonella genotypes and one main group of Rickettsia, distinct from those previously reported in bats and their ectoparasites, and for some closely related to human pathogens. Our results suggest a differential pattern of host specificity depending on bat species. Bartonella spp. identified in bat flies and blood were identical supporting that bat flies may serve as vectors. Our results represent the first report of bat-borne Bartonella and Rickettsia spp. in these countries and highlight the potential role of bats as reservoirs of human bacterial pathogens.


Assuntos
Bartonella/fisiologia , Quirópteros/genética , Quirópteros/microbiologia , Comportamento Alimentar , Variação Genética , Parasitos/microbiologia , Rickettsia/fisiologia , Animais , DNA Bacteriano/análise , Essuatíni , Filogenia , África do Sul
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...