Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Physiol Biochem ; 208: 108514, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38490153

RESUMO

Positive effects of ultraviolet-C (UV-C) radiation on plants have been documented in previous literature with a focus on extending shelf life and reducing disease development. However, its effect on plant growth habits has been scarcely explored, especially in turfgrass where a compact shoot growth is a desirable trait. Seashore paspalum (Paspalum vaginatum) is a warm-season perennial turfgrass requiring low fertilizer and pesticide inputs. This project aimed to test the effects of different doses of UV-C radiation on growth and performance of seashore paspalum cv. Seastar. Here, we provide evidence of dose-dependent effects. Lower UV-C doses (6 s and 1 min daily) improved the performance of seashore paspalum, as manifested by higher tiller density, reduced clipping yields, increased chlorophyll level on selected dates as well as enhanced photosynthetic efficiency compared to control. Contrastingly, higher doses (6 min and 30 min daily) resulted in severe damage with 30-min treatment being lethal to seashore paspalum, causing marked declines in all measured parameters. This is the first time that UV-C-induced growth response was reported in turf. Conclusions drawn from this study would shed light into the effects of UV-C radiation on the growth and performance of seashore paspalum and offer exciting potential for the utilization of UV-C at non-lethal dosage in turfgrass management.


Assuntos
Paspalum , Paspalum/fisiologia
2.
Food Chem ; 361: 130073, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34029901

RESUMO

The present investigationwas carried out to determine the effect of germination on pasting, rheological, morphological properties of Kodo millet flour and in-vitroantioxidant characteristics of its phenolic and γ-amino butyric acid extracts. Rheological analysis depicted complex flour viscosity decreased with an improvement in shear intensity, symbolizing the shear-thinning action of flour upon germination. The frequency and temperature sweep demonstrated a decrease in visco-elasticity as a result of germination wherein, SEM revealed destruction in the continuous composite structure of starch which got entangled in dense protein matrix following germination. The in-vitroantioxidant activities such as total antioxidant capacity, DPPH*, FRAP, metal chelating ability and hydrogen peroxide scavenging activities of both the extracts increased significantly. There was a decrease in pasting properties and gelatinization behaviour whereas, visco-elastic solid behaviour changed to visco-elastic fluid. This research explores the potential of germinated Kodo millet flour for valuable bioactive compounds extraction and its utilization in product development.


Assuntos
Antioxidantes/metabolismo , Farinha/análise , Germinação , Paspalum/química , Compostos Fitoquímicos/isolamento & purificação , Extratos Vegetais/química , Elasticidade , Paspalum/fisiologia , Fenóis/análise , Reologia , Amido/química , Temperatura , Viscosidade
3.
Photosynth Res ; 149(1-2): 155-170, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33131005

RESUMO

It is hypothesized that plant submergence tolerance could be assessed from the decline of plant biomass due to submergence, as biomass integrates all eco-physiological processes leading to fitness. An alternative hypothesis stated that the consumption rate of carbohydrate is essential in differing tolerance to submergence. In the present study, the responses of biomass, biomass allocation, and carbohydrate content to simulated long-term winter submergence were assessed in four tolerant and four sensitive perennials. The four tolerant perennials occur in a newly established riparian ecosystem created by The Three Gorges Dam, China. They had 100% survival after 120 days' simulated submergence, and had full photosynthesis recovery after 30 days' re-aeration, and the photosynthetic rate was positively related to the growth during the recovery period. Tolerant perennials were characterized by higher carbohydrate levels, compared with the four sensitive perennials (0% survival) at the end of submergence. Additionally, by using a method which simulates posterior estimates, and bootstraps the confidence interval for the difference between strata means, it was found that the biomass response to post-hypoxia, rather than that to submergence, could be a reliable indicator to assess submergence tolerance. Interestingly, the differences of changes in carbohydrate content between tolerant and sensitive perennials during submergence were significant, which were distinct from the biomass response, supporting the hypothesis that tolerant perennials could sacrifice non-vital components of biomass to prioritize the saving of carbohydrates for later recovery. Our study provides some insight into the underlying mechanism(s) of perennials' tolerance to submergence in ecosystems such as temperate wetland and reservoir riparian.


Assuntos
Adaptação Fisiológica , Biomassa , Metabolismo dos Carboidratos , Inundações , Imersão/fisiopatologia , Fotossíntese/fisiologia , Estações do Ano , Agrimonia/fisiologia , Amaranthaceae/fisiologia , China , Chrysanthemum/fisiologia , Cynodon/fisiologia , Paspalum/fisiologia , Raízes de Plantas/crescimento & desenvolvimento , Brotos de Planta/crescimento & desenvolvimento , Plantaginaceae/fisiologia , Poaceae/fisiologia
4.
Sci Rep ; 10(1): 8319, 2020 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32433575

RESUMO

In systems alternating between sexual and asexual reproduction, sex increases under unfavorable environmental conditions. In plants producing sexual and asexual (apomictic) seeds, studies on the influence of environmental factors on sex are equivocal. We used Paspalum intermedium to study environmental effects on the expression of sexual and apomictic developments, and on resulting reproductive fitness variables. Flow cytometric and embryological analyses were performed to characterize ploidy and reproductive modes, and effects of local climatic conditions on sexual and apomictic ovule and seed frequencies were determined. Seed set and germination data were collected and used to estimate reproductive fitness. Frequencies of sexual and apomictic ovules and seeds were highly variable within and among populations. Apomictic development exhibited higher competitive ability but lower overall fitness. Frequencies of sexual reproduction in facultative apomictic plants increased at lower temperatures and wider mean diurnal temperature ranges. We identified a two-fold higher fitness advantage of sexuality and a Tug of War between factors intrinsic to apomixis and environmental stressors promoting sexuality which influence the distribution of sex in apomictic populations. This points toward a crucial role of local ecological conditions in promoting a reshuffling of genetic variability that may be shaping the adaptative landscape in apomictic P. intermedium plants.


Assuntos
Apomixia/genética , Paspalum/fisiologia , Evolução Biológica , Clima , Interação Gene-Ambiente , Genes Dominantes , Aptidão Genética , Variação Genética , Meiose/genética , Modelos Biológicos , Paspalum/genética , Poliploidia , Reprodução , Estações do Ano
5.
J Plant Physiol ; 248: 153154, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32224382

RESUMO

Osmotic stresses caused by reduced water availability or the accumulation of salts in the soil can be highly damaging to plants. The objective of this study was to investigate physiological responses and tolerance mechanisms of two turfgrass species (seashore paspalum and centipedegrass) with distinct differences in salinity tolerance exposed to osmotic and iso-osmotic salt stresses. Three turfgrass genotypes including seashore paspalums 'Seastar' and 'UGP113', and centipedegrass 'TifBlair' were grown in ½ strength Hoagland's solution with three different treatment conditions; control (no external addition), salt stress (-0.4 MPa by adding NaCl) and osmotic stress [-0.4 MPa by adding polyethylene glycol (PEG)]. Osmotic stress damages were more severe with greater reductions in turf quality, photochemical efficiency (Fv/Fm), relative water content (RWC) and leaf water potential (Ψw) compared to iso-osmotic salt stress in both seashore paspalum and centipedegrass. Greater osmotic adjustment (OA) with greater accumulation of metabolically inexpensive inorganic osmolytes (Na+) helped turfgrasses to lessen damages in salt stress compared to osmotic stress. However, such accumulation of Na+ resulted ion-toxicity and triggered some damages in terms of increased electrolyte leakage (EL) and reduced total protein in salt-sensitive centipedegrass. Seashore paspalum had better ion regulation and also maintained greater antioxidant enzyme activities compared to centipedegrass; therefore it was able to avoid ion-specific damages under salt stress. Differences in the utilization of specific solutes for osmotic adjustment and antioxidant metabolism are partially responsible for the differences in salt versus osmotic stress responses in these species; the regulation of these defense mechanisms requires further investigation.


Assuntos
Pressão Osmótica , Poaceae/fisiologia , Estresse Salino , Tolerância ao Sal , Genótipo , Paspalum/crescimento & desenvolvimento , Paspalum/fisiologia , Poaceae/genética
6.
Plant Physiol Biochem ; 151: 144-156, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32220787

RESUMO

Paspalum urvillei and Setaria parviflora are two plant species naturally adapted to iron-rich environments such as around iron mines wastes. The aim of our work was to characterize how these two species cope with these extreme conditions by comparing them with related model species, Oryza sativa and Setaria viridis, that appeared to be much less tolerant to Fe excess. Both Paspalum urvillei and Setaria parviflora were able to limit the amount of Fe accumulated within roots and shoots, compared to the less tolerant species. Perls/DAB staining of Fe in root cross sections indicated that Paspalum urvillei and Setaria parviflora responded through the build-up of the iron plaque (IP), suggesting a role of this structure in the limitation of Fe uptake. Synchrotron µXRF analyses showed the presence of phosphorus, calcium, silicon and sulfur on IP of Paspalum urvillei roots and µXANES analyses identified Fe oxyhydroxide (ferrihydrite) as the main Fe form. Once within roots, high concentrations of Fe were localized in the cell walls and vacuoles of Paspalum urvillei, Setaria parviflora and O. sativa whereas Setaria viridis accumulated Fe in ferritins. The Fe forms translocated to the shoots of Setaria parviflora were identified as tri-iron complexes with citrate and malate. In leaves, all species accumulated Fe in the vacuoles of bundle sheath cells and as ferritin complexes in plastids. Taken together, our results strongly suggest that Paspalum urvillei and Setaria parviflora set up mechanisms of Fe exclusion in roots and shoots to limit the toxicity induced by Fe excess.


Assuntos
Ferro/metabolismo , Paspalum/fisiologia , Setaria (Planta)/fisiologia , Oryza/fisiologia , Raízes de Plantas/metabolismo , Solo/química
7.
BMC Genomics ; 20(1): 487, 2019 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-31195966

RESUMO

BACKGROUND: Apomixis is considered an evolutionary deviation of the sexual reproductive pathway leading to the generation of clonal maternal progenies by seeds. Recent evidence from model and non-model species suggested that this trait could be modulated by epigenetic mechanisms involving small RNAs (sRNAs). Here we profiled floral sRNAs originated from apomictic and sexual Paspalum notatum genotypes in order to identify molecular pathways under epigenetic control that might be involved in the transition from sexuality to agamospermy. RESULTS: The mining of genes participating in sRNA-directed pathways from floral Paspalum transcriptomic resources showed these routes are functional during reproductive development, with several members differentially expressed in apomictic and sexual plants. Triplicate floral sRNA libraries derived from apomictic and a sexual genotypes were characterized by using high-throughput sequencing technology. EdgeR was apply to compare the number of sRNA reads between sexual and apomictic libraries that map over all Paspalum floral transcripts. A total of 1525 transcripts showed differential sRNA representation, including genes related to meiosis, plant hormone signaling, biomolecules transport, transcription control and cell cycle. Survey for miRNA precursors on transcriptome and genome references allowed the discovery of 124 entities, including 40 conserved and 8 novel ones. Fifty-six clusters were differentially represented in apomictic and sexual plants. All differentially expressed miRNAs were up-regulated in apomictic libraries but miR2275, which showed different family members with opposed representation. Examination of predicted miRNAs targets detected 374 potential candidates. Considering sRNA, miRNAs and target surveys together, 14 genes previously described as related with auxin metabolism, transport and signaling were detected, including AMINO ACID/AUXIN PERMEASE 15, IAA-AMIDO SYNTHETASE GH3-8, IAA30, miR160, miR167, miR164, miR319, ARF2, ARF8, ARF10, ARF12, AFB2, PROLIFERATING CELL FACTOR 6 and NITRATE TRANSPORTER 1.1. CONCLUSIONS: This work provides a comprehensive survey of the sRNA differential representation in flowers of sexual and apomictic Paspalum notatum plants. An integration of the small RNA profiling data presented here and previous transcriptomic information suggests that sRNA-mediated regulation of auxin pathways is pivotal in promoting apomixis. These results will underlie future functional characterization of the molecular components mediating the switch from sexuality to apomixis.


Assuntos
Apomixia/genética , Paspalum/genética , Paspalum/fisiologia , Pequeno RNA não Traduzido/genética , RNA-Seq , Flores/genética , MicroRNAs/genética , Transcriptoma/genética
8.
Sci Total Environ ; 667: 152-159, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-30826676

RESUMO

In eastern Australia the development of hypoxic blackwater/floodwater and its detrimental consequences are more common in summer than winter. This study examined the effect of temperature on the development of hypoxic conditions which was determined as biochemical oxygen demand (BOD) in floodwater when pasture grass (a source containing labile organic carbon) was inundated. Labile dissolved organic carbon (DOC) in blackwater is one of the main factors that contribute to the development of hypoxic conditions. Temperature plays a key role on the microbial mineralization of labile DOC and hence the development of hypoxic conditions. Prolonged flooding at different seasons (having different temperatures) was simulated in the laboratory by incubating fresh pasture grass cuttings with river water and soil at three different temperatures (20 °C, 27.5 °C and 35 °C) for 20 days. Although this study shows that elevated ambient temperatures can result in more rapid development of hypoxic conditions during the first week of flood peak, it is evident that blackwater formed at relatively moderate ambient temperatures (e.g. 20 °C) has a similar potential to deoxygenate the receiving water bodies, especially after one week's duration of flood peak.


Assuntos
Inundações , Paspalum/fisiologia , Anaerobiose , New South Wales , Temperatura
9.
Sci Total Environ ; 657: 1568-1577, 2019 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-30677922

RESUMO

A worth noticing pattern in current invasive biology is the clonal ability of many of the world's worst invasive plants. Selective placement of ramets (i.e. foraging behavior) can intensify ramet performance and allocation, and place more ramets in the more favorable microhabitats, which can maximum utilize resource and share risk in heterogeneous environments. Still little is known about whether invasive alien and native clonal plants differ in the selective placement patterns of ramets in invasive clonal plants or not. We used five congeneric pairs of naturally co-occurring invasive alien and native clonal plant species in China. In a glasshouse, we grew all species in pots under a homogeneous and three heterogeneous conditions (i.e. light, soil nutrients or water) subjected to resource-high or -low patches. All biomass parameters and number of ramets significantly increased in resource-high patches in all three types of heterogeneous environments. Interestingly, growth of invasive alien plants benefited significantly more from resource-high patches than native plants in all heterogeneous environments. Overall, invasive had higher biomass parameters per ramet than natives. Ramet parameters of invasive plants also benefited more from resource-low patches than natives. Three different selective placement patterns of ramets in resource-low patches were exhibited in invasive plants: ramet increasing shoot investment (above pattern), increasing root investment (below pattern) and increasing both investments (complete pattern) in the light, soil water and nutrient heterogeneity, respectively. Investment on less, larger ramet was the adaptive strategy of invasive plants in resource-poor patches. The results suggest that adaptively selective placement patterns of ramets promote a higher morphology plasticity and performance in invasive clonal plants over natives. When alien clonal plants spread new areas with light, soil nutrients or water heterogeneity, selective placement patterns of ramets might play an important role in plant performance and competitive superior by capitalizing more on additional resources.


Assuntos
Amaranthaceae/fisiologia , Araliaceae/fisiologia , Clonagem de Organismos , Espécies Introduzidas , Paspalum/fisiologia , Wedelia/fisiologia , Adaptação Fisiológica , Amaranthaceae/crescimento & desenvolvimento , Amaranthaceae/efeitos da radiação , Araliaceae/crescimento & desenvolvimento , Araliaceae/efeitos da radiação , Biomassa , China , Paspalum/crescimento & desenvolvimento , Paspalum/efeitos da radiação , Desenvolvimento Vegetal/efeitos da radiação , Solo/química , Água , Wedelia/crescimento & desenvolvimento , Wedelia/efeitos da radiação
10.
Ann Bot ; 121(6): 1183-1196, 2018 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-29415153

RESUMO

Background and Aims: Niche divergence between polyploids and their lower ploidy progenitors is one of the primary mechanisms fostering polyploid establishment and adaptive divergence. However, within-species chromosomal and reproductive variability have usually been neglected in community ecology and biodiversity analyses even though they have been recognized to play a role in the adaptive diversification of lineages. Methods: We used Paspalum intermedium, a grass species with diverging genetic systems (diploidy vs. autopolyploidy, allogamy vs. autogamy and sexuality vs. apomixis), to recognize the causality of biogeographic patterns, adaptation and ecological flexibility of cytotypes. Chromosome counts and flow cytometry were used to characterize within-species genetic systems diversity. Environmental niche modelling was used to evaluate intraspecific ecological attributes associated with environmental and climatic factors and to assess correlations among ploidy, reproductive modes and ecological conditions ruling species' population dynamics, range expansion, adaptation and evolutionary history. Key Results: Two dominant cytotypes non-randomly distributed along local and regional geographical scales displayed niche differentiation, a directional shift in niche optima and signs of disruptive selection on ploidy-related ecological aptitudes for the exploitation of environmental resources. Ecologically specialized allogamous sexual diploids were found in northern areas associated with higher temperature, humidity and productivity, while generalist autogamous apomictic tetraploids occurred in southern areas, occupying colder and less productive environments. Four localities with a documented shift in ploidy and four mixed populations in a zone of ecological transition revealed an uneven replacement between cytotypes. Conclusions: Polyploidy and contrasting reproductive traits between cytotypes have promoted shifts in niche optima, and increased ecological tolerance and niche divergence. Ecologically specialized diploids maintain cytotype stability in core areas by displacing tetraploids, while broader ecological preferences and a shift from sexuality to apomixis favoured polyploid colonization in peripheral areas where diploids are displaced, and fostered the ecological opportunity for autotetraploids supporting range expansion to open southern habitats.


Assuntos
Variação Biológica da População , Ecossistema , Poliploidia , Clima , Modelos Biológicos , Paspalum/genética , Paspalum/fisiologia , Reprodução
11.
Plant Biol (Stuttg) ; 19(6): 859-867, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28836322

RESUMO

Cadmium (Cd) is a hazardous environmental pollutant with high toxicity to plants, which has been detected in many wetlands. Clonal integration (resource translocation) between connected ramets of clonal plants can increase their tolerance to stress. We hypothesised that clonal integration facilitates spread of amphibious clonal plants from terrestrial to Cd-contaminated aquatic habitats. The spread of an amphibious grass Paspalum paspaloides was simulated by growing basal older ramets in uncontaminated soil connected (allowing integration) or not connected (preventing integration) to apical younger ramets of the same fragments in Cd-contaminated water. Cd contamination of apical ramets of P. paspaloides markedly decreased growth and photosynthetic capacity of the apical ramets without connection to the basal ramets, but did not decrease these properties with connection. Cd contamination did not affect growth of the basal ramets without connection to the apical ramets, but Cd contamination of 4 and 12 mg·l-1 significantly increased growth with connection. Consequently, clonal integration increased growth of the apical ramets, basal ramets and whole clones when the apical ramets were grown in Cd-contaminated water of 4 and 12 mg·l-1 . Cd was detected in the basal ramets with connection to the apical ramets, suggesting Cd could be translocated due to clonal integration. Clonal integration, most likely through translocation of photosynthates, can support P. paspaloides to spread from terrestrial to Cd-contaminated aquatic habitats. Amphibious clonal plants with a high ability for clonal integration are particularly useful for re-vegetation of degraded aquatic habitats caused by Cd contamination.


Assuntos
Cádmio/toxicidade , Paspalum/fisiologia , Áreas Alagadas , Organismos Aquáticos , Clorofila/metabolismo , Ecossistema , Poluição Ambiental , Paspalum/crescimento & desenvolvimento , Fotossíntese/efeitos dos fármacos , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/fisiologia
12.
Int J Mol Sci ; 18(6)2017 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-28635628

RESUMO

Seashore paspalum (Paspalum vaginatum) is among the most salt- and cadmium-tolerant warm-season perennial grass species widely used as turf or forage. The objective of this study was to select stable reference genes for quantitative real-time polymerase chain reaction (qRT-PCR) analysis of seashore paspalum in response to four abiotic stresses. The stability of 12 potential reference genes was evaluated by four programs (geNorm, NormFinder, BestKeeper, and RefFinder). U2AF combined with glyceraldehyde-3-phosphate dehydrogenase (GAPDH) showed stable expression in Cd-treated leaves and cold-treated roots. U2AF and FBOX were the most stable reference genes in Cd-treated roots and cold-treated leaves. In Polyethylene Glycol (PEG)- or salt-treated roots, the reference gene U2AF paired with either ACT or CYP were stable. SAND and CACS exhibited the most stability in salt-treated leaves, and combining UPL, PP2A, and EF1a was most suitable for PEG-treated leaves. The stability of U2AF and instability of UPL and TUB was validated by analyzing the expression levels of four target genes (MT2a, VP1, PIP1, and Cor413), and were shown to be capable of detecting subtle changes in expression levels of the target genes in seashore paspalum. This study demonstrated that FBOX, U2AF, and PP2A could be used in future molecular studies that aim to understand the mechanisms of abiotic stress tolerance in seashore paspalum.


Assuntos
Regulação da Expressão Gênica de Plantas , Paspalum/fisiologia , Proteínas de Plantas/genética , Estresse Fisiológico , Resposta ao Choque Frio , Genes de Plantas , Paspalum/genética , Folhas de Planta/genética , Folhas de Planta/fisiologia , Raízes de Plantas/genética , Raízes de Plantas/fisiologia
13.
J Plant Res ; 129(4): 697-710, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26965283

RESUMO

It is generally accepted that polyploids have downsized basic genomes rather than additive values with respect to their related diploids. Changes in genome size have been reported in correlation with several biological characteristics. About 75 % of around 350 species recognized for Paspalum (Poaceae) are polyploid and most polyploids are apomictic. Multiploid species are common with most of them bearing sexual diploid and apomictic tetraploid or other ploidy levels. DNA content in the embryo and the endosperm was measured by flow cytometry in a seed-by-seed analysis of 47 species including 77 different entities. The relative DNA content of the embryo informed the genome size of the accession while the embryo:endosperm ratio of DNA content revealed its reproductive mode. The genome sizes (2C-value) varied from 0.5 to 6.5 pg and for 29 species were measured for the first time. Flow cytometry provided new information on the reproductive mode for 12 species and one botanical variety and supplied new data for 10 species concerning cytotypes reported for the first time. There was no significant difference between the mean basic genome sizes (1Cx-values) of 32 sexual and 45 apomictic entities. Seventeen entities were diploid and 60 were polyploids with different degrees. There were no clear patterns of changes in 1Cx-values due to polyploidy or reproductive systems, and the existing variations are in concordance with subgeneric taxonomical grouping.


Assuntos
DNA de Plantas/genética , Diploide , Paspalum/classificação , Paspalum/fisiologia , Poliploidia , Cromossomos de Plantas/genética , Citometria de Fluxo , Paspalum/genética , Reprodução/genética , Especificidade da Espécie
14.
Plant Biol (Stuttg) ; 18 Suppl 1: 47-55, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25727344

RESUMO

Forage species common to the southern USA Piedmont region, Lolium arundinacea, Paspalum dilatatum, Cynodon dactylon and Trifolium repens, were established in a model pasture system to test the future climate change scenario of increasing ozone exposure in combination with varying rainfall amounts on community structure and nutritive quality. Forages were exposed to two levels of ozone [ambient (non-filtered; NF) and twice ambient (2×) concentrations] with three levels of precipitation (average or ±20% of average) in modified open-top chambers (OTCs) from June to September 2009. Dry matter (DM) yield did not differ over the growing season between forage types, except in primary growth grasses where DM yield was higher in 2× than NF treatment. Primary growth clover decreased in nutritive quality in 2× ozone because of increased concentrations of neutral detergent fibre (NDF), acid detergent fibre (ADF) and acid detergent lignin (ADL). Re-growth clover exhibited the largest decrease in nutritive quality, whereas grasses were not adversely affected in 2× ozone. Re-growth grasses responded positively to 2× ozone exposure, as indicated in increased relative food value (RFV) and percentage crude protein (CP) than NF-exposed re-growth grasses. Effects of precipitation were not significant over the growing season for primary or re-growth forage, except in primary growth grasses where DM yield was higher in chambers with above average (+20%) precipitation. Total canopy cover was significantly higher over the growing season in chambers receiving above average precipitation, but no significant effects were observed with ozone. Results indicate shifts in plant community structure and functioning related to mammalian herbivore herbivory in future climate change scenarios.


Assuntos
Cynodon/efeitos dos fármacos , Lolium/efeitos dos fármacos , Ozônio/efeitos adversos , Paspalum/efeitos dos fármacos , Trifolium/efeitos dos fármacos , Animais , Biomassa , Clima , Mudança Climática , Cynodon/fisiologia , Pradaria , Lolium/fisiologia , Valor Nutritivo , Paspalum/fisiologia , Chuva , Estações do Ano , Trifolium/fisiologia
15.
BMC Plant Biol ; 14: 297, 2014 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-25404464

RESUMO

BACKGROUND: In flowering plants, apomixis (asexual reproduction via seeds) is widely believed to result from failure of key regulators of the sexual female reproductive pathway. In the past few years, both differential display and RNA-seq comparative approaches involving reproductive organs of sexual plants and their apomictic counterparts have yielded extensive lists of candidate genes. Nevertheless, only a limited number of these genes have been functionally characterized, with few clues consequently available for understanding the molecular control of apomixis. We have previously identified several cDNA fragments with high similarity to genes involved in RNA biology and with differential amplification between sexual and apomictic Paspalum notatum plants. Here, we report the characterization of one of these candidates, namely, N69 encoding a protein of the S-adenosyl-L-methionine-dependent methyltransferases superfamily. The purpose of this work was to extend the N69 cDNA sequence and to characterize its expression at different developmental stages in both sexual and apomictic individuals. RESULTS: Molecular characterization of the N69 cDNA revealed homology with genes encoding proteins similar to yeast and mammalian trimethylguanosine synthase/PRIP-interacting proteins. These proteins play a dual role as ERK2-controlled transcriptional coactivators and mediators of sn(o)RNA and telomerase RNA cap trimethylation, and participate in mammals and yeast development. The N69-extended sequence was consequently renamed PnTgs1-like. Expression of PnTgs1-like during reproductive development was significantly higher in floral organs of sexual genotypes compared with apomicts. This difference was not detected in vegetative tissues. In addition, expression levels in reproductive tissues of several genotypes were negatively correlated with facultative apomixis rates. Moreover, in situ hybridization observations revealed that PnTgs1-like expression is relatively higher in ovules of sexual plants throughout development, from premeiosis to maturity. Tissues where differential expression is detected include nucellar cells, the site of aposporous initials differentiation in apomictic genotypes. CONCLUSIONS: Our results indicate that PnTgs1-like (formerly N69) encodes a trimethylguanosine synthase-like protein whose function in mammals and yeast is critical for development, including reproduction. Our findings also suggest a pivotal role for this candidate gene in nucellar cell fate, as its diminished expression is correlated with initiation of the apomictic pathway in plants.


Assuntos
Apomixia/genética , Regulação da Expressão Gênica de Plantas , Paspalum/enzimologia , Proteínas de Plantas/genética , Sequência de Bases , DNA Complementar/genética , Genótipo , Hibridização In Situ , Metionina/metabolismo , Metiltransferases/genética , Metiltransferases/metabolismo , Dados de Sequência Molecular , Óvulo Vegetal , Paspalum/genética , Paspalum/crescimento & desenvolvimento , Paspalum/fisiologia , Proteínas de Plantas/metabolismo , Sementes/genética , Análise de Sequência de DNA
16.
Environ Technol ; 35(17-20): 2314-21, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25145185

RESUMO

A nearly three-year microcosm experiment was conducted to test the effectiveness of capping red mud using acidic soil with an embedded layer of zeolite in sustaining the growth of a grass species. This 'sandwich-structured' design allowed self-sustaining growth of the plants under rain-fed conditions no matter whether the underlying red mud was neutralized or not. During the initial stage, the plants grew better when the red mud was not neutralized with MgCl2 probably due to pH rise in the root zone. Neutralization of red mud led to salinization and pH decrease in the root zone. However, the difference in plant growth performance between these scenarios became less remarkable over time due to gradual improvement of soil conditions in the neutralized scenarios. Continuous leaching of soluble salts and alkali by rainwater extended the root zone to the red mud layer. As a result of vegetative production, soil organic matter rapidly accumulated. This, combined with increase in pH and decrease in salinity, markedly facilitated microbial activities and consequently improved the supply of nutrients. This study provides abasis for field-scale experimental design that will have implications for effectively establishing vegetative cover in red mud disposal sites to control dust hazards.


Assuntos
Biodegradação Ambiental , Paspalum/fisiologia , Poluentes do Solo/química , Solo/química , Zeolitas/química , Concentração de Íons de Hidrogênio , Resíduos Industriais , Cloreto de Sódio
17.
Ann Bot ; 113(7): 1211-8, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24739230

RESUMO

BACKGROUND AND AIMS: The diploid cytotype of Paspalum rufum (Poaceae) reproduces sexually and is self-sterile; however, recurrent autopolyploidization through 2n + n fertilization and the ability for reproduction via apomixis have been documented in one genotype of the species. The objectives of this work were to analyse the variation in the functionality of apomixis components in diploid genotypes of P. rufum and to identify individuals with contrasting reproductive behaviours. METHODS: Samples of five individuals from each of three natural populations of P. rufum (designated R2, R5 and R6) were used. Seeds were obtained after open pollination, selfing, conspecific interploidy crosses and interspecific interploidy self-pollination induction. The reproductive behaviour of each plant was determined by using the flow cytometric seed screen (FCSS) method. Embryo sacs were cleared using a series of ethanol and methyl salicylate solutions and observed microscopically. KEY RESULTS: In open pollination, all genotypes formed seeds by sexual means and no evidence of apomeiotic reproduction was detected. However, in conspecific interploidy crosses and interspecific interploidy self-pollination induction, variations in the reproductive pathways were observed. While all plants from populations R2 and R6 formed seeds exclusively by sexual means, three genotypes from the R5 population developed seeds from both meiotic and aposporous embryo sacs, and one of them (R5#49) through the complete apomictic pathway (apospory + parthenogenesis + pseudogamy). Cytoembryological observations revealed the presence of both meiotic and aposporous embryo sacs in all the genotypes analysed, suggesting that parthenogenesis could be uncoupled from apospory in some genotypes. CONCLUSIONS: The results presented demonstrate the existence of variation in the functionality of apomixis components in natural diploid genotypes of P. rufum and have identified individuals with contrasting reproductive behaviours. Genotypes identified here can be crossed to generate segregating populations in order to study apomixis determinants at the diploid level. Moreover, analysis of their expression patterns, quantification of their transcript levels and an understanding of their regulation mechanisms could help to design new strategies for recreating apomixis in a diploid genome environment.


Assuntos
Apomixia , Paspalum/fisiologia , Sementes/fisiologia , Diploide , Expressão Gênica , Paspalum/genética , Polinização
18.
Genet Mol Res ; 13(1): 255-61, 2014 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-24535851

RESUMO

Cytological investigation revealed complete asynapsis during microsporogenesis in 2 wild accessions of Paspalum jesuiticum collected in distinct Brazilian regions. Both accessions were hexaploid (2n = 6x = 60) and 60 univalents could be counted at diakinesis. In this phase, the majority of meiocytes exhibited univalents with both chromatids. After alignment at the metaphase plate, the chromatids segregated to the poles. Only 1 meiotic division (equational) occurred, and after cytokinesis, a dyad with 2n microspores was formed. The genetic constitution of the 2n gametes was equivalent to that of first division restitution (FDR). Since recombination did not occur, 100% transmission of parental heterozygosity could be expected from the FDR 2n gametes. The meiotic behavior of both accessions suggested that they resulted from a recent natural hybridization event. The potential use of the 2n gametes in Paspalum breeding programs has been discussed.


Assuntos
Pareamento Cromossômico , Diploide , Paspalum/genética , Pólen/genética , Cromátides/genética , Citocinese , Gametogênese Vegetal , Paspalum/citologia , Paspalum/fisiologia , Pólen/citologia , Pólen/fisiologia , Recombinação Genética
19.
Genet Mol Res ; 12(4): 4948-57, 2013 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-24301755

RESUMO

Knowledge about the cytology and reproductive behavior of a species is indispensable for hybridization programs. This is especially true for species belonging to the genus Paspalum, among which apomixis and a wide range of ploidy levels are frequently found. Paspalum conspersum Schrad. is a robust and warm-season perennial bunchgrass native to South America. Previous studies have indicated that both tetraploid and hexaploid races exist in this species; however, only information related to tetraploids has been applied to another taxon. In this study, a cytological investigation in two Brazilian accessions collected in different regions revealed tetraploidy in the accession BRA-012823 (2n = 4x = 40), with chromosome pairing in bivalents and normal meiosis and tetrad formation, and pentaploidy (2n = 5x = 50) in the accession BRA-022748, which presented total asynapsis. In this latter accession, 50 univalents could be scored at diakinesis. After alignment at the metaphase plate, sister chromatids segregated to the poles. Only one meiotic division (equational) occurred, and after cytokinesis, 100% of the dyads that formed had 2n microspores. The meiotic behavior during microsporogenesis, which showed 10 delayed univalents to reach the metaphase plate, suggests that this accession is a recent natural hybrid constituted by a parental genome with 40 chromosomes and another with 10 chromosomes. The potential usage of these accessions in Paspalum breeding has been discussed.


Assuntos
Gametogênese Vegetal/fisiologia , Paspalum/fisiologia , Ploidias , Brasil , Cromátides , Cromossomos de Plantas , Meiose , Tetraploidia
20.
Ann Bot ; 112(5): 767-87, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23864004

RESUMO

BACKGROUND: Apomixis is an alternative route of plant reproduction that produces individuals genetically identical to the mother plant through seeds. Apomixis is desirable in agriculture, because it guarantees the perpetuation of superior genotypes (i.e. heterotic hybrid seeds) by self-seeding without loss of hybrid vigour. The Paspalum genus, an archetypal model system for mining apomixis gene(s), is composed of about 370 species that have extremely diverse reproductive systems, including self-incompatibility, self-fertility, full sexual reproduction, and facultative or obligate apomixis. Barriers to interspecific hybridization are relaxed in this genus, allowing the production of new hybrids from many different parental combinations. Paspalum is also tolerant to various parental genome contributions to the endosperm, allowing analyses of how sexually reproducing crop species might escape from dosage effects in the endosperm. SCOPE: In this article, the available literature characterizing apomixis in Paspalum spp. and its use in breeding is critically reviewed. In particular, a comparison is made across species of the structure and function of the genomic region controlling apomixis in order to identify a common core region shared by all apomictic Paspalum species and where apomixis genes are likely to be localized. Candidate genes are discussed, either as possible genetic determinants (including homologs to signal transduction and RNA methylation genes) or as downstream factors (such as cell-to-cell signalling and auxin response genes) depending, respectively, on their co-segregation with apomixis or less. Strategies to validate the role of candidate genes in apomictic process are also discussed, with special emphasis on plant transformation in natural apomictic species.


Assuntos
Apomixia/fisiologia , Paspalum/fisiologia , Poaceae/fisiologia , Apomixia/genética , Cruzamento , Mapeamento Cromossômico , Genes de Plantas/genética , Paspalum/genética , Poaceae/genética , Reprodução , Transdução de Sinais , Transformação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...