Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
J Immunol ; 207(3): 974-984, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34282000

RESUMO

K9CATH is the sole cathelicidin in canines (dogs) and exhibits broad antimicrobial activity against both Gram-positive and Gram-negative bacteria. K9CATH also modulates inflammatory responses and binds to LPS. These activities depend on the secondary structure and a net-positive charge of the peptide. Peptidylarginine deiminases (PAD) convert cationic peptidyl arginine to neutral citrulline. Thus, we hypothesized that citrullination is a biologically relevant modification of the peptide that would reduce the antibacterial and LPS-binding activities of K9CATH. Recombinant PAD2 and PAD4 citrullinated K9CATH to various extents and circular dichroism spectroscopy revealed that both native and citrullinated K9CATH exhibited similar α-helical secondary structures. Notably, citrullination of K9CATH reduced its bactericidal activity, abolished its ability to permeabilize the membrane of Gram-negative bacteria and reduced the hemolytic capacity. Electron microscopy showed that citrullinated K9CATH did not cause any morphological changes of Gram-negative bacteria, whereas the native peptide caused clear alterations of membrane integrity, concordant with a rapid bactericidal effect. Finally, citrullination of K9CATH impaired its capacity to inhibit LPS-mediated release of proinflammatory molecules from mouse and canine macrophages. In conclusion, citrullination attenuates the antibacterial and the LPS-binding properties of K9CATH, demonstrating the importance of a net positive charge for antibacterial lysis of bacteria and LPS-binding effects and suggests that citrullination is a means to regulate cathelicidin activities.


Assuntos
Antibacterianos/metabolismo , Anti-Inflamatórios/metabolismo , Peptídeos Catiônicos Antimicrobianos/metabolismo , Infecções por Escherichia coli/imunologia , Escherichia coli/fisiologia , Macrófagos/imunologia , Infecções por Pasteurella/metabolismo , Pasteurella multocida/fisiologia , Desiminases de Arginina em Proteínas/metabolismo , Animais , Antibacterianos/química , Anti-Inflamatórios/química , Peptídeos Catiônicos Antimicrobianos/química , Citrulinação , Cães , Imunidade Inata , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos/metabolismo , Camundongos , Ligação Proteica , Células RAW 264.7 , Catelicidinas
2.
Vet Res ; 52(1): 37, 2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33663572

RESUMO

Fowl cholera caused by Pasteurella multocida exerts a massive economic burden on the poultry industry. Lipopolysaccharide (LPS) is essential for the growth of P. multocida genotype L1 strains in chickens and specific truncations to the full length LPS structure can attenuate bacterial virulence. Here we further dissected the roles of the outer core transferase genes pcgD and hptE in bacterial resistance to duck serum, outer membrane permeability and virulence in ducks. Two P. multocida mutants, ΔpcgD and ΔhptE, were constructed, and silver staining confirmed that they all produced truncated LPS profiles. Inactivation of pcgD or hptE did not affect bacterial susceptibility to duck serum and outer membrane permeability but resulted in attenuated virulence in ducks to some extent. After high-dose inoculation, ΔpcgD showed remarkably reduced colonization levels in the blood and spleen but not in the lung and liver and caused decreased injuries in the spleen and liver compared with the wild-type strain. In contrast, the ΔhptE loads declined only in the blood, and ΔhptE infection caused decreased splenic lesions but also induced severe hepatic lesions. Furthermore, compared with the wild-type strain, ΔpcgD was significantly attenuated upon oral or intramuscular challenge, whereas ΔhptE exhibited reduced virulence only upon oral infection. Therefore, the pcgD deletion caused greater virulence attenuation in ducks, indicating the critical role of pcgD in P. multocida infection establishment and survival.


Assuntos
Proteínas de Bactérias/genética , Infecções por Pasteurella/veterinária , Pasteurella multocida/fisiologia , Pasteurella multocida/patogenicidade , Doenças das Aves Domésticas/microbiologia , Transferases/genética , Animais , Proteínas de Bactérias/metabolismo , Patos , Lipopolissacarídeos/metabolismo , Infecções por Pasteurella/microbiologia , Pasteurella multocida/genética , Transferases/metabolismo
3.
Avian Dis ; 64(4): 437-444, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33347552

RESUMO

Vaccine-related fowl cholera must be considered when flock mortality increases after use of a live Pasteurella multocida vaccine product. All registered live vaccines serotype as Heddleston 3,4; however, in some regions this is also the most common serotype of outbreak isolates in broiler breeders and turkeys. Therefore, serotyping may not be useful for diagnosing vaccine-related fowl cholera. This project sought to apply a vaccine-specific test to differentiate vaccine-related disease from naturally occurring outbreaks. Results indicate that vaccine strains were commonly isolated from broiler breeders exhibiting signs of fowl cholera postvaccination, but some of these isolates exhibited only serotype 4 antigenicity. The isolates' lipopolysaccharides, the target antigen for serotyping, contained compositional changes that may explain the varying serotype results and virulence of the commercial preparations. These results suggest that vaccine-related disease may be common in broiler breeders, and live commercial vaccine preparations need to be assessed for serotype and titer prior to use in order to reduce vaccine-related fowl cholera.


Assuntos
Vacinas Bacterianas/efeitos adversos , Galinhas , Infecções por Pasteurella/veterinária , Pasteurella multocida/fisiologia , Doenças das Aves Domésticas/epidemiologia , Animais , Georgia/epidemiologia , Infecções por Pasteurella/epidemiologia , Infecções por Pasteurella/microbiologia , Doenças das Aves Domésticas/microbiologia , Prevalência
4.
Vet Res ; 51(1): 140, 2020 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-33225994

RESUMO

Pasteurella (P.) multocida is a zoonotic pathogen, which is able to cause respiratory disorder in different hosts. In cattle, P. multocida is an important microorganism involved in the bovine respiratory disease complex (BRDC) with a huge economic impact. We applied air-liquid interface (ALI) cultures of well-differentiated bovine airway epithelial cells to analyze the interaction of P. multocida with its host target cells. The bacterial pathogen grew readily on the ALI cultures. Infection resulted in a substantial loss of ciliated cells. Nevertheless, the epithelial cell layer maintained its barrier function as indicated by the transepithelial electrical resistance and the inability of dextran to get from the apical to the basolateral compartment via the paracellular route. Analysis by confocal immunofluorescence microscopy confirmed the intactness of the epithelial cell layer though it was not as thick as the uninfected control cells. Finally, we chose the bacterial neuraminidase to show that our infection model is a sustainable tool to analyze virulence factors of P. multocida. Furthermore, we provide an explanation, why this microorganism usually is a commensal and becomes pathogenic only in combination with other factors such as co-infecting microorganisms.


Assuntos
Complexo Respiratório Bovino/microbiologia , Infecções por Pasteurella/veterinária , Pasteurella multocida/fisiologia , Sistema Respiratório/microbiologia , Animais , Bovinos , Células Epiteliais/microbiologia , Interações Hospedeiro-Patógeno , Infecções por Pasteurella/microbiologia
5.
Vet Microbiol ; 246: 108748, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32605748

RESUMO

The synergistic infection of bovine respiratory syncytial virus (BRSV) and Pasteurella multocida (PM) may predispose cattle to develop severe pneumonia. Previously, we reported that BRSV infection significantly decreased PM adherence to the upper respiratory epithelial cells. It may allow bacteria to invade into the lower respiratory tract and lead to severe pneumonia. To investigate whether BRSV infection regulates the cell surface adherence receptor on bovine trachea epithelial cells (bTECs), we performed proteomic and functional analyses. BRSV infection decreased the expression of intercellular adhesion molecule-1 (ICAM1) on bTECs. Inhibition and knockdown experiments using anti-ICAM1 antibody and siRNAs targeting ICAM1 indicated that PM adherence to bTECs was dependent on ICAM1 expression. These data suggest that under normal conditions bTECs may capture PM in the upper respiratory tract, while BRSV infection reverses this mechanism. The proposed gateway function of bTECs is disrupted by BRSV infection that may facilitate bacterial invasion into the lower respiratory tract and lead to secondary or more severe respiratory infection.


Assuntos
Aderência Bacteriana , Células Epiteliais/microbiologia , Células Epiteliais/virologia , Molécula 1 de Adesão Intercelular/genética , Pasteurella multocida/fisiologia , Vírus Sincicial Respiratório Bovino/fisiologia , Animais , Brônquios/citologia , Brônquios/microbiologia , Brônquios/virologia , Bovinos , Células Cultivadas , Regulação para Baixo , Pulmão/citologia , Pulmão/microbiologia , Pulmão/virologia , Interações Microbianas , Proteômica , Traqueia/citologia , Traqueia/microbiologia , Traqueia/virologia
6.
Genes Genomics ; 42(2): 235-243, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31853889

RESUMO

BACKGROUND: Although Pasteurella multocida is highly prevalent pathogen in animals and plays an important role in swine respiratory diseases, only a few studies on the use of bacteriophages specific to Pasteurella multocida disease have been reported. OBJECTIVE: The object of this study was to investigate the therapeutic effect of specific P. multocida bacteriophages and to identify genes related to bacteriophage signaling utilizing RNA microarrays in swine nasal turbinate cells. METHODS: Pas-MUP-1 phages were applied 24 h prior to P. multocida infection (1 × 107 cfu/ml) at several concentrations of bacterial infection. Cells were incubated to detect cytokines and 24 h to detect mucin production. And real-time quantitative PCR was performed to examine related genes expression. To determine the change of total gene expression based on P. multocida and Pas-MUP-1 treatment, we performed RNA sequencing experiments. RESULTS: We found that P. multocida-infected PT-K75 cells show increased gene expression of IL-1ß, IL-6, and Muc1 in a dose-dependent manner. Interestingly, these genes resulted in decreased expression in P. multocida pretreated with the P. multocida-specific Pas-MUP-1 bacteriophage. RNA sequencing analysis revealed that bacteriophage administration regulated genes associated with immune and inflammatory responses, and the regulated genes were dramatically concentrated in the cytokine/chemokine-based signaling pathways. Pas-MUP-1 treatment was shown to regulate P. multocida induced gene expression in the bacteria. CONCLUSION: These results suggest the specific bacteriophage has therapeutic potential as an alternative to antibiotic treatment to defend against P. multocida infection by altering inflammatory gene expression profiles.


Assuntos
Bacteriófagos/fisiologia , Pasteurella multocida/fisiologia , Pasteurella multocida/virologia , Suínos/microbiologia , Conchas Nasais/microbiologia , Animais , Células Cultivadas , Perfilação da Expressão Gênica , Ontologia Genética , Mediadores da Inflamação/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Mucina-1/genética , Mucina-1/metabolismo , RNA Mensageiro/metabolismo , Suínos/genética , Suínos/metabolismo , Conchas Nasais/metabolismo
7.
J Dairy Sci ; 102(12): 11359-11369, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31548072

RESUMO

The primary objective of this randomized controlled challenge study was to investigate the effect of ampicillin on ultrasonographic (US) lung consolidation after experimental challenge with Pasteurella multocida in preweaned dairy calves. The secondary objectives were to determine whether ampicillin affected respiratory score, gross consolidation, or the detection of P. multocida in lung tissue at postmortem exam (PME). Holstein bull calves (n = 39) were transported to the University of Wisconsin-Madison School of Veterinary Medicine isolation facility at the mean (±SD) age of 52 ± 6 d. After a 7-d acclimation period, 30 calves were inoculated intratracheally with 1010 cfu of ampicillin-sensitive P. multocida. Lung US and respiratory scoring were performed 2, 6, 12, and 24 h post-challenge, then US once daily and respiratory scoring twice daily until d 14. Calves were randomized to receive ampicillin [n = 17, treatment (TX), 6.6 mg/kg i.m. once daily for 3 d] or placebo [n = 11, control (CON), saline, equal volume, i.m. once daily for 3 d] when ≥1 cm2 of lung consolidation was observed and ≥6 h had elapsed since challenge. Lung lesions ≥1 cm2 were considered positive for consolidation. Calves were respiratory score positive if ≥2 in 2 or more categories based on the Wisconsin respiratory health score chart. Area under the curve (AUC) was calculated for US score and respiratory score as a proxy for time with consolidation and clinical respiratory disease, respectively. Gross lung lesions and pathogens were quantified following PME. At the time of first treatment, consolidation had developed in 28/30 calves (TX, n = 17; CON, n = 11) and 6% (1 out of 17) of TX and 9% (1 out of 11) of CON calves had a positive respiratory score. The TX calves had a significantly lower median (interquartile range given in parentheses) AUC for US score [TX: 23 (20, 29), CON: 47 (33, 53)], whereas mean AUC for respiratory score was not different between groups (TX: 93 ± 28, CON: 96 ± 17). On d 14, 70% (12 out of 17) of TX and 100% (11 out of 11) of CON calves had lung consolidation, and 24% (4 out of 17) of TX and 27% (3 out of 11) of CON calves had clinical respiratory disease. On PME, median consolidation was 10% (6, 15) for TX and 10% (2, 28) for CON calves. Lung cultures were positive for P. multocida in 77% (13 out of 17) of TX and 91% (10 out of 11) of CON calves. Lung health benefited from a 3-d ampicillin therapy, but benefits were short-lived. Treatment failures might be due to incomplete resolution of the initial lung infection. Future studies are needed to optimize TX strategies to improve long-term lung health.


Assuntos
Ampicilina/administração & dosagem , Antibacterianos/administração & dosagem , Doenças dos Bovinos/tratamento farmacológico , Pneumopatias/veterinária , Pasteurella multocida/fisiologia , Doenças Respiratórias/veterinária , Animais , Bovinos , Doenças dos Bovinos/microbiologia , Pulmão/microbiologia , Pneumopatias/tratamento farmacológico , Pneumopatias/microbiologia , Masculino , Distribuição Aleatória , Doenças Respiratórias/tratamento farmacológico , Doenças Respiratórias/microbiologia
8.
Arch Microbiol ; 201(6): 833-840, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30955056

RESUMO

Bacterial respiratory infections affecting pigs such as pneumonia, pleuropneumonia, and pleurisy, are a major health concern in the swine industry and are associated with important economic losses. This study aimed to investigate the antibacterial activities of essential oils against major swine respiratory pathogens with a view to developing a potential alternative to antibiotics. Their synergistic interactions with the bacteriocin nisin was also examined. Lastly, we assessed the in vitro biocompatibility of the most efficient essential oils using a pig tracheal epithelial cell line. Of the nine essential oils tested, those from cinnamon, thyme, and winter savory were the most active against Streptococcus suis, Actinobacillus pleuropneumoniae, Actinobacillus suis, Bordetella bronchiseptica, Haemophilus parasuis, and Pasteurella multocida, with minimum inhibitory concentrations and minimum bactericidal concentrations ranging from 0.01 to 0.156% (v/v). The main component found in cinnamon, thyme, and winter savory oils were cinnamaldehyde, thymol, and carvacrol, respectively. Treating pre-formed S. suis and A. pleuropneumoniae biofilms with thyme or winter savory oils significantly decreased biofilm viability. We also observed a synergistic growth inhibition of S. suis with mixtures of nisin and essential oils from thyme and winter savory. Concentrations of nisin and cinnamon, thyme and winter savory essential oils that were effective against bacterial pathogens had no effect on the viability of pig tracheal epithelial cells. The present study brought evidence that essential oils are potential antimicrobial agents against bacteria associated with porcine respiratory infections.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Infecções Bacterianas/veterinária , Óleos Voláteis/farmacologia , Óleos de Plantas/farmacologia , Doenças Respiratórias/veterinária , Doenças dos Suínos/microbiologia , Animais , Antibacterianos/química , Infecções Bacterianas/microbiologia , Fenômenos Fisiológicos Bacterianos , Biofilmes/efeitos dos fármacos , Cinnamomum zeylanicum/química , Cimenos , Testes de Sensibilidade Microbiana , Monoterpenos/farmacologia , Nisina/farmacologia , Óleos Voláteis/química , Pasteurella multocida/efeitos dos fármacos , Pasteurella multocida/fisiologia , Óleos de Plantas/química , Doenças Respiratórias/microbiologia , Satureja/química , Streptococcus suis/efeitos dos fármacos , Streptococcus suis/fisiologia , Suínos , Thymus (Planta)/química
9.
Comp Immunol Microbiol Infect Dis ; 62: 101-108, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30711039

RESUMO

Due to the emergence of virulent and antibiotic-resistant microbes, natural antimicrobials from herbal origins have been given more attention as an alternative therapy. This study provides an in vitro research framework to investigate the antibacterial activities of 5 herbal (marjoram, garlic, onion, cinnamon and black seed) oil extracts against 16 multidrug-resistant (MDR) and virulent P. multocida serogroup A isolates recovered from dead and clinically diseased rabbits. Pathogenicity of the screened isolates was further proven experimentally and was verified by PCR analyses of 5 randomly selected virulence genes encoding attachment and colonization proteins (ptfA, pfhA, and omp87), sialidases (nanB) and dermonecrotoxin (toxA). A total of 12 P. multocida isolates were highly pathogenic with the possession of all examined virulence genes, while the other 4 isolates were of lower pathogenicity with expression of the target genes except toxA. In vitro anti-P. multocida activities of the 5 extracts and their synergism rates with 4 antibiotic drugs revealed that marjoram and cinnamon extracts had the highest antibacterial activities and the highest synergism rates against the screened isolates. Pasteurella multocida virulence gene expression profiles were assessed via real-time quantitative reverse transcription PCR (qRT-PCR) in response to marjoram extract. The quantitative analyses showed less than five-fold reduction in the targeted virulence genes expression in presence of marjoram extract compared with the control. The findings from this study document a novel molecular inhibitory activity of marjoram against P. multocida multiple virulence genes and provide a proof of concept for its implementation as an alternative candidate for the treatment of pasteurellosis in farm animals in future.


Assuntos
Anti-Infecciosos/farmacologia , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Pasteurella multocida/efeitos dos fármacos , Pasteurella multocida/fisiologia , Extratos Vegetais/farmacologia , Traqueófitas/química , Doenças dos Animais/tratamento farmacológico , Doenças dos Animais/microbiologia , Animais , Anti-Infecciosos/química , Aderência Bacteriana/efeitos dos fármacos , Aderência Bacteriana/genética , Toxinas Bacterianas/genética , Relação Dose-Resposta a Droga , Testes de Sensibilidade Microbiana , Infecções por Pasteurella/veterinária , Extratos Vegetais/química
10.
BMC Genomics ; 20(1): 63, 2019 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-30658579

RESUMO

BACKGROUND: Pasteurella multocida (P. multocida) is a widespread opportunistic pathogen that infects human and various animals. Genomic Islands (GIs) are one of the most important mobile components that quickly help bacteria acquire large fragments of foreign genes. However, the effects of GIs on P. multocida are unknown in the evolution of bacterial populations. RESULTS: Ten avian-sourced P. multocida obtained through high-throughput sequencing together with 104 publicly available P. multocida genomes were used to analyse their population genetics, thus constructed a pan-genome containing 3948 protein-coding genes. Through the pan-genome, the open evolutionary pattern of P. multocida was revealed, and the functional components of 944 core genes, 2439 accessory genes and 565 unique genes were analysed. In addition, a total of 280 GIs were predicted in all strains. Combined with the pan-genome of P. multocida, the GIs accounted for 5.8% of the core genes in the pan-genome, mainly related to functional metabolic activities; the accessory genes accounted for 42.3%, mainly for the enrichment of adaptive genes; and the unique genes accounted for 35.4%, containing some defence mechanism-related genes. CONCLUSIONS: The effects of GIs on the population genetics of P. multocida evolution and adaptation to the environment are reflected by the proportion and function of the pan-genome acquired from GIs, and the large quantities of GI data will aid in additional population genetics studies.


Assuntos
Genoma Bacteriano/genética , Ilhas Genômicas/genética , Pasteurella multocida/genética , Simbiose/genética , Animais , Genes Bacterianos/genética , Genética Populacional , Genômica/métodos , Humanos , Infecções por Pasteurella/microbiologia , Pasteurella multocida/classificação , Pasteurella multocida/fisiologia , Filogenia , Especificidade da Espécie
11.
Microb Pathog ; 127: 257-266, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30550841

RESUMO

Pasteurella multocida causes respiratory infectious diseases in a multitude of birds and mammals. A number of virulence-associated genes were reported across different strains of P. multocida, including those involved in the iron transport and metabolism. Comparative iron-associated genes of P. multocida among different animal hosts towards their interaction networks have not been fully revealed. Therefore, this study aimed to identify the iron-associated genes from core- and pan-genomes of fourteen P. multocida strains and to construct iron-associated protein interaction networks using genome-scale network analysis which might be associated with the virulence. Results showed that these fourteen strains had 1587 genes in the core-genome and 3400 genes constituting their pan-genome. Out of these, 2651 genes associated with iron transport and metabolism were selected to construct the protein interaction networks and 361 genes were incorporated into the iron-associated protein interaction network (iPIN) consisting of nine different iron-associated functional modules. After comparing with the virulence factor database (VFDB), 21 virulence-associated proteins were determined and 11 of these belonged to the heme biosynthesis module. From this study, the core heme biosynthesis module and the core outer membrane hemoglobin receptor HgbA were proposed as candidate targets to design novel antibiotics and vaccines for preventing pasteurellosis across the serotypes or animal hosts for enhanced precision agriculture to ensure sustainability in food security.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Ferro/metabolismo , Pasteurella multocida/genética , Mapas de Interação de Proteínas , Transporte Biológico , Redes e Vias Metabólicas/genética , Pasteurella multocida/fisiologia , Ligação Proteica , Virulência
12.
Vet Microbiol ; 220: 33-38, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29885798

RESUMO

Primary infection with bovine respiratory syncytial virus (BRSV) predisposes cattle to secondary infection with bacteria that cause bovine respiratory disease complex (BRDC). However, the interaction between BRSV and bacteria is unclear. This in vitro study examined the adherence of Pasteurella multocida (PM) to BRSV-infected cells was assessed in colony forming unit assays, by flow cytometry analysis, and by indirect immunofluorescence analysis (IFA) of epithelial cells (A549, HEp-2, and MDBK). An in vitro model based on infection of BRSV-infected epithelial cells revealed that PM adherence to BRSV-infected cells was 2- to 8-fold higher than uninfected cells. This was confirmed by flow cytometry analysis and IFA. Epithelial cell expression of mRNA encoding cytokines and chemokines increased after exposure to PM, but increased further after co-infection with BRSV and PM. BRSV-mediated adherence of PM to epithelial cells may underlie the serious symptoms of BRDC.


Assuntos
Complexo Respiratório Bovino/virologia , Células Epiteliais/microbiologia , Interações Microbianas , Pasteurella multocida/fisiologia , Infecções por Vírus Respiratório Sincicial/veterinária , Células A549 , Animais , Sítios de Ligação Microbiológicos , Bovinos , Doenças dos Bovinos/microbiologia , Doenças dos Bovinos/virologia , Células Epiteliais/virologia , Citometria de Fluxo , Técnica Indireta de Fluorescência para Anticorpo , Humanos , Infecções por Vírus Respiratório Sincicial/complicações , Infecções por Vírus Respiratório Sincicial/virologia , Vírus Sincicial Respiratório Bovino/isolamento & purificação , Vírus Sincicial Respiratório Bovino/fisiologia , Sistema Respiratório/citologia , Sistema Respiratório/microbiologia
13.
Lett Appl Microbiol ; 67(3): 244-253, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29808940

RESUMO

Currently used alum precipitated and oil adjuvant vaccines against HS caused by Pasteurella multocida B:2, have side effects and short-lived immunity, leading to regular catastrophic outbreaks in bovines in Asian subcontinent. The need for the development of an improved vaccine with longer immunity and the ability to differentiate between vaccinated and infected is essential. Pasteurella phage isolated in present study belongs to family Siphoviridae. PMP-GAD-IND phage exhibited lytic activity against vaccine strain (P52) as well as several field strains of P. multocida (B:2), and fowl cholera agent (P. multocida A:1).The phage has a double stranded DNA (dsDNA) with a genome of 46 335 bp. The complete genome sequence of the Pasteurella multocida phage has been deposited in Gen Bank with accession no: KY203335. PMP-GAD-IND being a lytic phage with broad activity range has a potential to be used in therapy against multidrug resistant P. multocida infections. SIGNIFICANCE AND IMPACT OF THE STUDY: The present work is a part of research for the development of an improved phage lysate marker vaccine and a companion DIVA assay against haemorhagic septicaemia. This study describes the isolation and genome analysis of PMP-GAD-IND a lytic Pasteurella multocida bacteriophage.


Assuntos
Bacteriófagos/isolamento & purificação , Doenças dos Bovinos/microbiologia , Genoma Viral , Septicemia Hemorrágica/veterinária , Pasteurella multocida/virologia , Siphoviridae/isolamento & purificação , Animais , Bacteriófagos/classificação , Bacteriófagos/genética , Bacteriófagos/fisiologia , Bovinos , Tamanho do Genoma , Septicemia Hemorrágica/microbiologia , Pasteurella multocida/isolamento & purificação , Pasteurella multocida/fisiologia , Siphoviridae/classificação , Siphoviridae/genética , Siphoviridae/fisiologia
14.
Vet Microbiol ; 216: 218-222, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29519520

RESUMO

Mannheimia haemolytica and Pasteurella multocida are two bacterial species implicated in the bovine respiratory disease complex (BRDC) that is costly to the beef and dairy cattle industries. Both bacterial species are thought to occupy a similar niche as commensals in the upper respiratory tract. Many bacteria are thought to exist as biofilms in their hosts, perhaps in close proximity with other bacterial species. We previously showed that M. haemolytica forms biofilm on bovine respiratory epithelial cells in vitro. We are interested in the possibility that M. haemolytica and P. multocida co-exist as biofilms in the upper respiratory tract of cattle. In this study, we begin to explore this possibility by assessing the ability of M. haemolytica and P. multocida to form a biofilm on bovine respiratory epithelial cells in vitro. We found that M. haemolytica and P. multocida are separately able to form biofilms on bovine respiratory epithelial cells, but mutually inhibit one another when incubated together as a biofilm. Both the biofilm matrix (crystal violet stain) and bacterial numbers (CFU and PCR) were reduced when M. haemolytica and P. multocida were incubated together on fixed epithelial cells. This inhibition does not appear to result from a soluble factor, as neither conditioned medium nor separation of the two species by a transwell filter membrane reproduced the effect. We infer that when located in close proximity on the epithelial surface, M. haemolytica and P. multocida mutually regulate one another.


Assuntos
Antibiose , Biofilmes/crescimento & desenvolvimento , Células Epiteliais/microbiologia , Mannheimia haemolytica/fisiologia , Pasteurella multocida/fisiologia , Animais , Brônquios/citologia , Brônquios/microbiologia , Bovinos
15.
Immunobiology ; 223(1): 142-150, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29030011

RESUMO

Dendritic cells (DC) are antigen-presenting cells that connect the innate and adaptive immune system to ensure an efficient immune response during the course of an infection. Recently, DC came into the spotlight as a potential source of osteoclast progenitors, especially under (auto)inflammatory conditions. The virulence factor Pasteurella multocida Toxin (PMT) causes atrophic rhinitis in pigs, a disease characterised by a severe reduction of nasal bone. Our group and others have shown the potential of PMT in mediating differentiation of monocytes/macrophages into bone-resorbing osteoclasts. However, whether DC are target cells for PMT-induced osteoclast differentiation, is currently unknown. Using different murine DC model systems, we investigated the ability of PMT to induce osteoclast formation in DC. Similar to our previous observations in macrophages, PMT was endocytosed by DC and triggered intracellular deamidation of residue Q209 of the Gq alpha subunit. Still, PMT failed to induce prolonged secretion of osteoclastogenic cytokines and osteoclast formation; instead PMT-treated DC secreted interleukin-12 (IL-12), an inhibitor of osteoclastogenesis. In this study, we show that in comparison to bone marrow-derived macrophages, PMT induces maturation of DC through increased expression of the activation markers CD80 and CD86. As maturation of DC prevents their transdifferentiation into osteoclasts, we hypothesize that PMT, a potent osteoclastogenic toxin, fails to trigger osteoclastogenesis in DC due to its effect on DC maturation and IL-12 production.


Assuntos
Toxinas Bacterianas/metabolismo , Células Dendríticas/fisiologia , Macrófagos/fisiologia , Osteoclastos/fisiologia , Infecções por Pasteurella/imunologia , Pasteurella multocida/fisiologia , Rinite Atrófica/imunologia , Animais , Apresentação de Antígeno , Reabsorção Óssea , Diferenciação Celular , Células Cultivadas , Feminino , Interleucina-12/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Osteogênese , Pasteurella multocida/patogenicidade , Rinite Atrófica/microbiologia , Suínos
16.
BMC Vet Res ; 13(1): 186, 2017 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-28629460

RESUMO

BACKGROUND: Pasteurella multocida B:2 causes bovine haemorrhagic septicaemia (HS), leading to rapid fatalities in cattle and buffaloes. An attenuated derivative of P. multocida B:2 GDH7, was previously constructed through mutation of the gdhA gene and proved to be an effective live attenuated vaccine for HS. Currently, only two potential live attenuated vaccine candidates for HS are being reported; P. multocida B:2 GDH7 and P. multocida B:2 JRMT12. This study primarily aims to investigate the potential of P. multocida B:2 GDH7 strain as a delivery vehicle for DNA vaccine for future multivalent applications. RESULTS: An investigation on the adherence, invasion and intracellular survival of bacterial strains within the bovine aortic endothelial cell line (BAEC) were carried out. The potential vaccine strain, P. multocida B:2 GDH7, was significantly better (p ≤ 0.05) at adhering to and invading BAEC compared to its parent strain and to P. multocida B:2 JRMT12 and survived intracellularly 7 h post treatment, with a steady decline over time. A dual reporter plasmid, pSRGM, which enabled tracking of bacterial movement from the extracellular environment into the intracellular compartment of the mammalian cells, was subsequently transformed into P. multocida B:2 GDH7. Intracellular trafficking of the vaccine strain, P. multocida B:2 GDH7 was subsequently visualized by tracking the reporter proteins via confocal laser scanning microscopy (CLSM). CONCLUSIONS: The ability of P. multocida B:2 GDH7 to model bactofection represents a possibility for this vaccine strain to be used as a delivery vehicle for DNA vaccine for future multivalent protection in cattle and buffaloes.


Assuntos
Vacinas Bacterianas , Doenças dos Bovinos/prevenção & controle , Endotélio Vascular/microbiologia , Septicemia Hemorrágica/veterinária , Pasteurella multocida/fisiologia , Animais , Aorta/citologia , Aorta/microbiologia , Aderência Bacteriana , Vacinas Bacterianas/genética , Vacinas Bacterianas/toxicidade , Bovinos , Doenças dos Bovinos/microbiologia , Células Cultivadas , Septicemia Hemorrágica/prevenção & controle , Pasteurella multocida/genética , Vacinas Atenuadas/genética , Vacinas Atenuadas/toxicidade , Vacinas de DNA/toxicidade
17.
Res Vet Sci ; 114: 273-280, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28554143

RESUMO

We aimed to compare Toll-like receptors (TLR) and cytokines expression in local Piau breed and a Commercial line (Landrace×Large White crossbred) pigs in response to vaccination against Pasteurella multocida type D. Seronegative gilts for Pasteurella multocida type D and Mycoplasma hyopneumoniae were used, from which peripheral blood mononuclear cells (PBMC) were collected in four time points (T0, T1, T2 and T3; before and after each vaccination dose). For bronchoalveolar lavage fluid cells (BALF), we set groups of vaccinated and unvaccinated animals for both genetic groups. Gene expression was evaluated on PBMC and BALF. In PBMC, when we analyzed time points within breeds, significant differences in expression for TLRs and cytokines, except TGFß, were observed for Commercial animals. For the Piau pigs, only TGFß showed differential expression. Comparing the expression among genetic groups, the Commercial pigs showed higher expression for TLRs after first vaccination dose, while for IL2, IL6, IL12 and IL13, higher expression was also observed in T3 and IL8 and IL10, in T1 and T3. Still comparing the breeds, the crossbred animals showed higher expression for TNFα in T1 and T2, while for TGFß only in T2. For gene expression in BALF, vaccinated Commercial pigs showed higher expression of TLR6, TLR10, IL6, IL8, IL10, TNFα and TGFß genes than vaccinated Piau pigs. The Commercial line pigs showed higher sensitivity to vaccination, while in local Piau breed lower responsiveness, which may partly explain genetic variability in immune response and will let us better understand the tolerance/susceptibility for pasteurellosis.


Assuntos
Citocinas/genética , Expressão Gênica , Infecções por Pasteurella/veterinária , Rinite Atrófica/veterinária , Doenças dos Suínos/imunologia , Receptores Toll-Like/genética , Vacinação/veterinária , Animais , Citocinas/metabolismo , Feminino , Leucócitos Mononucleares/imunologia , Infecções por Pasteurella/imunologia , Infecções por Pasteurella/prevenção & controle , Pasteurella multocida/fisiologia , Rinite Atrófica/imunologia , Rinite Atrófica/prevenção & controle , Sus scrofa/genética , Suínos , Doenças dos Suínos/prevenção & controle , Receptores Toll-Like/metabolismo
18.
Biofouling ; 33(1): 14-23, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27892689

RESUMO

Pasteurella multocida (Pm) is the causative agent of atrophic rhinitis in swine. This study aimed to discover biofilm inhibitors against swine Pm to counteract antibiotic resistance and decrease virulence. The virulence factor outer membrane protein A (OmpA) was targeted. A library of drugs approved by the Food and Drug Administration (FDA) was used to perform virtual screening against PmOmpA. The top-scoring compounds had no effect on the growth of Pm serotype A or D. Mycophenolate mofetil showed the highest efficacy in inhibiting biofilm formation by Pm serotype A, with an IC50 of 7.3 nM. For Pm serotype D, indocyanine green showed the highest effect at an IC50 of 11.7 nM. Nevertheless, these compounds had no effect on an established biofilm of Pm. This study offers an alternative way to prevent biofilm formation by Pm that could also be applied to other pathogens.


Assuntos
Proteínas da Membrana Bacteriana Externa/antagonistas & inibidores , Biofilmes/efeitos dos fármacos , Verde de Indocianina/farmacologia , Ácido Micofenólico/farmacologia , Infecções por Pasteurella/microbiologia , Pasteurella multocida/efeitos dos fármacos , Rinite Atrófica/microbiologia , Sequência de Aminoácidos , Animais , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/genética , Biofilmes/crescimento & desenvolvimento , Modelos Biológicos , Modelos Moleculares , Infecções por Pasteurella/tratamento farmacológico , Pasteurella multocida/metabolismo , Pasteurella multocida/patogenicidade , Pasteurella multocida/fisiologia , Ligação Proteica , Rinite Atrófica/tratamento farmacológico , Suínos , Virulência , Fatores de Virulência/metabolismo
19.
Avian Dis ; 61(4): 491-502, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29337619

RESUMO

Fowl cholera resulting from infection with Pasteurella multocida causes huge economic losses in the poultry industry. Necrotic hepatitis is reported to be a significant lesion associated with fowl cholera in chickens. Clarifying the underlying molecular mechanism of hepatic injury caused by P. multocida infection is needed to develop new strategies to control fowl cholera. Pasteurella multocida Q (the standard reference strain) and P. multocida 1G1 (a clinical strain) were used to infect healthy laying hens. Clinical signs were observed and gross lesions in livers were observed postmortem. Histologic lesions and the localization and expression of protein molecules associated with necroptosis, apoptosis, and inflammation in hepatic tissues were examined by hematoxylin and eosin staining and immunohistochemistry. Western blot analysis was used to determine the expression of liver injury-related genes. Necroptotic molecules such as RIPK1 (receptor interaction protein kinases 1), RIPK3 (receptor interaction protein kinases 3), and MLKL (mixed lineage kinase domain-like protein) were observed by immunostaining primarily in the cytoplasm of hepatocytes within or around necrotic foci, and inflammatory mediators HMGB1 (high-mobility group box 1) and IL-6 (interleukin-6) were found in the cytoplasm of heterophils, monocytes/macrophages, and hepatic sinusoids. In addition, MMP9 (matrix metalloproteinase 9) and TIMP1 (tissue inhibitor of metalloproteinase 1) were observed in hepatic parenchymal cells, inflammatory cells, and interstitial spaces, whereas the apoptotic effector molecule caspase-3 (cysteine-containing aspartic proteolytic enzymes 3) was mainly found in hepatocytes. The expression of RIPK1, RIPK3, and MLKL was significantly higher in the infected chickens than in the controls. HMGB1 and IL-6 protein levels were also increased in infected chickens relative to those in controls. Both MMP9 and TIMP1 were highly expressed in infected chickens. In addition, caspase-3 protein levels were significantly elevated in infected chickens. Necroptosis, apoptosis, and inflammation played a significant role in hepatic injury caused by P. multocida.


Assuntos
Apoptose , Galinhas , Inflamação/veterinária , Necrose/veterinária , Infecções por Pasteurella/veterinária , Pasteurella multocida/fisiologia , Doenças das Aves Domésticas/imunologia , Animais , Proteínas Aviárias/genética , Proteínas Aviárias/imunologia , Inflamação/genética , Inflamação/imunologia , Inflamação/fisiopatologia , Fígado/fisiopatologia , Necrose/genética , Necrose/fisiopatologia , Infecções por Pasteurella/genética , Infecções por Pasteurella/imunologia , Infecções por Pasteurella/fisiopatologia , Doenças das Aves Domésticas/genética , Doenças das Aves Domésticas/fisiopatologia
20.
Acta Vet Scand ; 58(1): 71, 2016 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-27716292

RESUMO

BACKGROUND: Respiratory illness is traditionally regarded as the disease of the growing pig, and has historically mainly been associated to bacterial infections with focus on Mycoplasma hyopneumoniae and Actinobacillus pleuropneumoniae. These bacteria still are of great importance, but continuously increasing herd sizes have complicated the scenario and the influence of secondary invaders may have been increased. The aim of this study was to evaluate the presence of A. pleuropneumoniae and M. hyopneumoniae, as well as that of the secondary invaders Pasteurella multocida and Streptococcus suis by serology in four pig herds (A-D) using age segregated rearing systems with high incidences of pleuritic lesions at slaughter. RESULTS: Pleuritic lesions registered at slaughter ranged from 20.5 to 33.1 % in the four herds. In herd A, the levels of serum antibodies to A. pleuropneumoniae exceeded A450 > 1.5, but not to any other microbe searched for. The seroconversion took place early during the fattening period. Similar levels of serum antibodies to A. pleuropneumoniae were also recorded in herd B, with a subsequent increase in levels of antibodies to P. multocida. Pigs seroconverted to both agents during the early phase of the fattening period. In herd C, pigs seroconverted to P. multocida during the early phase of the fattening period and thereafter to A. pleuropneumoniae. In herd D, the levels of antibodies to P. multocida exceeded A450 > 1.0 in absence (A450 < 0.5) of antibodies to A. pleuropneumoniae. The levels of serum antibodies to M. hyopneumoniae and to S. suis remained below A450 < 1.0 in all four herds. Pigs seroconverted to M. hyopneumoniae late during the rearing period (herd B-D), or not at all (herd A). CONCLUSION: Different serological patterns were found in the four herds with high levels of serum antibodies to A. pleuropneumoniae and P. multocida, either alone or in combination with each other. Seroconversion to M. hyopneumoniae late during the rearing period or not at all, confirmed the positive effect of age segregated rearing in preventing or delaying infections with M. hyopneumoniae. The results obtained highlight the necessity of diagnostic investigations to define the true disease pattern in herds with a high incidence of pleuritic lesions.


Assuntos
Anticorpos Antibacterianos/sangue , Infecções Bacterianas/veterinária , Pleurisia/veterinária , Doenças dos Suínos/diagnóstico , Doenças dos Suínos/microbiologia , Actinobacillus pleuropneumoniae/fisiologia , Criação de Animais Domésticos , Animais , Infecções Bacterianas/sangue , Infecções Bacterianas/microbiologia , Infecções Bacterianas/patologia , Mycoplasma hyopneumoniae/fisiologia , Pasteurella multocida/fisiologia , Pleurisia/sangue , Pleurisia/microbiologia , Pleurisia/patologia , Soroconversão , Streptococcus suis/fisiologia , Suínos , Doenças dos Suínos/sangue , Doenças dos Suínos/patologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...