Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Aquat Toxicol ; 234: 105797, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33721721

RESUMO

In response to accidental oil spills at sea, chemical oil dispersants are utilized to limit negative impacts on nearby littoral zones. However, current evidence suggests that such dispersants may be toxic to aquatic organisms. Blue mussels (Mytilus edulis) and giant scallops (Placopecten magellanicus) were exposed to different environmentally relevant concentrations of oil dispersant and their behavioural responses were closely monitored using high frequency (10Hz) valvometry. Behavioural valve responses included rapid closures when oil dispersant was added to the experimental tanks. At higher concentrations, the mussels remained closed throughout the exposure period. The giant scallop displayed escape behaviours (clapping) prior to mortality, suggesting toxicity of the oil dispersant. Relationships between different behavioural indicators and oil dispersant concentrations were observed for both species, but with different trends. While scallops demonstrated positive correlations between gaping behaviours and dispersant concentration, mussels exhibited a concentration threshold beyond which the gaping behaviour was characteristic of longer closure periods. This study highlights behavioural response differences consistent with bivalve-specific biological traits: the continuous valve closure of an intertidal species, M. edulis, firmly attached to the substrate, and the escapement behaviours of a semi-mobile subtidal species, P. magellanicus. From these observations, it appears that valvometry could be used as a tool for environmental assessments.


Assuntos
Mytilus edulis/efeitos dos fármacos , Pectinidae/efeitos dos fármacos , Tensoativos/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Regiões Árticas , Comportamento Animal/efeitos dos fármacos , Mytilus edulis/fisiologia , Pectinidae/fisiologia , Poluição por Petróleo
2.
Aquat Toxicol ; 230: 105697, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33254068

RESUMO

ATP-binding cassette (ABC) transporters are membrane-bound proteins involved in exporting various xenobiotic compounds from living cells. Bivalve mollusks can accumulate large amounts of paralytic shellfish toxins (PSTs) from marine dinoflagellates. For aquatic invertebrates, the importance of ABC proteins in multi-xenobiotic resistance has been demonstrated, however, the systematic identification of ABC transporters is very limited. In this study, 64 and 67 ABC genes containing all eight described subfamilies (A to H) were identified in Yesso scallop (Patinopecten yessoensis) and Zhikong scallop (Chlamys farreri), respectively, with massive gene expansion being observed in the ABCC and ABCG subfamilies. The kidney harbored more specifically expressed ABC genes than other organs/tissues, most of which belonged to ABCB, ABCC, and ABCG subfamilies. After feeding the scallops with PST-producing dinoflagellates, the expression of scallop ABC genes in the kidney was regulated in toxin- and species-dependent manners. In total, 20 and 24 ABC genes in Zhikong scallop (CfABCs) were induced after exposure to Alexandrium minutum and A. catenella, with the up-regulated members from both ABCC and ABCG subfamilies mainly showing acute and chronic induction by A. minutum and A. catenella, respectively, while the up-regulated CfABCBs mainly showing chronic induction by both dinoflagellates. In Yesso scallop, only eight ABC genes (PyABCs) were regulated after A. catenella exposure, and all the five up-regulated PyABCs were acutely induced. Our findings imply the functional diversity of scallop ABC genes in coping with PST accumulation, which may contribute to the lineage-specific adaptation of scallops for dealing with algal toxins challenge.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Dinoflagellida/metabolismo , Expressão Gênica/efeitos dos fármacos , Pectinidae/efeitos dos fármacos , Toxinas Biológicas/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Pectinidae/genética , Pectinidae/metabolismo , Filogenia , Especificidade da Espécie , Regulação para Cima
3.
Chemosphere ; 261: 128063, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33113659

RESUMO

Paralytic shellfish toxins (PSTs) are a group of natural toxic substances often found in marine bivalves. Accumulation, anatomical distribution, biotransformation and depuration of PSTs in different tissues of bivalves, however, are still not very well understood. In this study, we investigated biokinetics and biotransformation of PSTs in six different tissues, namely gill, mantle, gonad, adductor muscle, kidney, and digestive gland, in Yesso scallops Patinopecten yessoensis exposed to a toxic strain of dinoflagellate Alexandrium pacificum. High daily accumulation rate (DAR) was recorded at the beginning stage of the experiment. Most of the PSTs in toxic algae ingested by scallops were retained and the toxicity level of PSTs in scallops exceeded the regulatory limit within 5 days. At the late stage of the experiment, however, DAR decreased obviously due to the removal of PSTs. Fitting results of the biokinetics model indicated that the amount of PSTs transferred from digestive gland to mantle, adductor muscle, gonad, kidney, and gill in a decreasing order, and adductor muscle, kidney, and gonad had higher removal rate than gill and mantle. Toxin profile in digestive gland was dominated by N-sulfocarbamoyl toxins 1/2 (C1/2), closely resembled that of the toxic algae. In contrast, toxin components in kidney were dominated by high-potency neosaxitoxin (NEO) and saxitoxin (STX), suggesting that the kidney be a major organ for transformation of PSTs.


Assuntos
Dinoflagellida/metabolismo , Pectinidae/efeitos dos fármacos , Pectinidae/metabolismo , Saxitoxina/análogos & derivados , Poluentes Químicos da Água/metabolismo , Animais , Bioacumulação , Biotransformação , Brânquias/efeitos dos fármacos , Brânquias/metabolismo , Saxitoxina/metabolismo , Saxitoxina/toxicidade , Toxicocinética , Poluentes Químicos da Água/toxicidade
4.
Artigo em Inglês | MEDLINE | ID: mdl-32450336

RESUMO

Marine microplastic pollution poses a threat to aquatic organisms, including bivalves. In this study, we investigated the accumulation of microplastics and their elicited antioxidant stress response in the bay scallop Argopecten irradians. Scallops were exposed to 1 µm diameter micro-polystyrene (MP) beads at 10, 100, and 1000 beads/mL concentrations for a 7 day period. Bead presence in the digestive diverticula and defense responses in the digestive diverticula and hemolymph were measured at 1, 3, 5, and 7 days. The activity and expression of the antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT) and H2O2 in the digestive diverticula and/or hemolymph of scallops increased with microplastic concentration and exposure duration. These results suggest that microplastics can accumulate in the digestive diverticula of A. irradians, and that exposure to microplastics induces oxidative stress in bivalves. It is likely that exposure to high concentrations of micro- or nano-sized plastic particles could potentially have adverse effects in bivalves.


Assuntos
Pectinidae/efeitos dos fármacos , Pectinidae/metabolismo , Poliestirenos/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Bioacumulação , Catalase/metabolismo , Hemolinfa/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Pectinidae/crescimento & desenvolvimento , Poliestirenos/farmacocinética , Superóxido Dismutase/metabolismo , Poluentes Químicos da Água/farmacocinética
5.
Food Chem ; 320: 126629, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32203829

RESUMO

Marine bacteria produce many bioactive compounds, including carotenoids. However, the quality of bacterium carotenoids is relatively unknown. Therefore, in this study, a novel carotenoids-producing bacterium Brevundimonas scallop Zheng & Liu was isolated from Chlamys nobilis. The genome of the isolate was analyzed, carotenoid compounds were screened using HPLC-MS and the carotenoid production in B. scallop was monitored. The results revealed that the genome of B. scallop contained a carotenoid synthesis gene cluster, which involved in astaxanthin and hydroxy-astaxanthin biosynthesis. The 2,2'-dihydroxy-astaxanthin was the major carotenoid produced by B. scallop. The optimum culture condition for the highest carotenoids production (1303.62 ± 61.06 µg/g dry cells) for B. scallop was at temperature and salinity of 20 °C and 3% salt, respectively, in 10 g/L glucose as carbon source. The results showed the B. scallop is a new carotenoids resource in marine bivalve, which has an excellent antioxidative activity and potential industrial use.


Assuntos
Antioxidantes/farmacologia , Bactérias/química , Pectinidae/efeitos dos fármacos , Animais , Antioxidantes/química , Bactérias/genética , Família Multigênica , Xantofilas/química , Xantofilas/farmacologia
6.
Toxins (Basel) ; 13(1)2020 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-33396547

RESUMO

Marine bivalves could accumulate paralytic shellfish toxins (PSTs) produced by toxic microalgae, which might induce oxidative stress. Glutathione peroxidases (GPxs) are key enzymes functioning in the antioxidant defense, whereas our understanding of their roles in PST challenge in bivalves is limited. Herein, through genome-wide screening, we identified nine (CfGPx) and eight (PyGPx) GPx genes in Zhikong scallop (Chlamys farreri) and Yesso scallop (Patinopecten yessoensis), respectively, and revealed the expansion of GPx3 sub-family in both species. RNA-Seq analysis revealed high expression of scallop GPx3s after D stage larva during early development, and in adult hepatopancreas. However, in scallops exposed to PST-producing dinoflagellates, no GPx was significantly induced in the hepatopancreas. In scallop kidneys where PSTs were transformed to higher toxic analogs, most CfGPxs were up-regulated, with CfGPx3s being acutely and chronically induced by Alexandrium minutum and A. catenella exposure, respectively, but only one PyGPx from GPx3 subfamily was up-regulated by A. catenella exposure. Our results suggest the function of scallop GPxs in protecting kidneys against the oxidative stresses by PST accumulation or transformation. The tissue-, species-, and toxin-dependent expression pattern of scallop GPxs also implied their functional diversity in response to toxin exposure.


Assuntos
Dinoflagellida/fisiologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Glutationa Peroxidase/metabolismo , Pectinidae/efeitos dos fármacos , Toxinas Biológicas/toxicidade , Animais , Estudo de Associação Genômica Ampla , Glutationa Peroxidase/genética , Pectinidae/genética , Especificidade da Espécie , Toxinas Biológicas/metabolismo , Regulação para Cima/efeitos dos fármacos
7.
J Cell Biochem ; 121(2): 974-983, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31696969

RESUMO

OBJECTIVES: Cadmium causes the pollution of marine habitat and Chlamys farreri is an effective concentrator of heavy metals, the aim of this study was to study the response mechanism of C. farreri to cadmium stress at transcriptomic and proteomic levels. METHODS: Transcriptomic analysis based on RNA-sequencing and proteomic analysis based on isobaric tags for relative and absolute quantitation were performed to reveal the molecular response of C. farreri to different concentrations of cadmium (0.1, 0.3, and 1 mg/L). In addition, a protein-protein interaction (PPI) network was constructed based on the Cytoscape tool to identify hub proteins related to the response of C. farreri to cadmium stress. RESULTS: A total of 24 190 unigenes from 58 683 candidates were annotated in known databases. The numbers of the differentially expressed unigenes (DEGs) was different among the three cadmium-treated groups compared with the control group. DEGs were involved in many pathways such as ABC transporters, protein processing in endoplasmic reticulum and endocytosis. A total of 660 proteins were identified, and differentially expressed proteins (DEPs) among different groups were determined. The overlapping DEGs and DEPs were associated with cadmium response. The upregulated unigene0002618 and downregulated unigene0000904 may be more important for the response of C. farreri to cadmium stress. Unigene0009750 was the hub protein in the PPI network with the highest degree of 20. CONCLUSIONS: Our transcriptomic and proteomic analyses elucidated the molecular response of C. farreri to cadmium stress.


Assuntos
Cádmio/toxicidade , Biologia Computacional/métodos , Regulação da Expressão Gênica/efeitos dos fármacos , Pectinidae/efeitos dos fármacos , Proteoma/análise , Transcriptoma/efeitos dos fármacos , Animais , Pectinidae/genética , Pectinidae/crescimento & desenvolvimento , Pectinidae/metabolismo , Proteoma/metabolismo , Análise de Sequência de RNA , Estresse Fisiológico
8.
Arch Environ Contam Toxicol ; 78(3): 451-462, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31748941

RESUMO

The health status of the commercial Tehuelche scallop Aequipecten tehuelchus from San Román and El Riacho in San José gulf (Patagonia, Argentina) was evaluated through biomarkers widely used in ecotoxicological applications. Natural levels of arsenic (As) and cadmium (Cd) were measured to determine their potential relationships with fluctuations of several oxidative stress biomarkers in the scallop. Oxidative biomarkers, such as catalase (CAT), glutathione S-transferase (GST), superoxide dismutase (SOD), metallothioneins (MT), reactive oxygen species (ROS), α-tocopherol (α-T), and lipid peroxidation (LPO) through thiobarbituric acid reactive substances (TBARS) and lipid radical (LR∙), were measured in gills, digestive gland, and muscle of Tehuelche scallop in winter (August 2015) and summer (January 2016). Levels of As and Cd and of most of the biomarkers (SOD, ROS, TBARS, and LR∙) showed strong seasonal variability in the three tissues. In general, the highest values were recorded in digestive gland. The Integrated Biomarker Response index indicated that the most stressed condition of A. tehuelchus was in summer in San Román. Additionally, the Integrated Biomarker Response index showed a strong relationship among tissues and As and Cd accumulation. This kind of approach could be used as an integrated tool to identify the health status of scallop A. tehuelchus from San José gulf.


Assuntos
Bioacumulação/efeitos dos fármacos , Monitoramento Ambiental/métodos , Estresse Oxidativo/efeitos dos fármacos , Pectinidae/efeitos dos fármacos , Poluentes Químicos da Água/análise , Animais , Argentina , Biomarcadores/metabolismo , Brânquias/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Músculos/metabolismo , Pectinidae/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Alimentos Marinhos/análise , Estações do Ano , Poluentes Químicos da Água/metabolismo
9.
Molecules ; 24(19)2019 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-31590284

RESUMO

The thiazolidinedione 49 (TD49) is an effective algaecide against harmful algae; however, its potential effects on the immune function of the edible bay scallop are unclear. Therefore, the present work studied the effects of TD49 on the immune response in bay scallop by evaluating activities of acid phosphatase (ACP), alkaline phosphatase (ALP), and superoxide dismutase (SOD), as well as nitric oxide (NO) levels, total protein content, and expression of immune genes (CTL-6, PGRP, PrxV, MT, and Cu/Zn-SOD) at 3-48 h post-exposure (hpe) to TD49. The activities of ACP and ALP significantly increased in TD49-treated groups at 3-24 hpe, whereas NO levels decreased significantly in 0.58 and 0.68 µM of TD49 at 6-24 hpe, after which the level was similar to that in the untreated control. Moreover, SOD activity significantly increased in all three concentration groups at 3-6 hpe, while it decreased at 12 hpe in the 0.68 µM TD49 treatment group. Notably, total protein content increased with TD49 treatment at each time interval. The results revealed that variable effects on the expression of immune-related genes were observed after treatment with TD49. The findings demonstrate that exposure of scallops to TD49 changes immune responses and expression of immune-related genes. We hypothesize that TD49 may disrupt immune system in bay scallop. The current investigation highlights the potential negative effects of using TD49 as an algaecide on marine economic bivalves to control harmful algal blooms in marine environments.


Assuntos
Herbicidas/efeitos adversos , Pectinidae/imunologia , Tiazolidinedionas/efeitos adversos , Fosfatase Ácida/metabolismo , Fosfatase Alcalina/metabolismo , Animais , Regulação da Expressão Gênica/efeitos dos fármacos , Herbicidas/química , Imunidade/efeitos dos fármacos , Pectinidae/efeitos dos fármacos , Pectinidae/metabolismo , Frutos do Mar , Superóxido Dismutase/metabolismo , Tiazolidinedionas/química
10.
Biomolecules ; 9(8)2019 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-31357635

RESUMO

Thiazolidinedione 49 (TD49), a newly synthesized algicide, shows strong toxicity at low concentrations of 0.1-2.0 µM. However, its potential effects on non-target species at the transcript level were not investigated. Differentially expressed genes (DEGs) in the gills of the bay scallop, Argopecten irradians, were accessed after treatment with 0.68 µM TD49 for up to 48 h. Following exposure, it was observed that 5214 genes were upregulated and 3497 were downregulated. Functional enrichment analysis revealed that the apoptosis pathway was activated. The extrinsic apoptosis pathway was activated and the survival factors related pathway was suppressed. Furthermore, gene expressions related to ATP-binding cassette, nuclear factor erythroid 2-related factor, B cell lymphoma-2 family protein, glutathione reductase, glutathione peroxidase, catalase, NADPH2:quinone reductase, and superoxide dismutase were decreased. Conversely, gene expressions related to FAS-associated death domain protein, glutathione S-transferase, caspase 6, 8, cytochrome P450 1A1, and 2C8 were increased. These results comprehensively demonstrated the toxicity of the novel algicide TD49, and should draw the attention of researchers to the importance of analyzing the potential impact of chemical compounds as algicides to control the proliferation of harmful algae, due to the secondary pollution caused by their application.


Assuntos
Perfilação da Expressão Gênica/métodos , Herbicidas/toxicidade , Pectinidae/genética , Tiazolidinedionas/toxicidade , Animais , Regulação da Expressão Gênica/efeitos dos fármacos , Redes Reguladoras de Genes/efeitos dos fármacos , Brânquias , Sequenciamento de Nucleotídeos em Larga Escala , Pectinidae/efeitos dos fármacos , Análise de Sequência de RNA
11.
Fish Shellfish Immunol ; 92: 489-499, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31220575

RESUMO

In this study, we cloned the full-length cDNA of the Kelch-like ECH-associated protein 1 (Keap1) from the scallops Chlamys farreri (C. farreri). Sequences alignment and phylogenetic analysis showed that CfKeap1 was highly specific in the scallops, and the amino acid sequence identity value is closer to that in zebrafish Keap1b and Nothobranchius furzeri Keap1b than Keap1a. The highest transcription level of CfKeap1 expression was detected in the digestive glands. The gene expressions of CfKeap1, NF-E2-related nuclear factor 2 (Nrf2), Superoxide Dismutase (SOD), Catalase (CAT) and Glutathione Peroxidase (GPx) in digestive glands were evaluated by quantitative real-time PCR (qRT-PCR) after being exposed to benzo(a)pyrene (BaP) (0.25, 1and 4 µg/L) for 15 days, which indicated that the activation of Nrf2 and Keap1 expression can be significantly induced under BaP exposure. RNA interference (RNAi) experiments were conducted to examine the expression profiles of CfKeap1, Nrf2, antioxidant genes (Cu/Zn-SOD, CAT and GPx), mitogen-activated protein kinase (MAPKs) and protein kinase C (PKC) signaling pathways key genes in digestive glands and gills when exposed to BaP. Results showed that the mRNA level of CfKeap1 was significantly decreased by 60.69% and59.485%. The changes of CfKeap1 and Nrf2 suggested that the enhancement of Keap1 expression stimulating Nrf2 degradation. Furthermore, the expression of antioxidant genes were consistent with the Nrf2 gene, which suggesting that Nrf2-Keap1 signaling pathway is required for the induction of antioxidant genes. Besides, the changes of PKC, c-Jun N-terminal kinase (JNK) and p38 genes expression suggested that PKC and MAPKs signaling pathways played a synergistic role with Nrf2-Keap1 signaling pathway in the anti-oxidative defense system of bivalve molluscs. In conclusion, these data demonstrated that Keap1 can sense nucleophilic or oxidative stress factors to regulate the Nrf2 signaling pathway together with Cul3-based E3 Ubiquitin Ligase (E3), and the Nrf2-Keap1 signaling pathway played an important role in modulating gene expression of antioxidant enzymes in bivalve mollusks.


Assuntos
Benzo(a)pireno/efeitos adversos , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/imunologia , Pectinidae/efeitos dos fármacos , Poluentes Químicos da Água/efeitos adversos , Sequência de Aminoácidos , Animais , Perfilação da Expressão Gênica , Proteína 1 Associada a ECH Semelhante a Kelch/química , Fator 2 Relacionado a NF-E2/química , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/imunologia , Pectinidae/genética , Pectinidae/imunologia , Filogenia , Alinhamento de Sequência , Transdução de Sinais
12.
Chemosphere ; 234: 62-69, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31203042

RESUMO

Heat shock proteins 70KD (Hsp70s) are highly conserved molecular chaperones with essential roles against biotic and abiotic stressors. Marine bivalves inhabit highly complex environments and could accumulate paralytic shellfish toxins (PSTs), the well-noted neurotoxins generated during harmful algal blooms. Here, we systematically analyzed Hsp70 genes (CfHsp70s) in Zhikong scallop (Chlamys farreri), an important aquaculture mollusk in China. Sixty-five CfHsp70s from eight sub-families were identified, and 47 of these genes showed expansion in the Hspa12 sub-family. After exposure to different PST-producing dinoflagellates, Alexandrium minutum and Alexandrium catenella, diverse CfHsp70s regulation presented in scallop hepatopancreas, mainly accumulating incoming PSTs, and kidneys, transforming PSTs into higher toxic analogs. All the up-regulated CfHsp70s were from CfHsp70B2, CfHspa12, and CfHspa5 sub-families. CfHsp70B2 sub-family was mainly induced in the hepatopancreas, and CfHspa12 sub-family was highly induced in the kidneys. CfHsp70s up-regulation under two dinoflagellates exposure was stronger in the kidneys (log2FC: 19.5 and 18.6) than that in hepatopancreas (log2FC: 4.3 and 6.1). Exposure to different Alexandrium species had varying effects, that in hepatopancreas, CfHsp70B2s were chronically induced only after A. catenella exposure, whereas in kidney, CfHspa12s were more acutely induced after exposure of A. minutum than A. caenella. Moreover, in Yesso scallops (Patinopecten yessoensis), only Hspa12s were up-regulated in hepatopancreas after A. catenella exposure, and all the Hsp70B2s were down-regulated. These organ-, toxin-, and species-dependent Hsp70 regulation suggested the functional diversity of duplicated Hsp70s in response to the stress by PST-producing algae. Our findings provide insights into the evolution and functional characteristics of Hsp70s in scallops.


Assuntos
Dinoflagellida/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas de Choque Térmico HSP70/genética , Toxinas Marinhas/toxicidade , Pectinidae/genética , Animais , Proteínas de Choque Térmico HSP70/metabolismo , Pectinidae/efeitos dos fármacos , Pectinidae/crescimento & desenvolvimento
13.
Environ Toxicol Pharmacol ; 70: 103189, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31103490

RESUMO

The aim of this study was to investigate the sensitivity of the marine scallop Mizuhopecten yessoensis to different copper concentrations (10 and 30 µgl-1) in the prespawning period. Reaction of the scallop to this effect was evaluated by a set of biomarkers, including general metabolism enzymes (acid and alkaline phosphatase activities - AcPase, ALP), and oxidative stress parameters (catalase antioxidant enzyme activity - CAT and levels of damage for DNA, lipids and proteins). Experiment results show that when copper is accumulated in tissues, enzyme activity changes are similar and have phasic character. The dynamics of these changes depends on the copper accumulation levels in tissues. Unlike enzyme reaction to copper accumulation, oxidative damage of biologic molecules changes in tissues in different ways. Copper enters into a scallop's organism, mainly through the gills, where there is a more expressed reaction of biomarkers compared to the digestive gland.


Assuntos
Cobre/toxicidade , Pectinidae/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Fosfatase Ácida/metabolismo , Fosfatase Alcalina , Animais , Biomarcadores/metabolismo , Catalase/metabolismo , Dano ao DNA , Trato Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/metabolismo , Brânquias/efeitos dos fármacos , Brânquias/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Pectinidae/genética , Pectinidae/metabolismo
14.
Sci Rep ; 9(1): 8015, 2019 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-31142781

RESUMO

Gadolinium-based contrast agents (GBCAs), routinely used in magnetic resonance imaging (MRI), end up directly in coastal seawaters where gadolinium concentrations are now increasing. Because many aquatic species could be sensitive to this new pollution, we have evaluated the possibility of using shellfish to assess its importance. Gadolinium excesses recorded by scallop shells collected in Bay of Brest (Brittany, France) for more than 30 years do not reflect the overall consumption in GBCAs, but are largely controlled by one of them, the gadopentetate dimeglumine. Although its use has been greatly reduced in Europe over the last ten years, gadolinium excesses are still measured in shells. Thus, some gadolinium derived from other GBCAs is bioavailable and could have an impact on marine wildlife.


Assuntos
Meios de Contraste/análise , Monitoramento Ambiental/métodos , Gadolínio DTPA/análise , Pectinidae/química , Água do Mar/química , Poluentes Químicos da Água/análise , Exoesqueleto/química , Animais , Meios de Contraste/química , Meios de Contraste/toxicidade , Poluição Ambiental/prevenção & controle , França , Gadolínio DTPA/toxicidade , Imageamento por Ressonância Magnética/métodos , Pectinidae/efeitos dos fármacos , Águas Residuárias/química , Poluentes Químicos da Água/toxicidade
15.
Aquat Toxicol ; 210: 19-29, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30818112

RESUMO

CO2 atmospheric pressure is increasing since industrial revolution, leading to a lowering of the ocean surface water pH, a phenomenon known as ocean acidification, with several reported effects on individual species and cascading effects on marine ecosystems. Despite the great amount of literature on ocean acidification effects on calcifying organisms, the response of their reproductive system still remains poorly known. In the present study, we investigated the histopathological effects of low pH on the gonads of three key macroinvertebrates of the Terra Nova Bay (Ross Sea) littoral area: the sea urchin Sterechinus neumayeri, the sea star Odontaster validus and the scallop Adamussium colbecki. After 1 month of exposure at control (8.12) and reduced (7.8 and 7.6) pH levels, we dissected the gonads and performed histological analyses to detect potential differences among treatments. Results showed significant effects on reproductive conditions of A. colbecki and S. neumayeri, while O. validus did not show any kind of alteration. Present results reinforce the need to focus on ocean acidification effects on soft tissues, particularly the gonads, whose damage may exert large effects on the individual fitness, with cascading effects on the population dynamic of the species.


Assuntos
Gônadas/efeitos dos fármacos , Pectinidae/efeitos dos fármacos , Ouriços-do-Mar/efeitos dos fármacos , Água do Mar/química , Estrelas-do-Mar/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Regiões Antárticas , Ecossistema , Concentração de Íons de Hidrogênio , Oceanos e Mares , Pectinidae/crescimento & desenvolvimento , Reprodução/efeitos dos fármacos , Ouriços-do-Mar/crescimento & desenvolvimento , Estrelas-do-Mar/crescimento & desenvolvimento
16.
Toxins (Basel) ; 11(2)2019 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-30736356

RESUMO

Some species of the genus Pseudo-nitzschia produce the toxin domoic acid, which causes amnesic shellfish poisoning (ASP). Given that bivalve mollusks are filter feeders, they can accumulate these toxins in their tissues. To elucidate the transcriptional response of the queen scallop Aequipecten opercularis after exposure to domoic acid-producing Pseudo-nitzschia, the digestive gland transcriptome was de novo assembled using an Illumina HiSeq 2000 platform. Then, a differential gene expression analysis was performed. After the assembly, 142,137 unigenes were obtained, and a total of 10,144 genes were differentially expressed in the groups exposed to the toxin. Functional enrichment analysis found that 374 Pfam (protein families database) domains were significantly enriched. The C1q domain, the C-type lectin, the major facilitator superfamily, the immunoglobulin domain, and the cytochrome P450 were among the most enriched Pfam domains. Protein network analysis showed a small number of highly connected nodes involved in specific functions: proteasome components, mitochondrial ribosomal proteins, protein translocases of mitochondrial membranes, cytochromes P450, and glutathione S-transferases. The results suggest that exposure to domoic acid-producing organisms causes oxidative stress and mitochondrial dysfunction. The transcriptional response counteracts these effects with the up-regulation of genes coding for some mitochondrial proteins, proteasome components, and antioxidant enzymes (glutathione S-transferases, thioredoxins, glutaredoxins, and copper/zinc superoxide dismutases).


Assuntos
Trato Gastrointestinal/efeitos dos fármacos , Ácido Caínico/análogos & derivados , Toxinas Marinhas/toxicidade , Pectinidae/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Animais , Diatomáceas , Trato Gastrointestinal/metabolismo , Ácido Caínico/toxicidade , Pectinidae/genética , RNA-Seq
17.
Biomolecules ; 8(4)2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30404247

RESUMO

Palmitoleic acid (PA) is an effective algicide against Alexandrium tamarense. However, the toxicological mechanism of PA exposure is unclear. The transcript abundance and differentially expressed genes (DEGs) in gills of bay scallop were investigated following 80 mg/L PA exposure up to 48 h using the Illumina HiSeq 4000 deep-sequencing platform with the recommended read length of 100 bp. De novo assembly of paired-end reads yielded 62,099 unigenes; 5414 genes were identified as being significantly increased, and 4452 were decreased. Based on gene ontology classification and enrichment analysis, the 'cellular process', 'metabolic process', 'response to stimulus', and 'catalytic process' with particularly high functional enrichment were revealed. The DEGs, which are related to detoxification and immune responses, revealed that acid phosphatase, fibrinogen C domain-containing protein, cyclic AMP-responsive element-binding protein, glutathione reductase, ATP-binding cassette, nuclear factor erythroid 2-related factor, NADPH2:quinone reductase, and cytochrome P450 4F22, 4B1, and 2C8-related gene expression decreased. In contrast, some genes related to glutathione S-transferase, C-type lectin, superoxide dismutase, toll-like receptors, and cytochrome P450 2C14, 2U1, 3A24 and 4A2 increased. The results of current research will be a valuable resource for the investigation of gene expression stimulated by PA, and will help understanding of the molecular mechanisms underlying the scallops' response to PA exposure.


Assuntos
Ácidos Graxos Monoinsaturados/toxicidade , Brânquias/imunologia , Pectinidae/genética , Pectinidae/imunologia , Transcriptoma/genética , Ativação Metabólica/efeitos dos fármacos , Animais , Perfilação da Expressão Gênica , Biblioteca Gênica , Ontologia Genética , Brânquias/efeitos dos fármacos , Brânquias/metabolismo , Pectinidae/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética , Transcriptoma/efeitos dos fármacos
18.
Environ Toxicol Pharmacol ; 64: 122-130, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30342373

RESUMO

The antioxidant enzymes and detoxification parameters responses of the scallop Chlamys farreri to different degree of acrylonitrile (AN) were investigated. Accordingly, the median lethal concentration (LC50) at 96 h was 98.5 mg/L AN. Results from chronic toxicity test demonstrated that superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) were stimulated in the highest two doses of AN (2.0 and 5.0 mg/L), but significantly inhibited in the highest concentration (5.0 mg/L) at the end of the exposure. The levels of DNA strand breaks, lipid peroxidation (LPO) and protein carbonyl (PC) contents showed damage effects exposed AN at the highest two doses. Additionally, AN significantly induced the enzymatic activity of glutathione-s-transferase (GST), related mRNA expression levels of P-glycoprotein (P-gp) and GST-pi; and no significant changes were found on CYP1A1 mRNA expression and ethoxyresorufin O-deethylase (EROD) activity. Our results indicated that P-gp and GST-pi mRNA expression in digestive glands of the scallop C. farreri may potentially be used in ecological risk assessment of hazardous and noxious substances (HNS) contamination of marine.


Assuntos
Acrilonitrila/toxicidade , Sistema Digestório/efeitos dos fármacos , Substâncias Perigosas/toxicidade , Pectinidae/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Biomarcadores/metabolismo , Dano ao DNA , Sistema Digestório/metabolismo , Sistema Digestório/patologia , Peroxidação de Lipídeos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Pectinidae/metabolismo
19.
Fish Shellfish Immunol ; 83: 37-44, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30195904

RESUMO

C-type lectins have a variety of immunological functions in invertebrates. In order to investigate whether C-type lectin gene and carotenoids do have immune influences on noble scallop Chlamys nobilis under pathogen stress, acute challenges lasting 48 h to Vibrio parahaemolyticus, lipopolysaccharide (LPS), polyinosinic polycytidylic acid (Poly I: C), and PBS were conducted in noble scallop with different carotenoids content. A multi-CRD C-type lectin gene called Cnlec-1 was cloned and its transcripts under different challenges were determined. Full length cDNA of Cnlec-1 is 2267 bp with an open reading frame (ORF) of 1845 bp encoding 614 deduced amino acids, containing four carbohydrate recognition domains (CRD1, CRD2, CRD3 and CRD4). Phylogenetic tree analysis showed that CRDs of Cnlec-1 were clustered with CRDs of shellfish C-type lectins, especially closely related to Chlamys farreri and Argopecten irradians CRDs. Cnlec-1 transcripts were detected in hemocytes, mantle, gonad, kidney, intestines, gill and adductor. Compared with PBS control group, Cnlec-1 transcripts were up-regulated in V. parahaemolyticus, LPS and Poly I: C groups. Furthermore, Cnlec-1 transcript levels of Golden scallops were significantly higher than that of Brown ones at 3-48 h (P < 0.05) in V. parahemolyticus groups, at 24 h in LPS groups and at 12-24 h in Poly I: C groups. These results suggesting that Cnlec-1 is an important immune factor involved in the defense against pathogens in the noble scallop, and carotenoids can enhance the immunity of noble scallop through up-regulating Cnlec-1 to different immunostimulants.


Assuntos
Adjuvantes Imunológicos/farmacologia , Carotenoides/análise , Lectinas Tipo C/imunologia , Lectinas/imunologia , Pectinidae/efeitos dos fármacos , Pectinidae/imunologia , Animais , Clonagem Molecular , Imunidade Inata , Indutores de Interferon/farmacologia , Lipopolissacarídeos/farmacologia , Pectinidae/microbiologia , Filogenia , Poli I-C/farmacologia , Ativação Transcricional , Regulação para Cima , Vibrio parahaemolyticus
20.
Aquat Toxicol ; 196: 53-60, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29334672

RESUMO

Ocean acidification (OA) may affect sensitivity of marine organisms to metal pollution modulating chemical bioavailability, bioaccumulation and biological responsiveness of several cellular pathways. In this study, the smooth scallop Flexopecten glaber was exposed to various combinations of reduced pH (pH/pCO2 7.4/∼3000 µatm) and Cd (20 µg/L). The analyses on cadmium uptake were integrated with those of a wide battery of biomarkers including metallothioneins, single antioxidant defenses and total oxyradical scavenging capacity in digestive gland and gills, lysosomal membrane stability and onset of genotoxic damage in haemocytes. Reduced pH slightly increased concentration of Cd in scallop tissues, but no effects were measured in terms of metallothioneins. Induction of some antioxidants by Cd and/or low pH in the digestive gland was not reflected in variations of the total oxyradical scavenging capacity, while the investigated stressors caused a certain inhibition of antioxidants and reduction of the scavenging capacity toward peroxyl radical in the gills. Lysosomal membrane stability and onset of genotoxic damages showed high sensitivity with possible synergistic effects of the investigated factors. The overall results suggest that indirect effects of ocean acidification on metal accumulation and toxicity are tissue-specific and modulate oxidative balance through different mechanisms.


Assuntos
Cádmio/toxicidade , Pectinidae/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Antioxidantes/química , Dano ao DNA/efeitos dos fármacos , Brânquias/efeitos dos fármacos , Brânquias/metabolismo , Hemócitos/efeitos dos fármacos , Hemócitos/metabolismo , Concentração de Íons de Hidrogênio , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Metalotioneína/metabolismo , Oceanos e Mares , Pectinidae/metabolismo , Peróxidos/química , Análise de Componente Principal , Poluentes Químicos da Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...