Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 166
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Anat ; 238(5): 1082-1105, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33415764

RESUMO

The anatomy of sharks, rays, and chimaeras (chondrichthyans) is crucial to understanding the evolution of the cranial system in vertebrates due to their position as the sister group to bony fishes (osteichthyans). Strikingly different arrangements of the head in the two constituent chondrichthyan groups-holocephalans and elasmobranchs-have played a pivotal role in the formation of evolutionary hypotheses targeting major cranial structures such as the jaws and pharynx. However, despite the advent of digital dissections as a means of easily visualizing and sharing the results of anatomical studies in three dimensions, information on the musculoskeletal systems of the chondrichthyan head remains largely limited to traditional accounts, many of which are at least a century old. Here, we use synchrotron tomographic data to carry out a digital dissection of a holocephalan and an elasmobranch widely used as model species: the elephantfish, Callorhinchus milii, and the small-spotted catshark, Scyliorhinus canicula. We describe and figure the skeletal anatomy of the head, labial, mandibular, hyoid, and branchial cartilages in both taxa as well as the muscles of the head and pharynx. In Callorhinchus, we make several new observations regarding the branchial musculature, revealing several previously unreported or ambiguously characterized muscles, likely homologous to their counterparts in the elasmobranch pharynx. We also identify a previously unreported structure linking the pharyngohyal of Callorhinchus to the neurocranium. Finally, we review what is known about the evolution of chondrichthyan cranial muscles from their fossil record and discuss the implications for muscle homology and evolution, broadly concluding that the holocephalan pharynx is likely derived from a more elasmobranch-like form which is plesiomorphic for the chondrichthyan crown group. This dataset has great potential as a resource, particularly for researchers using these model species for zoological research, functional morphologists requiring models of musculature and skeletons, as well as for palaeontologists seeking comparative models for extinct taxa.


Assuntos
Peixe Elétrico/anatomia & histologia , Cabeça/anatomia & histologia , Músculo Esquelético/anatomia & histologia , Tubarões/anatomia & histologia , Animais , Evolução Biológica , Processamento de Imagem Assistida por Computador , Filogenia
2.
J Comp Neurol ; 529(8): 1810-1829, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33089503

RESUMO

Acetylcholine acts as a neurotransmitter/neuromodulator of many central nervous system processes such as learning and memory, attention, motor control, and sensory processing. The present study describes the spatial distribution of cholinergic neurons throughout the brain of the weakly electric fish, Apteronotus leptorhynchus, using in situ hybridization of choline acetyltransferase mRNA. Distinct groups of cholinergic cells were observed in the telencephalon, diencephalon, mesencephalon, and hindbrain. These included cholinergic cell groups typically identified in other vertebrate brains, for example, motor neurons. Using both in vitro and ex vivo neuronal tracing methods, we identified two new cholinergic connections leading to novel hypotheses on their functional significance. Projections to the nucleus praeeminentialis (nP) arise from isthmic nuclei, possibly including the nucleus lateralis valvulae (nLV) and the isthmic nucleus (nI). The nP is a central component of all electrosensory feedback pathways to the electrosensory lateral line lobe (ELL). We have previously shown that some neurons in nP, TS, and tectum express muscarinic receptors. We hypothesize that, based on nLV/nI cell responses in other teleosts and isthmic connectivity in A. leptorhynchus, the isthmic connections to nP, TS, and tectum modulate responses to electrosensory and/or visual motion and, in particular, to looming/receding stimuli. In addition, we found that the octavolateral efferent (OE) nucleus is the likely source of cholinergic fibers innervating the ELL. In other teleosts, OE inhibits octavolateral hair cells during locomotion. In gymnotiform fish, OE may also act on the first central processing stage and, we hypothesize, implement corollary discharge modulation of electrosensory processing during locomotion.


Assuntos
Encéfalo/citologia , Neurônios Colinérgicos/citologia , Peixe Elétrico/anatomia & histologia , Peixe Elétrico/fisiologia , Animais , Encéfalo/fisiologia , Neurônios Colinérgicos/fisiologia
3.
J Comp Neurol ; 529(8): 1787-1809, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33070328

RESUMO

Mochokid catfish offer a distinct opportunity to study a communication system transitioning to a new signaling channel because some produce sounds and others electric discharges. Both signals are generated using an elastic spring system (ESS), which includes a protractor muscle innervated by motoneurons within the protractor nucleus that also has a motoneuron afferent population. Synodontis grandiops and S. nigriventris produce sounds and electric discharges, respectively, and their ESSs show several morphological and physiological differences. The extent to which these differences explain different signal types remains unclear. Here, we compare ESS morphologies and behavioral phenotypes among five mochokids. S. grandiops and S. nigriventris were compared with Synodontis eupterus that is known to produce both signal types, and representative members of two sister genera, Microsynodontis cf. batesii and Mochokiella paynei, for which no data were available. We provide support for the hypothesis that peripheral and central components of the ESS are conserved among mochokids. We also show that the two nonsynodontids are only sonic, consistent with sound production being an ancestral character for mochokids. Even though the three sound producing-only species differ in some ESS characters, several are similar and likely associated with only sound production. We propose that the ability of S. eupterus to generate both electric discharges and sounds may depend on a protractor muscle intermediate in morphology between sound producing-only and electric discharge-only species, and two separate populations of protractor motoneurons. Our results further suggest that an electrogenic ESS in synodontids is an exaptation of a sound producing ESS.


Assuntos
Comunicação Animal , Peixes-Gato/anatomia & histologia , Peixe Elétrico/anatomia & histologia , Órgão Elétrico/anatomia & histologia , Neurônios Motores/citologia , Animais , Peixes-Gato/fisiologia , Peixe Elétrico/fisiologia , Órgão Elétrico/fisiologia , Neurônios Aferentes/citologia , Especificidade da Espécie
4.
PLoS One ; 15(6): e0228976, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32542049

RESUMO

In this study, we focused on the seasonal variation of the determinants of territory size in the weakly electric fish Gymnotus omarorum. This species is a seasonal breeder that displays year-round territorial aggression. Female and male dyads exhibit indistinguishable non-breeding territorial agonistic behavior and body size is the only significant predictor of contest outcome. We conducted field surveys across seasons that included the identification of individual location, measurements of water physico-chemical variables, characterization of individual morphometric and physiological traits, and their correlation to spatial distribution. G. omarorum tolerates a wide range of dissolved oxygen concentration, and territory size correlated positively with dissolved oxygen in both seasons. In the non-breeding season, territory size was sexually monomorphic and correlated only with body size. In the breeding season, territory size no longer correlated with body size but differed between sexes: (i) the overall spatial arrangement was sexually biased, (ii) territory size depended on gonadal hormones in both sexes, which was expected for males, but not previously reported in females, (iii) female territory size showed a positive relationship with gonadal size, and (iv) females showed relatively larger territories than males. This study demonstrates seasonal changes in the determinants of territory size and thus contributes to the understanding of the mechanisms underlying the behavioral plasticity natural territorial behavior.


Assuntos
Comportamento Animal , Peixe Elétrico , Estações do Ano , Animais , Tamanho Corporal , Peixe Elétrico/anatomia & histologia , Meio Ambiente , Comportamento Social , Análise Espacial
5.
J Comp Neurol ; 528(15): 2602-2619, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32266714

RESUMO

To what extent do modifications in the nervous system and peripheral effectors contribute to novel behaviors? Using a combination of morphometric analysis, neuroanatomical tract-tracing, and intracellular neuronal recording, we address this question in a sound-producing and a weakly electric species of synodontid catfish, Synodontis grandiops, and Synodontis nigriventris, respectively. The same peripheral mechanism, a bilateral pair of protractor muscles associated with vertebral processes (elastic spring mechanism), is involved in both signaling systems. Although there were dramatic species differences in several morphometric measures, electromyograms provided strong evidence that simultaneous activation of paired protractor muscles accounts for an individual sound and electric discharge pulse. While the general architecture of the neural network and the intrinsic properties of the motoneuron population driving each target was largely similar, differences could contribute to species-specific patterns in electromyograms and the associated pulse repetition rate of sounds and electric discharges. Together, the results suggest that adaptive changes in both peripheral and central characters underlie the transition from an ancestral sound to a derived electric discharge producing system, and thus the evolution of a novel communication channel among synodontid catfish. Similarities with characters in other sonic and weakly electric teleost fish provide a striking example of convergent evolution in functional adaptations underlying the evolution of the two signaling systems among distantly related taxa.


Assuntos
Peixes-Gato/fisiologia , Peixe Elétrico/fisiologia , Órgão Elétrico/fisiologia , Neurônios Motores/fisiologia , Rede Nervosa/fisiologia , Vocalização Animal/fisiologia , Animais , Peixes-Gato/anatomia & histologia , Peixe Elétrico/anatomia & histologia , Órgão Elétrico/anatomia & histologia , Eletromiografia/métodos , Feminino , Masculino , Músculo Esquelético/anatomia & histologia , Músculo Esquelético/fisiologia , Rede Nervosa/anatomia & histologia , Especificidade da Espécie
6.
J Fish Biol ; 96(5): 1077-1086, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31297822

RESUMO

This study aims to investigate relationships between species traits and publication date in the weakly electric osteoglossiform Mormyroidea (African knifefish and elephantfishes) and the ostariophysan Gymnotiformes (Neotropical knifefishes). It is investigated whether body size and geographic distribution area are correlated with publication date and whether extinction risk differs between both phylogenetically distant and geographically isolated clades. Statistical modelling indicates that the number of new species described annually is stable in mormyroids and clearly increasing in gymnotiforms. Best-fitting generalised linear models (GLM) indicate that the newly discovered species are more often of small-bodied, predominantly narrowly distributed and more likely to be threatened with extinction. These characteristics are more pronounced in mormyroids when compared with gymnotiforms, suggesting that some African electric fishes may live an ephemeral existence after formal description. Despite taxonomic work has been more intense in the Neotropics than in Africa in the recent decades, there is evidence that the African continent represents the next frontier of species descriptions. Taxonomic studies are fundamental for the understanding of richness and distribution and hence extinction risk assessment and conservation, of these remarkable convergent fish clades.


Assuntos
Peixe Elétrico/fisiologia , Gimnotiformes/fisiologia , África , Animais , Tamanho Corporal , Peixe Elétrico/anatomia & histologia , Extinção Biológica , Gimnotiformes/anatomia & histologia , Filogenia
7.
J Fish Biol ; 96(5): 1100-1122, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31820447

RESUMO

New collections from the Yangambi Biosphere Reserve (YBR) and Okapi Wildlife Reserve (OWR) revealed the presence of two groups of specimens similar to, but different from Marcusenius moorii. To study both these groups, an integrated morphological and genetic (mtDNA, cytb) approach was used. This study revealed that one of the two groups is conspecific with Marcusenius lambouri, a junior synonym of M. moorii, which is herein revalidated, with M. moorii longulus as its junior synonym. Marcusenius lambouri differs from M. moorii by a higher number of lateral line scales (44-46 vs. 40-43), a shorter pectoral-fin length (14.6-19.9 vs. 20.3-25.2% standard length; LS ) and a more elongated body due to a usually shallower middle body depth (19.8-26.5 vs. 26.3-35.9% LS ). The other group revealed to be a new species for science, Marcusenius verheyenorum, which can be distinguished from its congeners with eight circumpeduncular scales by the following unique combination of characters: a rounded head with a terminal mouth; a short and deep caudal peduncle (middle caudal-peduncle depth, 44.9-54.6% caudal-peduncle length; LCP ), a deep body (middle body depth, 27.7-34.2% LS ), 38-43 scales on the lateral line, 40-41 vertebrae, 20-21 dorsal-fin rays and 26 anal-fin rays. Some specimens previously attributed to M. moorii were examined and reassigned to M. lambouri or M. verheyenorum. As a result, M. moorii and M. lambouri occur in sympatry in the middle Congo Basin, with the distribution area of M. moorii still further extending into the lower Congo Basin. Instead, the distribution of M. verheyenorum is limited to some right bank tributaries of the upstream part of the middle Congo Basin. Two museum records from the Lilanda River (YBR), collected in the 1950s and previously identified as M. moorii, were re-identified as belonging to the new species, M. verheyenorum. However, the species now seems locally extinct in that region, which reflects the significant anthropogenic effects even within this reserve.


Assuntos
Biodiversidade , Peixe Elétrico/classificação , Animais , Congo , Peixe Elétrico/anatomia & histologia , Museus , Rios , Especificidade da Espécie , Simpatria
8.
J Fish Biol ; 96(5): 1123-1141, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31856294

RESUMO

Within a comparative morphological framework, Hippopotamyrus aelsbroecki, only known from the holotype originating from Lubumbashi, most probably the Lubumbashi River, a left bank subaffluent of the Luapula River, is reallocated to the genus Cyphomyrus. This transfer is motivated by the fact that H. aelsbroecki possesses a rounded or vaulted predorsal profile, an insertion of the dorsal fin far anterior to the level of the insertion of the anal fin, and a compact, laterally compressed and deep body. In addition, a new species of Cyphomyrus is described from the Lufira basin, Cyphomyrus lufirae. Cyphomyrus lufirae was collected in large parts of the Middle Lufira, upstream of the Kyubo Falls and just downstream of these falls in the lower Lufira and its nearby left bank affluent, the Luvilombo River. The new species is distinguished from all its congeners, that is, firstly, from C. aelsbroecki, C. cubangoensis and C. discorhynchus, by a low number of dorsal fin rays, 27-32 (vs. higher, 36 (37), 34 (33-41) an 38 (38-40), respectively) and, secondly, from C. aelsbroecki, C. cubangoensis, and C. discorhynchus by a large prepelvic distance, 41.0-43.8% LS (vs. shorter, 39.7%, 38.9-39.1% and 37.0-41.0% LS , respectively). The description of yet another new species for the Upemba National Park and the Kundelungu National Park further highlights their importance for fish protection and conservation in the area. Hence, there is an urgent need for the full integration of fish into the management plans of these parks.


Assuntos
Peixe Elétrico/anatomia & histologia , Peixe Elétrico/classificação , Animais , Congo , Rios , Especificidade da Espécie
9.
Cell ; 179(6): 1382-1392.e10, 2019 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-31735497

RESUMO

Distributing learning across multiple layers has proven extremely powerful in artificial neural networks. However, little is known about how multi-layer learning is implemented in the brain. Here, we provide an account of learning across multiple processing layers in the electrosensory lobe (ELL) of mormyrid fish and report how it solves problems well known from machine learning. Because the ELL operates and learns continuously, it must reconcile learning and signaling functions without switching its mode of operation. We show that this is accomplished through a functional compartmentalization within intermediate layer neurons in which inputs driving learning differentially affect dendritic and axonal spikes. We also find that connectivity based on learning rather than sensory response selectivity assures that plasticity at synapses onto intermediate-layer neurons is matched to the requirements of output neurons. The mechanisms we uncover have relevance to learning in the cerebellum, hippocampus, and cerebral cortex, as well as in artificial systems.


Assuntos
Peixe Elétrico/fisiologia , Aprendizagem , Rede Nervosa/fisiologia , Potenciais de Ação/fisiologia , Estruturas Animais/citologia , Estruturas Animais/fisiologia , Animais , Axônios/metabolismo , Fenômenos Biofísicos , Peixe Elétrico/anatomia & histologia , Feminino , Masculino , Modelos Neurológicos , Plasticidade Neuronal , Comportamento Predatório , Sensação , Fatores de Tempo
10.
Brain Behav Evol ; 93(4): 196-205, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31352440

RESUMO

The evolution of increased encephalization comes with an energetic cost. Across species, this cost may be paid for by an increase in metabolic rate or by energetic trade-offs between the brain and other energy-expensive tissues. However, it remains unclear whether these solutions to deal with the energetic requirements of an enlarged brain are related to direct physiological constraints or other evolved co-adaptations. We studied the highly encephalized mormyrid fishes, which have extensive species diversity in relative brain size. We previously found a correlation between resting metabolic rate and relative brain size across species; however, it is unknown how this interspecific relationship evolved. To address this issue, we measured intraspecific variation in relative brain size, the sizes of other organs, metabolic rate, and hypoxia tolerance to determine if intraspecific relationships between brain size and organismal energetics are similar to interspecific relationships. We found that 3 species of mormyrids with varying degrees of encephalization had no intraspecific relationships between relative brain size and relative metabolic rate or relative sizes of other organs, and only 1 species had a relationship between relative brain size and hypoxia tolerance. These species-specific differences suggest that the interspecific relationship between metabolic rate and relative brain size is not the result of direct physiological constraints or strong stabilizing selection, but is instead due to other species level co-adaptations. We conclude that variation within species must be considered when determining the energetic costs and trade-offs underlying the evolution of extreme encephalization.


Assuntos
Evolução Biológica , Encéfalo/anatomia & histologia , Encéfalo/metabolismo , Peixe Elétrico/anatomia & histologia , Peixe Elétrico/metabolismo , Animais , Metabolismo Energético , Hipóxia/metabolismo , Tamanho do Órgão , Consumo de Oxigênio , Especificidade da Espécie
11.
J Fish Biol ; 95(3): 743-752, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31125124

RESUMO

Fin spines from elephantfish Callorhinchus milii were sectioned and viewed with transmitted white light under a compound microscope. The sections displayed growth bands but their interpretation and significance were unclear. Three different methods were used for counting growth bands. The results were compared with reference growth curves based on length-at-age estimates for six juvenile year classes derived from length-frequency distributions, and tagging data that showed longevity is at least 20 years. None of the three ageing methods showed good correspondence with the reference curves and all methods departed markedly from the reference curves at ages above 2 years old. Therefore, growth bands present in C. milii spines are not useful for ageing, at least with the three methods tested here. Spine bands may not represent age marks, but instead may be layers of material deposited irregularly to strengthen the spine.


Assuntos
Nadadeiras de Animais/anatomia & histologia , Peixe Elétrico/crescimento & desenvolvimento , Longevidade , Animais , Peixe Elétrico/anatomia & histologia , Feminino , Masculino , Dinâmica Populacional
12.
J Comp Neurol ; 527(16): 2703-2729, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30980526

RESUMO

The highly mobile chin appendage of Gnathonemus petersii, the Schnauzenorgan, is used to actively probe the environment and is known to be a fovea of the electrosensory system. It receives an important innervation from both the trigeminal sensory and motor systems. However, little is known about the premotor control pathways that coordinate the movements of the Schnauzenorgan, or about central pathways originating from the trigeminal motor nucleus. The present study focuses on the central connections of the trigeminal motor system to elucidate premotor centers controlling Schnauzenorgan movements, with particular interest in the possible connections between the electrosensory and trigeminal systems. Neurotracer injections into the trigeminal motor nucleus revealed bilateral, reciprocal connections between the two trigeminal motor nuclei and between the trigeminal sensory and motor nuclei by bilateral labeling of cells and terminals. Prominent afferent input to the trigeminal motor nucleus originates from the nucleus lateralis valvulae, the nucleus dorsalis mesencephali, the cerebellar corpus C1, the reticular formation, and the Raphe nuclei. Retrogradely labeled cells were also observed in the central pretectal nucleus, the dorsal anterior pretectal nucleus, the tectum, the ventroposterior nucleus of the torus semicircularis, the gustatory sensory and motor nuclei, and in the hypothalamus. Labeled terminals, but not cell bodies, were observed in the nucleus lateralis valvulae and the reticular formation. No direct connections were found between the electrosensory system and the V motor nucleus but the central connections identified would provide several multisynaptic pathways linking these two systems, including possible efference copy and corollary discharge mechanisms.


Assuntos
Peixe Elétrico/anatomia & histologia , Núcleo Motor do Nervo Trigêmeo/citologia , Vias Aferentes/citologia , Animais , Cerebelo/citologia , Vias Eferentes/citologia , Interneurônios/citologia , Técnicas de Rastreamento Neuroanatômico , Nervo Trigêmeo/citologia
13.
Curr Biol ; 28(23): 3857-3863.e3, 2018 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-30449664

RESUMO

Brains, and the distinct regions that make up brains, vary widely in size across vertebrates [1, 2]. Two prominent hypotheses have been proposed to explain brain region scaling evolution. The mosaic hypothesis proposes that changes in the relative sizes of particular brain regions are the result of selection acting independently on those regions [2, 3]. The concerted hypothesis proposes that the brain evolves as a coordinated structure due to developmental constraints [4]. These hypotheses have been widely debated [3-7], and recent studies suggest a combination of the two best describes vertebrate brain region scaling [8-10]. However, no study has addressed how the mosaic and concerted models relate to the evolution of novel behavioral phenotypes. We addressed this question using African mormyroid fishes. The mormyroids have evolved a novel active electrosensory system and are well known for having extreme encephalization [11] and a large cerebellum [2, 12], which is cited as a possible example of mosaic evolution [2]. We found that compared to outgroups without active electrosensing, mormyroids experienced mosaic increases in the sizes of the cerebellum and hindbrain, and mosaic decreases in the sizes of the telencephalon, optic tectum, and olfactory bulb. However, the evolution of extreme encephalization within mormyroids was associated with concerted changes in the sizes of all brain regions. This suggests that mosaic evolutionary change in the regional composition of the brain is most likely to occur alongside the evolution of novel behavioral functions, but not with the evolution of extreme encephalization.


Assuntos
Evolução Biológica , Cerebelo/anatomia & histologia , Peixe Elétrico/anatomia & histologia , Sensação/fisiologia , Animais , Cerebelo/fisiologia , Peixe Elétrico/fisiologia , Tamanho do Órgão
14.
Brain Behav Evol ; 92(3-4): 125-141, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30820010

RESUMO

The ability to localize communication signals plays a fundamental role in social interactions. For signal localization to take place, the sensory system of the receiver must extract information about distance and direction to the sender from physical characteristics of the signal. In many sensory systems, information from multiple peripheral receptors must be integrated by central sensory pathways to determine the sender location. Here, we asked whether evolutionary divergence in the electrosensory and visual systems of mormyrid fish is associated with signal localization behavior. In mormyrids, differences in the distribution of electroreceptors on the surface of the skin are associated with differences in the midbrain exterolateral nucleus (EL). Species with electroreceptors clustered in three rosettes on both sides of the head have a small and undifferentiated EL. In contrast, EL is enlarged and subdivided into anterior (ELa) and posterior (ELp) regions in species that have electroreceptors broadly -distributed throughout the body. Interestingly, species with EL and clustered electroreceptors also have larger visual systems and higher visual acuity than species with ELa/ELp and broadly distributed electroreceptors. Species with broadly distributed electroreceptors and ELa/ELp approached a simulated conspecific by following the curved electric field lines generated by the electrosensory stimulus. In contrast, a species with small EL and clustered electroreceptors, but an enlarged visual system, followed shorter and straighter paths to the stimulus source. In the central electrosensory system, evoked field potentials in response to stimuli delivered from the left versus the right differed more in EL than in ELa/ELp. Our results suggest that signal localization behavior is associated with differences in sensory specializations. We propose that the distribution of electroreceptors on the body affects the ability of individuals to align parallel to electric field lines and maintain such alignment while approaching the signal source. The spatial resolution of sensory information relayed from the periphery to the midbrain in species with clustered electroreceptors may allow for gross, but not fine, processing of sender location. Furthermore, visual information may play an important role in localizing signaling individuals in species with small EL and clustered electroreceptors. In line with previous studies, we suggest that the physiological and behavioral differences associated with signal localization reflect adaptations to different habitats and social environments.


Assuntos
Peixe Elétrico/anatomia & histologia , Peixe Elétrico/fisiologia , Órgão Elétrico/fisiologia , Vias Aferentes/fisiologia , Animais , Evolução Biológica , Eletricidade , Eletrofisiologia/métodos , Potenciais Evocados/fisiologia , Sensação/fisiologia , Células Receptoras Sensoriais/fisiologia , Especificidade da Espécie
15.
Fish Physiol Biochem ; 43(6): 1517-1529, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28589316

RESUMO

This paper explores the plasticity of sexually dimorphic characters in subadult female Brevimyrus niger, an African weakly electric mormyrid species. Thirty-five fish were exposed in a staggered fashion (five fish a week) to aromatizable 17α-methyltestosterone over a period of 7 weeks; 18 fish served as untreated controls. 17α-MT induced precocious vitellogenesis that mirrored the natural maturational process during seasonal ovarian recrudescence. At the same time, 17α-MT exposure resulted in complete masculinization of the females' anal fin support structure normally observed during rainy season in adult males. We discuss possible hormonal mechanisms acting along the brain-pituitary-gonad axis that would explain the occurrence of precocious vitellogenesis and the male-typical transformation of the female's anal fin ray bases. Our findings are relevant to commercial aquaculture as the use of 17α-MT in fish hatcheries can pose serious environmental issues.


Assuntos
Transtornos do Desenvolvimento Sexual/induzido quimicamente , Peixe Elétrico/anatomia & histologia , Metiltestosterona/efeitos adversos , Androgênios , Animais , Feminino , Tamanho do Órgão , Ovário/efeitos dos fármacos , Ovário/patologia
16.
Tissue Cell ; 49(2 Pt B): 257-269, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28242105

RESUMO

Hypothalamic nonapeptides (arginin vasotocin-vasopressin, oxytocin-isotocin) are known to modulate social behaviors across vertebrates. The neuroanatomical conservation of nonapeptide systems enables the use of novel vertebrate model species to identify general strategies of their functional mechanisms. We present a detailed immunohistochemical description of vasotocin (AVT) cell populations and their projections in two species of weakly electric fish with different social structure, Gymnotus omarorum and Brachyhypopomus gauderio. Strong behavioral, pharmacological, and electrophysiological evidence support that AVT modulation of electric behavior differs between the gregarious B. gauderio and the solitary G. omarorum. This functional diversity does not necessarily depend on anatomical differences of AVT neurons. To test this, we focus on interspecific comparisons of the AVT system in basal non-breeding males along the brain. G. omarorum and B. gauderio showed similar AVT somata sizes and comparable distributions of AVT somata and fibers. Interestingly, AVT fibers project to areas related to the control of social behavior and electromotor displays in both species. We found that no gross anatomical differences in the organization of the AVT system account for functional differences between species, which rather shall depend on the pattern of activation of neurons embedded in the same basic anatomical organization of the AVT system.


Assuntos
Peixe Elétrico/metabolismo , Hipotálamo/metabolismo , Neurônios/metabolismo , Vasotocina/metabolismo , Animais , Comportamento Animal/fisiologia , Peixe Elétrico/anatomia & histologia , Peixe Elétrico/crescimento & desenvolvimento , Hierarquia Social , Hipotálamo/anatomia & histologia , Hipotálamo/crescimento & desenvolvimento , Masculino
17.
Bioinspir Biomim ; 12(2): 025004, 2017 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-28151730

RESUMO

Electric fish are privileged animals for bio-inspiring man-built autonomous systems since they have a multimodal sense that allows underwater navigation, object classification and intraspecific communication. Although there are taxon dependent variations adapted to different environments, this multimodal system can be schematically described as having four main components: active electroreception, passive electroreception, lateral line sense and, proprioception. Amongst these sensory modalities, proprioception and electroreception show 'active' systems that extrct information carried by self generated forms of energy. This ensemble of four sensory modalities is present in African mormyriformes and American gymnotiformes. The convergent evolution of similar imaging, peripheral encoding, and central processing mechanisms suggests that these mechanisms may be the most suitable for dealing with electric images in the context of the other and self generated actions. This review deals with the way in which biological organisms address three of the problems that are faced when designing a bioinspired electroreceptive agent: (a) body shape, material and mobility, (b) peripheral encoding of electric images, and (c) early processing of electrosensory signals. Taking into account biological solutions I propose that the new generation of underwater agents should have electroreceptive arms, use complex peripheral sensors for encoding the images and cerebellum like architecture for image feature extraction and implementing sensory-motor transformations.


Assuntos
Materiais Biomiméticos , Biomimética , Peixe Elétrico/fisiologia , Órgão Elétrico/fisiologia , Animais , Peixe Elétrico/anatomia & histologia , Desenho de Equipamento , Gimnotiformes/anatomia & histologia , Gimnotiformes/fisiologia , Movimento , Propriocepção , Células Receptoras Sensoriais
18.
J Comp Neurol ; 525(1): 8-46, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27292574

RESUMO

Teleost fish are capable of complex behaviors, including social and spatial learning; lesion studies show that these abilities require dorsal telencephalon (pallium). The teleost telencephalon has subpallial and pallial components. The subpallium is well described and highly conserved. In contrast, the teleost pallium is not well understood and its relation to that of other vertebrates remains controversial. Here we analyze the connectivity of the subdivisions of dorsal pallium (DD) of an electric gymnotiform fish, Apteronotus leptorhynchus: superficial (DDs), intermediate (DDi) and magnocellular (DDmg) components. The major pathways are recursive: the dorsolateral pallium (DL) projects strongly to DDi, with lesser inputs to DDs and DDmg. DDi in turn projects strongly to DDmg, which then feeds back diffusely to DL. Our quantitative analysis of DDi connectivity demonstrates that it is a global recurrent network. In addition, we show that the DD subnuclei have complex reciprocal connections with subpallial regions. Specifically, both DDi and DDmg are reciprocally connected to pallial interneurons within the misnamed rostral entopeduncular nucleus (Er). Based on DD connectivity, we illustrate the close similarity, and possible homology, between hippocampal and DD/DL circuitry. We hypothesize that DD/DL circuitry can implement the same pattern separation and completion computations ascribed to the hippocampal dentate gyrus and CA3 fields. We further contend that the DL to DDi to DDmg to DL feedback loop makes the pattern separation/completion operations recursive. We discuss our results with respect to recent studies on fear avoidance conditioning in zebrafish and attention and spatial learning in a pulse gymnotiform fish. J. Comp. Neurol. 525:8-46, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Cérebro/anatomia & histologia , Peixe Elétrico/anatomia & histologia , Animais , Cérebro/metabolismo , Conexinas/genética , Conexinas/metabolismo , Peixe Elétrico/genética , Peixe Elétrico/metabolismo , Retroalimentação Fisiológica , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Imuno-Histoquímica , Hibridização In Situ , Modelos Neurológicos , Vias Neurais/anatomia & histologia , Vias Neurais/metabolismo , Técnicas de Rastreamento Neuroanatômico , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Ácido gama-Aminobutírico/metabolismo
19.
J Fish Biol ; 90(1): 147-155, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27739056

RESUMO

This osteological survey of 249 specimens of Brevimyrus niger ranging in size from 44 to 137 mm standard length (LS ) demonstrated that developmental changes in anal-fin morphology can serve as a predictor of sexual maturity in this species. Anal-fin ray bases begin to expand when fish reach c. 90 mm LS at which size and above there were roughly equal numbers of individuals observed with expanded and unmodified anal-fin bases, reflecting a 1:1 sex ratio.


Assuntos
Nadadeiras de Animais/anatomia & histologia , Peixe Elétrico/anatomia & histologia , Peixe Elétrico/fisiologia , Maturidade Sexual/fisiologia , Animais , Feminino , Masculino , Razão de Masculinidade
20.
Proc Biol Sci ; 283(1845)2016 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-28003448

RESUMO

A large brain can offer several cognitive advantages. However, brain tissue has an especially high metabolic rate. Thus, evolving an enlarged brain requires either a decrease in other energetic requirements, or an increase in overall energy consumption. Previous studies have found conflicting evidence for these hypotheses, leaving the metabolic costs and constraints in the evolution of increased encephalization unclear. Mormyrid electric fishes have extreme encephalization comparable to that of primates. Here, we show that brain size varies widely among mormyrid species, and that there is little evidence for a trade-off with organ size, but instead a correlation between brain size and resting oxygen consumption rate. Additionally, we show that increased brain size correlates with decreased hypoxia tolerance. Our data thus provide a non-mammalian example of extreme encephalization that is accommodated by an increase in overall energy consumption. Previous studies have found energetic trade-offs with variation in brain size in taxa that have not experienced extreme encephalization comparable with that of primates and mormyrids. Therefore, we suggest that energetic trade-offs can only explain the evolution of moderate increases in brain size, and that the energetic requirements of extreme encephalization may necessitate increased overall energy investment.


Assuntos
Encéfalo/anatomia & histologia , Peixe Elétrico/anatomia & histologia , Metabolismo Energético , Hipóxia/fisiopatologia , Animais , Evolução Biológica , Tamanho do Órgão , Consumo de Oxigênio , Primatas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...