Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.022
Filtrar
1.
Sci Rep ; 13(1): 22594, 2023 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-38114646

RESUMO

Evolutionary phenotypic transitions, such as the fin-to-limb transition in vertebrates, result from modifications in related proteins and their interactions, often in response to changing environment. Identifying these alterations in protein networks is crucial for a more comprehensive understanding of these transitions. However, previous research has not attempted to compare protein-protein interaction (PPI) networks associated with evolutionary transitions, and most experimental studies concentrate on a limited set of proteins. Therefore, the goal of this work was to develop a network-based platform for investigating the fin-to-limb transition using PPI networks. Quality-enhanced protein networks, constructed by integrating PPI networks with anatomy ontology data, were leveraged to compare protein modules for paired fins (pectoral fin and pelvic fin) of fishes (zebrafish) to those of the paired limbs (forelimb and hindlimb) of mammals (mouse). This also included prediction of novel protein candidates and their validation by enrichment and homology analyses. Hub proteins such as shh and bmp4, which are crucial for module stability, were identified, and their changing roles throughout the transition were examined. Proteins with preserved roles during the fin-to-limb transition were more likely to be hub proteins. This study also addressed hypotheses regarding the role of non-preserved proteins associated with the transition.


Assuntos
Nadadeiras de Animais , Perciformes , Animais , Camundongos , Nadadeiras de Animais/anatomia & histologia , Peixe-Zebra/anatomia & histologia , Mapas de Interação de Proteínas , Evolução Biológica , Perciformes/fisiologia , Proteínas , Extremidades/fisiologia , Mamíferos
2.
Nature ; 618(7965): 543-549, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37225983

RESUMO

The development of paired appendages was a key innovation during evolution and facilitated the aquatic to terrestrial transition of vertebrates. Largely derived from the lateral plate mesoderm (LPM), one hypothesis for the evolution of paired fins invokes derivation from unpaired median fins via a pair of lateral fin folds located between pectoral and pelvic fin territories1. Whilst unpaired and paired fins exhibit similar structural and molecular characteristics, no definitive evidence exists for paired lateral fin folds in larvae or adults of any extant or extinct species. As unpaired fin core components are regarded as exclusively derived from paraxial mesoderm, any transition presumes both co-option of a fin developmental programme to the LPM and bilateral duplication2. Here, we identify that the larval zebrafish unpaired pre-anal fin fold (PAFF) is derived from the LPM and thus may represent a developmental intermediate between median and paired fins. We trace the contribution of LPM to the PAFF in both cyclostomes and gnathostomes, supporting the notion that this is an ancient trait of vertebrates. Finally, we observe that the PAFF can be bifurcated by increasing bone morphogenetic protein signalling, generating LPM-derived paired fin folds. Our work provides evidence that lateral fin folds may have existed as embryonic anlage for elaboration to paired fins.


Assuntos
Nadadeiras de Animais , Evolução Biológica , Mesoderma , Peixe-Zebra , Animais , Nadadeiras de Animais/anatomia & histologia , Nadadeiras de Animais/embriologia , Nadadeiras de Animais/crescimento & desenvolvimento , Larva/anatomia & histologia , Larva/crescimento & desenvolvimento , Mesoderma/anatomia & histologia , Mesoderma/embriologia , Mesoderma/crescimento & desenvolvimento , Peixe-Zebra/anatomia & histologia , Peixe-Zebra/embriologia , Peixe-Zebra/crescimento & desenvolvimento , Proteínas Morfogenéticas Ósseas/metabolismo
3.
Dev Dyn ; 251(8): 1306-1321, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35403297

RESUMO

BACKGROUND: Caudal fin symmetry characterizes teleosts and likely contributes to their evolutionary success. However, the coordinated development and patterning of skeletal elements establishing external symmetry remains incompletely understood. We explore the spatiotemporal emergence of caudal skeletal elements in zebrafish to consider evolutionary and developmental origins of caudal fin symmetry. RESULTS: Transgenic reporters and skeletal staining reveal that the hypural diastema-defining gap between hypurals 2 and 3 forms early and separates progenitors of two plates of connective tissue. Two sets of central principal rays (CPRs) synchronously, sequentially, and symmetrically emerge around the diastema. The two dorsal- and ventral-most rays (peripheral principal rays, PPRs) arise independently and earlier than adjacent CPRs. Muscle and tendon markers reveal that different muscles attach to CPR and PPR sets. CONCLUSIONS: We propose that caudal fin symmetry originates from a central organizer that establishes the hypural diastema and bidirectionally patterns surrounding tissue into two plates of connective tissue and two mirrored sets of CPRs. Further, two peripheral organizers unidirectionally specify PPRs, forming a symmetric "composite" fin derived from three fields. Distinct CPR and PPR ontogenies may represent developmental modules conferring ray identities, muscle connections, and biomechanical properties. Our model contextualizes mechanistic studies of teleost fin morphological variation.


Assuntos
Diastema , Peixe-Zebra , Nadadeiras de Animais/anatomia & histologia , Animais , Animais Geneticamente Modificados , Evolução Biológica , Peixe-Zebra/anatomia & histologia
4.
Development ; 149(4)2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35142351

RESUMO

The zebrafish has become a widely used animal model due, in large part, to its accessibility to and usefulness for high-resolution optical imaging. Although zebrafish research has historically focused mostly on early development, in recent years the fish has increasingly been used to study regeneration, cancer metastasis, behavior and other processes taking place in juvenile and adult animals. However, imaging of live adult zebrafish is extremely challenging, with survival of adult fish limited to a few tens of minutes using standard imaging methods developed for zebrafish embryos and larvae. Here, we describe a new method for imaging intubated adult zebrafish using a specially designed 3D printed chamber for long-term imaging of adult zebrafish on inverted microscope systems. We demonstrate the utility of this new system by nearly day-long observation of neutrophil recruitment to a wound area in living double-transgenic adult casper zebrafish with fluorescently labeled neutrophils and lymphatic vessels, as well as intubating and imaging the same fish repeatedly. We also show that Mexican cavefish can be intubated and imaged in the same way, demonstrating this method can be used for long-term imaging of adult animals from diverse aquatic species.


Assuntos
Microscopia de Fluorescência/métodos , Peixe-Zebra/anatomia & histologia , Animais , Animais Geneticamente Modificados/imunologia , Animais Geneticamente Modificados/metabolismo , Embrião não Mamífero/anatomia & histologia , Embrião não Mamífero/metabolismo , Larva/anatomia & histologia , Larva/crescimento & desenvolvimento , Larva/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Neutrófilos/citologia , Neutrófilos/imunologia , Neutrófilos/patologia , Impressão Tridimensional , Imagem com Lapso de Tempo , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/metabolismo
5.
Development ; 149(5)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35132436

RESUMO

The pectoral fins of teleost fish are analogous structures to human forelimbs, and the developmental mechanisms directing their initial growth and patterning are conserved between fish and tetrapods. The forelimb vasculature is crucial for limb function, and it appears to play important roles during development by promoting development of other limb structures, but the steps leading to its formation are poorly understood. In this study, we use high-resolution imaging to document the stepwise assembly of the zebrafish pectoral fin vasculature. We show that fin vascular network formation is a stereotyped, choreographed process that begins with the growth of an initial vascular loop around the pectoral fin. This loop connects to the dorsal aorta to initiate pectoral vascular circulation. Pectoral fin vascular development continues with concurrent formation of three elaborate vascular plexuses, one in the distal fin that develops into the fin-ray vasculature and two near the base of the fin in association with the developing fin musculature. Our findings detail a complex, yet highly choreographed, series of steps involved in the development of a complete, functional, organ-specific vascular network.


Assuntos
Nadadeiras de Animais/anatomia & histologia , Nadadeiras de Animais/crescimento & desenvolvimento , Peixe-Zebra/anatomia & histologia , Peixe-Zebra/crescimento & desenvolvimento , Animais
6.
EMBO Rep ; 23(2): e52963, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-34889034

RESUMO

While the chemical signals guiding neuronal migration and axon elongation have been extensively studied, the influence of mechanical cues on these processes remains poorly studied in vivo. Here, we investigate how mechanical forces exerted by surrounding tissues steer neuronal movements and axon extension during the morphogenesis of the olfactory placode in zebrafish. We mainly focus on the mechanical contribution of the adjacent eye tissue, which develops underneath the placode through extensive evagination and invagination movements. Using quantitative analysis of cell movements and biomechanical manipulations, we show that the developing eye exerts lateral traction forces on the olfactory placode through extracellular matrix, mediating proper morphogenetic movements and axon extension within the placode. Our data shed new light on the key participation of intertissue mechanical interactions in the sculpting of neuronal circuits.


Assuntos
Condutos Olfatórios , Peixe-Zebra , Animais , Axônios/fisiologia , Ectoderma , Morfogênese , Neurogênese , Condutos Olfatórios/anatomia & histologia , Condutos Olfatórios/fisiologia , Peixe-Zebra/anatomia & histologia , Peixe-Zebra/fisiologia
7.
Front Immunol ; 12: 769901, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34880866

RESUMO

The zebrafish is extensively used as an animal model for human and fish diseases. However, our understanding of the structural organization of its immune system remains incomplete, especially the mucosa-associated lymphoid tissues (MALTs). Teleost MALTs are commonly perceived as diffuse and scattered populations of immune cells throughout the mucosa. Yet, structured MALTs have been recently discovered in Atlantic salmon (Salmo salar L.), including the interbranchial lymphoid tissue (ILT) in the gills. The existence of the ILT was only recently identified in zebrafish and other fish species, highlighting the need for in-depth characterizations of the gill-associated lymphoid tissue (GIALT) in teleosts. Here, using 3-D high-resolution microscopy, we analyze the GIALT of adult zebrafish with an immuno-histology approach that reveals the organization of lymphoid tissues via the labeling of T/NK cells with an antibody directed to a highly conserved epitope on the kinase ZAP70. We show that the GIALT in zebrafish is distributed over at least five distinct sub-regions, an organization found in all pairs of gill arches. The GIALT is diffuse in the pharyngeal part of the gill arch, the interbranchial septum and the filaments/lamellae, and structured in two sub-regions: the ILT, and a newly discovered lymphoid structure located along each side of the gill arch, which we named the Amphibranchial Lymphoid Tissue (ALT). Based on RAG2 expression, neither the ILT nor the ALT constitute additional thymi. The ALT shares several features with the ILT such as presence of abundant lymphoid cells and myeloid cells embedded in a network of reticulated epithelial cells. Further, the ILT and the ALT are also a site for T/NK cell proliferation. Both ILT and ALT show structural changes after infection with Spring Viraemia of Carp Virus (SVCV). Together, these data suggest that ALT and ILT play an active role in immune responses. Comparative studies show that whereas the ILT seems absent in most neoteleosts ("Percomorphs"), the ALT is widely present in cyprinids, salmonids and neoteleosts, suggesting that it constitutes a conserved tissue involved in the protection of teleosts via the gills.


Assuntos
Doenças dos Peixes/patologia , Brânquias/imunologia , Imageamento Tridimensional/métodos , Tecido Linfoide/diagnóstico por imagem , Peixe-Zebra/imunologia , Animais , Brânquias/anatomia & histologia , Brânquias/diagnóstico por imagem , Tecido Linfoide/citologia , Viremia/patologia , Peixe-Zebra/anatomia & histologia
8.
Elife ; 102021 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-34806976

RESUMO

Zebrafish have made significant contributions to our understanding of the vertebrate brain and the neural basis of behavior, earning a place as one of the most widely used model organisms in neuroscience. Their appeal arises from the marriage of low cost, early life transparency, and ease of genetic manipulation with a behavioral repertoire that becomes more sophisticated as animals transition from larvae to adults. To further enhance the use of adult zebrafish, we created the first fully segmented three-dimensional digital adult zebrafish brain atlas (AZBA). AZBA was built by combining tissue clearing, light-sheet fluorescence microscopy, and three-dimensional image registration of nuclear and antibody stains. These images were used to guide segmentation of the atlas into over 200 neuroanatomical regions comprising the entirety of the adult zebrafish brain. As an open source, online (azba.wayne.edu), updatable digital resource, AZBA will significantly enhance the use of adult zebrafish in furthering our understanding of vertebrate brain function in both health and disease.


Assuntos
Encéfalo/anatomia & histologia , Peixe-Zebra/anatomia & histologia , Animais , Atlas como Assunto , Imageamento Tridimensional/métodos , Microscopia de Fluorescência/métodos , Coloração e Rotulagem
9.
Commun Biol ; 4(1): 1261, 2021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34737378

RESUMO

Simultaneous longitudinal imaging across multiple conditions and replicates has been crucial for scientific studies aiming to understand biological processes and disease. Yet, imaging systems capable of accomplishing these tasks are economically unattainable for most academic and teaching laboratories around the world. Here, we propose the Picroscope, which is the first low-cost system for simultaneous longitudinal biological imaging made primarily using off-the-shelf and 3D-printed materials. The Picroscope is compatible with standard 24-well cell culture plates and captures 3D z-stack image data. The Picroscope can be controlled remotely, allowing for automatic imaging with minimal intervention from the investigator. Here, we use this system in a range of applications. We gathered longitudinal whole organism image data for frogs, zebrafish, and planaria worms. We also gathered image data inside an incubator to observe 2D monolayers and 3D mammalian tissue culture models. Using this tool, we can measure the behavior of entire organisms or individual cells over long-time periods.


Assuntos
Imageamento Tridimensional/métodos , Mamíferos , Planárias , Xenopus , Peixe-Zebra , Animais , Comportamento Animal , Mamíferos/fisiologia , Organoides/fisiologia , Planárias/anatomia & histologia , Planárias/fisiologia , Xenopus/anatomia & histologia , Xenopus/fisiologia , Peixe-Zebra/anatomia & histologia , Peixe-Zebra/fisiologia
10.
Sci Rep ; 11(1): 20228, 2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34642406

RESUMO

The mating behavior of teleost fish consists of a sequence of stereotyped actions. By observing mating of zebrafish under high-speed video, we analyzed and characterized a behavioral cascade leading to successful fertilization. When paired, a male zebrafish engages the female by oscillating his body in high frequency (quivering). In response, the female pauses swimming and bends her body (freezing). Subsequently, the male contorts his trunk to enfold the female's trunk. This behavior is known as wrap around. Here, we found that wrap around behavior consists of two previously unidentified components. After both sexes contort their trunks, the male adjusts until his trunk compresses the female's dorsal fin (hooking). After hooking, the male trunk slides away from the female's dorsal fin, simultaneously sliding his pectoral fin across the female's gravid belly, stimulating egg release (squeezing/spawning). Orchestrated coordination of spawning presumably increases fertilization success. Surgical removal of the female dorsal fin inhibited hooking and the transition to squeezing. In a neuromuscular mutant where males lack quivering, female freezing and subsequent courtship behaviors were absent. We thus identified traits of zebrafish mating behavior and clarified their roles in successful mating.


Assuntos
Copulação/fisiologia , Gravação em Vídeo/métodos , Peixe-Zebra/fisiologia , Nadadeiras de Animais/fisiologia , Animais , Corte , Feminino , Fertilização , Masculino , Natação , Peixe-Zebra/anatomia & histologia
11.
J Cell Biochem ; 122(10): 1435-1444, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34111320

RESUMO

Autophagy is a central pathway in maintaining cellular homeostasis through the recycling of damaged proteins and organelles. Detection of LC3 protein levels by immunofluorescence or western blot analysis is one of the most common ways to measure autophagy. For quantitative autophagy analysis, LC3 western blot analysis is commonly used, whereas immunostaining is used for qualitative autophagy analysis. However, zebrafish larvae have a lot of proteases that rapidly degrade LC3 protein in samples. P62 is another autophagy marker that bind to damaged proteins and can reflects autophagic status. This study demonstrates a fast and accurate way to quantify autophagy from LC3 and/or P62 immunostaining images. We used a three-dimensional analysis of whole-mount LC3 immunostaining images of zebrafish larvae. Counting LC3 and P62 punctate by two dimensions can be used as a qualitative method for the analysis of autophagy. However, here we demonstrate that 3D image analysis can be used as a quantitative, rapid tool for monitoring autophagy in zebrafish larvae and avoiding drawbacks of LC3 western blot analysis.


Assuntos
Imageamento Tridimensional/métodos , Proteínas Associadas aos Microtúbulos/metabolismo , Proteína Sequestossoma-1/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Animais , Autofagia/fisiologia , Imuno-Histoquímica , Larva/anatomia & histologia , Larva/crescimento & desenvolvimento , Larva/metabolismo , Peixe-Zebra/anatomia & histologia , Peixe-Zebra/crescimento & desenvolvimento
12.
Toxicol In Vitro ; 75: 105195, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34022403

RESUMO

The potential developmental toxicity and mode-of-action of fume condensate extracts of bitumen and oxidized asphalt were evaluated in the aryl hydrocarbon receptor (AhR) CALUX assay, the zebrafish embryotoxicity test (ZET), and the mouse embryonic stem cell test (mEST). In the AhR CALUX assay, both fume condensate extracts showed a concentration-dependent AhR induction following 6-h of exposure, but this activity was substantially reduced after 24-h, indicating a transient AhR activation. The main effect observed in the ZET was early embryonic lethality that occurred mostly in the 24 h-post-fertilization (hpf). This typically reflects non-specific toxicity rather than in vitro developmental toxicity of the fume condensate extracts tested since this effect was not seen as a result of the whole cumulative exposure period in the ZET (up to 96 hpf). No malformations were seen in any zebrafish embryo exposed to these fume condensate extracts, although some developed pericardial and/or yolk-sac edemas. Furthermore, both fume condensate extracts tested negative in the mEST. In conclusion, the results show that fume condensate extracts of bitumen and oxidized asphalt do not induce any in vitro developmental toxicity, which is in line with the results observed in the in vivo prenatal developmental toxicity studies performed with the same materials.


Assuntos
Misturas Complexas/toxicidade , Embrião não Mamífero/efeitos dos fármacos , Hidrocarbonetos/toxicidade , Células-Tronco Embrionárias Murinas/efeitos dos fármacos , Receptores de Hidrocarboneto Arílico/genética , Alternativas aos Testes com Animais , Animais , Bioensaio , Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Embrião não Mamífero/anatomia & histologia , Desenvolvimento Embrionário/efeitos dos fármacos , Genes Reporter , Camundongos , Testes de Toxicidade , Peixe-Zebra/anatomia & histologia
13.
Science ; 372(6538): 150-156, 2021 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-33833117

RESUMO

In most vertebrates, camera-style eyes contain retinal ganglion cell neurons that project to visual centers on both sides of the brain. However, in fish, ganglion cells were thought to innervate only the contralateral side, suggesting that bilateral visual projections appeared in tetrapods. Here we show that bilateral visual projections exist in non-teleost fishes and that the appearance of ipsilateral projections does not correlate with terrestrial transition or predatory behavior. We also report that the developmental program that specifies visual system laterality differs between fishes and mammals, as the Zic2 transcription factor, which specifies ipsilateral retinal ganglion cells in tetrapods, appears to be absent from fish ganglion cells. However, overexpression of human ZIC2 induces ipsilateral visual projections in zebrafish. Therefore, the existence of bilateral visual projections likely preceded the emergence of binocular vision in tetrapods.


Assuntos
Evolução Biológica , Encéfalo/anatomia & histologia , Peixes/anatomia & histologia , Peixes/genética , Células Ganglionares da Retina/citologia , Vias Visuais , Animais , Diferenciação Celular , Olho/anatomia & histologia , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Peixes/metabolismo , Lateralidade Funcional , Humanos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Retina/embriologia , Retina/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Visão Binocular , Peixe-Zebra/anatomia & histologia , Peixe-Zebra/genética
14.
Tissue Cell ; 72: 101545, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33915358

RESUMO

Zebrafish (Danio rerio) studies describe before the onset of mature gonads differentiation all individuals go through a "juvenile ovary" stage. However, the sequential events of the early zebrafish gonad differentiation are still not described in full detail and recent works indicate that some individuals never form a "juvenile ovary" structure. Therefore, the present study aimed to confirm the existence of two processes of zebrafish male differentiation. For this purpose, every two days between 20 and 30 days post-fertilization (dpf) zebrafish were collected for a stereological analysis of the differentiating gonads. The histological evaluation showed that prior to 22 dpf, zebrafish gonads were still undifferentiated. At 24 dpf, some individuals started to present a "juvenile ovary" and from 26 to 30 dpf, it was possible to discern two processes of gonad development. The majority of the individuals (80 %) developed a "juvenile ovary", while in the remaining (20 %) it was not possible to detect this structure. The results of the present study show the existence of two distinct processes of zebrafish male gonad development, indicating that not all individuals go through the "juvenile ovary" stage.


Assuntos
Ovário/crescimento & desenvolvimento , Diferenciação Sexual , Testículo/crescimento & desenvolvimento , Peixe-Zebra/crescimento & desenvolvimento , Animais , Feminino , Masculino , Ovário/citologia , Fenótipo , Análise de Componente Principal , Testículo/citologia , Peixe-Zebra/anatomia & histologia
15.
STAR Protoc ; 2(1): 100388, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33778782

RESUMO

Endothelial tip cells (ETCs) located at growing blood vessels display high morphological dynamics and associated intracellular Ca2+ activities with different spatiotemporal patterns during migration. Examining the Ca2+ activity and morphological dynamics of ETCs will provide an insight for understanding the mechanism of vascular development in organs, including the brain. Here, we describe a method for simultaneous monitoring and relevant analysis of the Ca2+ activity and morphology of growing brain ETCs in larval zebrafish. For complete details on the use and execution of this protocol, please refer to Liu et al. (2020).


Assuntos
Mapeamento Encefálico/métodos , Cálcio/metabolismo , Neovascularização Fisiológica/fisiologia , Animais , Encéfalo/irrigação sanguínea , Encéfalo/citologia , Diagnóstico por Imagem/métodos , Células Endoteliais/metabolismo , Imunofluorescência/métodos , Larva/metabolismo , Peixe-Zebra/anatomia & histologia , Peixe-Zebra/fisiologia
16.
Int J Mol Sci ; 22(4)2021 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-33670431

RESUMO

A reduction in daily caloric or nutrient intake has been observed to promote health benefits in mammals and other vertebrates. Feed Restriction (FR), whereby the overall food intake of the organism is reduced, has been explored as a method to improve metabolic and immune health, as well as to optimize productivity in farming. However, less is known regarding the molecular and physiological consequences of FR. Using the model organism, Danio rerio, we investigated the impact of a short-term (month-long) FR on growth, gut morphology and gene expression. Our data suggest that FR has minimal effects on the average growth rates, but it may affect weight and size heterogeneity in a sex-dependent manner. In the gut, we observed a significant reduction in gut circumference and generally lower mucosal heights, whereas other parameters remained unchanged. Gene Ontology (GO), EuKaryotic Orthologous Groups (KOG), and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis identified numerous metabolic, reproductive, and immune response pathways that were affected by FR. These results broaden our understanding of FR and contribute towards growing knowledge of its effects on vertebrate health.


Assuntos
Ingestão de Alimentos , Ingestão de Energia , Regulação da Expressão Gênica , Intestinos/crescimento & desenvolvimento , Caracteres Sexuais , Peixe-Zebra/crescimento & desenvolvimento , Ração Animal , Animais , Feminino , Intestinos/anatomia & histologia , Masculino , Peixe-Zebra/anatomia & histologia
17.
Curr Biol ; 31(5): R239-R240, 2021 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-33689719

RESUMO

It is a well-established fact that different tissues within the body contain their own circadian clocks or pacemakers, where it is proposed that the clock controls the local, daily cell biology of that organ.1,2 In mammals, these peripheral clocks work in concert with and are entrained by rhythmic signals arising from the suprachiasmatic nucleus (SCN) in the hypothalamus of the animal, among other systemic cues.2 In the case of zebrafish, the circadian system appears to be highly decentralized with each tissue not only having an internal circadian clock, but also being directly light entrained.1 Several years ago, we showed that the zebrafish heart contains its own circadian pacemaker at the gene expression level.1 This is also the case in mammals, where the circadian clock controls approximately 10% of the genes expressed in the heart.3 However, heart rate itself is generally thought to be regulated by several well-described autonomic cues, neurotransmitters, and hormones. In this study, we report that, for larval zebrafish hearts, the daily change in heartbeat rate is not only clock-controlled in vivo, but that this rhythm also persists in vitro, indicating that the cardiac circadian clock itself can directly drive this major physiological oscillation.


Assuntos
Relógios Circadianos , Ritmo Circadiano , Frequência Cardíaca , Peixe-Zebra/anatomia & histologia , Peixe-Zebra/fisiologia , Animais
18.
Development ; 148(7)2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33722902

RESUMO

Niemann-Pick disease type C (NPC) is a rare, fatal, neurodegenerative lysosomal disease caused by mutations of either NPC1 or NPC2. NPC2 is a soluble lysosomal protein that functions in coordination with NPC1 to efflux cholesterol from the lysosomal compartment. Mutations of either gene result in the accumulation of unesterified cholesterol and other lipids in the late endosome/lysosome, and reduction of cellular cholesterol bioavailability. Zygotic null npc2m/m zebrafish showed significant unesterified cholesterol accumulation at larval stages, a reduction in body size, and motor and balance defects in adulthood. However, the phenotype at embryonic stages was milder than expected, suggesting a possible role of maternal Npc2 in embryonic development. Maternal-zygotic npc2m/m zebrafish exhibited significant developmental defects, including defective otic vesicle development/absent otoliths, abnormal head/brain development, curved/twisted body axes and no circulating blood cells, and died by 72 hpf. RNA-seq analysis conducted on 30 hpf npc2+/m and MZnpc2m/m embryos revealed a significant reduction in the expression of notch3 and other downstream genes in the Notch signaling pathway, suggesting that impaired Notch3 signaling underlies aspects of the developmental defects observed in MZnpc2m/m zebrafish.


Assuntos
Doença de Niemann-Pick Tipo C/genética , Doença de Niemann-Pick Tipo C/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Animais , Transporte Biológico , Colesterol/metabolismo , Desenvolvimento Embrionário , Endossomos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Larva/anatomia & histologia , Lisossomos/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Receptor Notch3/genética , Receptor Notch3/metabolismo , Peixe-Zebra/anatomia & histologia , Peixe-Zebra/embriologia , Proteínas de Peixe-Zebra/genética
19.
Nat Commun ; 12(1): 1118, 2021 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-33602914

RESUMO

Modern biomedical research and preclinical pharmaceutical development rely heavily on the phenotyping of small vertebrate models for various diseases prior to human testing. In this article, we demonstrate an acoustofluidic rotational tweezing platform that enables contactless, high-speed, 3D multispectral imaging and digital reconstruction of zebrafish larvae for quantitative phenotypic analysis. The acoustic-induced polarized vortex streaming achieves contactless and rapid (~1 s/rotation) rotation of zebrafish larvae. This enables multispectral imaging of the zebrafish body and internal organs from different viewing perspectives. Moreover, we develop a 3D reconstruction pipeline that yields accurate 3D models based on the multi-view images for quantitative evaluation of basic morphological characteristics and advanced combinations of metrics. With its contactless nature and advantages in speed and automation, our acoustofluidic rotational tweezing system has the potential to be a valuable asset in numerous fields, especially for developmental biology, small molecule screening in biochemistry, and pre-clinical drug development in pharmacology.


Assuntos
Acústica , Rotação , Peixe-Zebra/anatomia & histologia , Animais , Etanol/farmacologia , Imageamento Tridimensional , Larva/anatomia & histologia , Larva/efeitos dos fármacos , Fígado/anatomia & histologia , Fígado/efeitos dos fármacos , Tamanho do Órgão/efeitos dos fármacos , Fenótipo , Transdutores
20.
J Morphol ; 282(1): 80-87, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33617037

RESUMO

A new, three-dimensional geometric morphometric approach was assessed to study the effect of developmental temperature on fish heart shape utilizing geometric morphometrics of three-dimensional landmarks captured on digitally reconstructed zebrafish hearts. This study reports the first three-dimensional analysis of the fish heart and demonstrates significant shape modifications occurring after three developmental temperature treatments (TD = 24, 28 or 32°C) at two distinct developmental stages (juvenile and adult fish). Elevation of TD induced ventricle roundness in juveniles, males and females. Furthermore, significant differences that have not been described so far in heart morphometric indices (i.e., ventricle sphericity, bulbus arteriosus elongation and relative location, heart asymmetry) were identified. Sex proved to be a significant regulating factor of heart shape plasticity in response to TD. This methodology offers unique benefits by providing a more precise representation of heart shape changes in response to developmental temperature that are otherwise not discernable with the previously described two-dimensional methods. Our work provides the first evidence of three-dimensional shape alterations of the zebrafish heart adding to the emerging rationale of temperature-driven plastic responses of global warming and seasonal temperature disturbances in wild fish populations and in other ectothermic vertebrates as well (amphibians and reptiles).


Assuntos
Ventrículos do Coração/anatomia & histologia , Ventrículos do Coração/crescimento & desenvolvimento , Imageamento Tridimensional , Temperatura , Peixe-Zebra/anatomia & histologia , Peixe-Zebra/crescimento & desenvolvimento , Pontos de Referência Anatômicos , Animais , Feminino , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...