Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.188
Filtrar
1.
Int J Mol Sci ; 25(9)2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38732180

RESUMO

The Pacific white shrimp, Penaeus vannamei, is highly susceptible to white spot syndrome virus (WSSV). Our study explored the transcriptomic responses of P. vannamei from resistant and susceptible families, uncovering distinct expression patterns after WSSV infection. The analysis revealed a higher number of differentially expressed genes (DEGs) in the susceptible family following WSSV infection compared to the resistant family, when both were evaluated against their respective control groups, indicating that the host resistance of the family line influences the transcriptome. The results also showed that subsequent to an identical duration following WSSV infection, there were more DEGs in P. vannamei with a high viral load than in those with a low viral load. To identify common transcriptomic responses, we profiled DEGs across families at 96 and 228 h post-infection (hpi). The analysis yielded 64 up-regulated and 37 down-regulated DEGs at 96 hpi, with 33 up-regulated and 34 down-regulated DEGs at 228 hpi, showcasing the dynamics of the transcriptomic response over time. Real-time RT-PCR assays confirmed significant DEG expression changes post-infection. Our results offer new insights into shrimp's molecular defense mechanisms against WSSV.


Assuntos
Resistência à Doença , Perfilação da Expressão Gênica , Penaeidae , Transcriptoma , Vírus da Síndrome da Mancha Branca 1 , Animais , Penaeidae/virologia , Penaeidae/genética , Penaeidae/imunologia , Vírus da Síndrome da Mancha Branca 1/genética , Perfilação da Expressão Gênica/métodos , Resistência à Doença/genética , Carga Viral , Regulação da Expressão Gênica
2.
Rev Alerg Mex ; 71(1): 75, 2024 Feb 01.
Artigo em Espanhol | MEDLINE | ID: mdl-38683092

RESUMO

OBJECTIVE: To evaluate the risk of IgE sensitization and symptoms to shrimp in a population that has received AIT with polymerized mite extract. METHODS: Patients with allergic rhinitis sensitized to dust mites (Dermatophogides spp) with an indication for mite AIT were included. Those patients who had not yet received AIT or had received less than 6 doses were included as controls and those who had received more than 24 doses of AIT were included as cases. Sensitization to shrimp was assessed by skin prick test with complete shrimp extract and/or shrimp-specific IgE. RESULTS: A total of 68 patients were included; 47 cases and 21 controls. When calculating the odds ratio of sensitization according to time with immunotherapy we observed that there were no differences between the group of cases and controls (OR 0.76 95% CI 0.26 to 2.22 p 0.7 by MacNemar technique). Factors such as consumption or not of shrimp and frequency of consumption do not seem to be related to the outcome. CONCLUSION: In contrast to what was reported with aqueous extracts, we observed that AIT with polymerized extracts is not a risk factor for shrimp sensitization. It is necessary to reproduce these results with a larger sample size to explore other factors.


OBJETIVO: Evaluar el riesgo de sensibilización IgE y síntomas a camarón en una población que ha recibido AIT con extracto polimerizado para ácaros. MÉTODOS: Se incluyeron pacientes con rinitis alérgica sensibilizados a ácaros del polvo (Dermatophogides spp) con indicación de AIT para ácaros. Aquellos pacientes que no habían aún recibido AIT o llevaban menos de seis dosis, fueron incluidos como controles, y aquellos que llevaban más de 24 dosis de AIT, fueron incluidos como casos. Se evaluó la sensibilización a camarón mediante prueba cutánea con extracto completo de camarón y/o IgE específica a camarón. RESULTADOS: En total, 68 pacientes fueron incluidos; 47 casos y 21 controles. Al calcular el odds ratio de la sensibilización de acuerdo al tiempo con la inmunoterapia, observamos que no había diferencias entre el grupo de casos y controles (OR 0,76 95% IC 0,26 a 2,22 p 0,7 por técnica de MacNemar). Factores como el consumo o no de camarón y la frecuencia de consumo, no parecen estar relacionados con el desenlace. CONCLUSIÓN: A diferencia de lo reportado con extractos acuosos, observamos de AIT con extractos polimerizados para no es un factor de riesgo para la sensibilización a camarón. Es necesario reproducir estos resultados con un mayor tamaño de muestra que permita explorar otros factores.


Assuntos
Dessensibilização Imunológica , Penaeidae , Pyroglyphidae , Humanos , Animais , Masculino , Feminino , Pyroglyphidae/imunologia , Adulto , Penaeidae/imunologia , Adolescente , Adulto Jovem , Criança , Pessoa de Meia-Idade , Polimerização , Rinite Alérgica/terapia , Antígenos de Dermatophagoides/imunologia , Imunoglobulina E/imunologia
3.
Int J Mol Sci ; 25(8)2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38674116

RESUMO

Due to the widespread use of shellfish ingredients in food products, accurate food labelling is urgently needed for consumers with shellfish allergies. Most crustacean allergen detection systems target the immunorecognition of the allergenic protein tropomyosin. However, this mode of detection may be affected by an origin-dependent protein composition. This study determined if the geographic location of capture, or aquaculture, influenced the allergenic protein profiles of Black Tiger Shrimp (Penaeus monodon), one of the most farmed and consumed shrimp species worldwide. Protein composition was analysed in shrimp from nine different locations in the Asia-Pacific by SDS-PAGE, immunoblotting, and mass spectrometry. Ten of the twelve known shrimp allergens were detected, but with considerable differences between locations. Sarcoplasmic calcium-binding protein, myosin light chain, and tropomyosin were the most abundant allergens in all locations. Hemocyanin-specific antibodies could identify up to six different isoforms, depending on the location of origin. Similarly, tropomyosin abundance varied by up to 13 times between locations. These findings suggest that allergen abundance may be related to shrimp origin and, thus, shrimp origin might directly impact the readout of commercial crustacean allergen detection kits, most of which target tropomyosin, and this should be considered in food safety assessments.


Assuntos
Alérgenos , Inocuidade dos Alimentos , Penaeidae , Tropomiosina , Animais , Alérgenos/análise , Alérgenos/imunologia , Penaeidae/imunologia , Tropomiosina/imunologia , Hipersensibilidade a Frutos do Mar/imunologia , Frutos do Mar/análise , Frutos do Mar/efeitos adversos
4.
Rev Alerg Mex ; 71(1): 60, 2024 Feb 01.
Artigo em Espanhol | MEDLINE | ID: mdl-38683078

RESUMO

OBJECTIVE: This study aimed to identify by in silico methods tropomyosin consensus B and T epitopes of shrimp species, house dust mites, insects, and nematodes associated with allergic diseases in tropical countries. METHODS: In silico analysis included tropomyosin from mites (Der p 10, Der f 10, Blo t 10), insects (Aed a 10, Per a 7, Bla g 7), shrimp (Lit v 1, Pen m 1, Pen a 1), and nematode (Asc l 3) all sequences were taken from the UniProt database. Linear IgE epitopes were predicted with AlgPred 2.0 and validated with BepiPred 3.0. MHC-II binding T cell epitopes were predicted using the IEDB server, which implements nine predictive methods (consensus method, combinatorial library, NN-align-2.3, NN- align-2.2, SMM-align, Sturniolo, NetMHCIIpan 3.1, and NetMHCIIpan 3.2) these predictions focused on 10 HLA-DR and 2 HLA-DQ alleles associated with allergic diseases. Subsequently, consensus B and T epitopes present in all species were identified. RESULTS: We identified 12 sequences that behaved as IgE-epitopes and B-cell epitopes, three of them: 160RKYDEVARKLAMVEA174, 192ELEEELRVVGNNLKSLEVSEEKAN215, 251KEVDRLEDELV261 were consensus in all species. Eleven peptides (T-epitopes) showed strong binding (percentile rank ≤ 2.0) to HLA-DRB1*0301, *0402, *0411, *0701, *1101, *1401, HLA-DQA1*03:01/DQB1*03:02, and HLA- DQA1*05:01/DQB1*02:01. Only two T-epitopes were consensus in all species: 167RKLAMVEADLERAEERAEt GEsKIVELEEELRV199, and 218EEeY KQQIKT LTaKLKEAEARAEFAERSV246. Subsequently, we identified 2 B and T epitope sequences and reached a consensus between species 167RKLAMVEA174 and 192ELEEELRV199. CONCLUSIONS: These data describe three sequences that may explain the IgE cross-reactivity between the analyzed species. In addition, the consensus B and T epitopes can be used for further in vitro investigations and may help to design multiple-epitope protein-based immunotherapy for tropomyosin-related allergic diseases.


OBJETIVO: Este estudio tuvo como objetivo identificar mediante métodos in silico epítopes B y T consenso de tropomiosina de especies de camarón, ácaros del polvo doméstico, insectos y nematodos asociados a enfermedades alérgicas en países tropicales. MÉTODOS: El análisis in silico incluyó tropomiosina de ácaros (Der p 10, Der f 10, Blo t 10), insectos (Aed a 10, Per a 7, Bla g 7), camarones (Lit v 1, Pen m 1, Pen a 1), y nematodo (Asc l 3). Todas las secuencias se tomaron de la base de datos UniProt. Los epítopes IgE lineales se predijeron con AlgPred 2.0 y se validaron con BepiPred 3.0. Los epítopes de células T de unión a MHC-II se predijeron utilizando el servidor IEDB, que implementa nueve métodos predictivos (método de consenso, biblioteca combinatoria, NN-align-2.3, NN-align-2.2, SMM-align, Sturniolo, NetMHCIIpan 3.1 y NetMHCIIpan 3.2). Estas predicciones se centraron en diez alelos HLA-DR y 2 HLA-DQ asociados con enfermedades alérgicas. Posteriormente, se identificaron epítopes consenso B y T presentes en todas las especies. RESULTADOS: Se identificaron 12 secuencias que se comportaron como epítopes de IgE y, también, como epítopes de células B. Tres de ellas: 160RKYDEVARKLAMVEA174, 192ELEEELRVVGNNLKSLEVSEEKAN213 y 251KEVDRLEDELV261, fueron consenso en todas las especies. Once péptidos mostraron una fuerte unión (rango percentil ≤ 2,0) a HLA-DRB1*0301, *0402, *0411, *0701, *1101, *1401 y a HLA HLA-DQA1*03:01/DQB1*03:02, o HLA-DQA1*05:01/DQB1*02:01. Solo se encontraron dos secuencias: 167RKLAMVEADLERAEERAEtGEsKIVELEEELRV199 con fuerte afinidad por HLA-DQA1*03:01/DQB1*03:02, y HLA-DQA1*05:01/DQB1*02:01. Se identificaron dos secuencias que son epítopos B y T, y son consenso entre especies: 167RKLAMVEA174 y 192ELEEELRV199. CONCLUSIONES: Estos datos describen tres secuencias que pueden explicar la reactividad cruzada de IgE entre las especies analizadas. Además, los epítopos B y T consenso se pueden usar para investigaciones in vitro adicionales, y pueden ayudar a diseñar inmunoterapia basada en proteínas de múltiepítopes para enfermedades alérgicas relacionadas con la tropomiosina.


Assuntos
Simulação por Computador , Reações Cruzadas , Epitopos de Linfócito B , Epitopos de Linfócito T , Hipersensibilidade , Tropomiosina , Animais , Sequência Consenso , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito T/imunologia , Insetos/imunologia , Penaeidae/imunologia , Pyroglyphidae/imunologia , Tropomiosina/imunologia , Tropomiosina/genética , Hipersensibilidade/imunologia , Ácaros/imunologia , Crustáceos/imunologia , Nematoides/imunologia
5.
Nutrients ; 16(8)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38674882

RESUMO

BACKGROUND: Tropomyosins (TM) from vertebrates are generally non-allergenic, while invertebrate homologs are potent pan-allergens. This study aims to compare the risk of sensitization between chicken TM and shrimp TM through affecting the intestinal epithelial barrier integrity and type 2 mucosal immune activation. METHODS: Epithelial activation and/or barrier effects upon exposure to 2-50 µg/mL chicken TM, shrimp TM or ovalbumin (OVA) as a control allergen, were studied using Caco-2, HT-29MTX, or HT-29 intestinal epithelial cells. Monocyte-derived dendritic cells (moDC), cocultured with HT-29 cells or moDC alone, were exposed to 50 µg/mL chicken TM or shrimp TM. Primed moDC were cocultured with naïve Th cells. Intestinal barrier integrity (TEER), gene expression, cytokine secretion and immune cell phenotypes were determined in these human in vitro models. RESULTS: Shrimp TM, but not chicken TM or OVA exposure, profoundly disrupted intestinal barrier integrity and increased alarmin genes expression in Caco-2 cells. Proinflammatory cytokine secretion in HT-29 cells was only enhanced upon shrimp TM or OVA, but not chicken TM, exposure. Shrimp TM enhanced the maturation of moDC and chemokine secretion in the presence or absence of HT-29 cells, while only in the absence of epithelial cells chicken TM activated moDC. Direct exposure of moDC to shrimp TM increased IL13 and TNFα secretion by Th cells cocultured with these primed moDC, while shrimp TM exposure via HT-29 cells cocultured with moDC sequentially increased IL13 expression and IL4 secretion in Th cells. CONCLUSIONS: Shrimp TM, but not chicken TM, disrupted the epithelial barrier while triggering type 2 mucosal immune activation, both of which are key events in allergic sensitization.


Assuntos
Alérgenos , Galinhas , Técnicas de Cocultura , Células Dendríticas , Mucosa Intestinal , Células Th2 , Tropomiosina , Animais , Humanos , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Células Dendríticas/efeitos dos fármacos , Células CACO-2 , Tropomiosina/imunologia , Alérgenos/imunologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Células HT29 , Células Th2/imunologia , Citocinas/metabolismo , Penaeidae/imunologia , Células Epiteliais/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/imunologia , Ovalbumina
6.
Dev Comp Immunol ; 156: 105177, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38593892

RESUMO

Horizontal gene transfer (HGT) is an important evolutionary force in the formation of prokaryotic and eukaryotic genomes. In recent years, many HGT genes horizontally transferred from prokaryotes to eukaryotes have been reported, and most of them are present in arthropods. The Pacific white shrimp Litopenaeus vannamei, an important economic species of arthropod, has close relationships with bacteria, providing a platform for horizontal gene transfer (HGT). In this study, we analyzed bacteria-derived HGT based on a high-quality genome of L. vannamei via a homology search and phylogenetic analysis, and six HGT genes were identified. Among these six horizontally transferred genes, we found one gene (LOC113799989) that contains a bacterial chondroitinase AC structural domain and encodes an unknown glycosaminoglycan (GAG) lyase in L. vannamei. The real-time quantitative PCR results showed that the mRNA expression level of LOC113799989 was highest in the hepatopancreas and heart, and after stimulation by Vibrio parahaemolyticus, its mRNA expression level was rapidly up-regulated within 12 h. Furthermore, after injecting si-RNA and stimulation by V. parahaemolyticus, we found that the experimental group had a higher cumulative mortality rate in 48 h than the control group, indicating that the bacteria-derived GAG lyase can reduce the mortality of shrimp with respect to infection by V. parahaemolyticus and might be related to the resistance of shrimp to bacterial diseases. Our findings contribute to the study of the function of GAGs and provide new insights into GAG-related microbial pathogenesis and host defense mechanisms in arthropods.


Assuntos
Transferência Genética Horizontal , Penaeidae , Filogenia , Vibrio parahaemolyticus , Animais , Penaeidae/imunologia , Penaeidae/microbiologia , Penaeidae/genética , Vibrio parahaemolyticus/fisiologia , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/metabolismo , Hepatopâncreas/microbiologia , Hepatopâncreas/imunologia , Hepatopâncreas/metabolismo , Bactérias , Imunidade Inata/genética , Polissacarídeo-Liases/genética , Polissacarídeo-Liases/metabolismo , Vibrioses/imunologia
7.
Environ Pollut ; 349: 123956, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38626866

RESUMO

Ammonia-N, as the most toxic nitrogenous waste, has high toxicity to marine animals. However, the interplay between ammonia-induced neuroendocrine toxicity and intestinal immune homeostasis has been largely overlooked. Here, a significant concordance of metabolome and transcriptome-based "cholinergic synapse" supports that plasma metabolites acetylcholine (ACh) plays an important role during NH4Cl exposure. After blocking the ACh signal transduction, the release of dopamine (DA) and 5-hydroxytryptamine (5-HT) in the cerebral ganglia increased, while the release of NPF in the thoracic ganglia and NE in the abdominal ganglia, and crustacean hyperglycemic hormone (CHH) and neuropeptide F (NPF) in the eyestalk decreased, finally the intestinal immunity was enhanced. After bilateral eyestalk ablation, the neuroendocrine system of shrimp was disturbed, more neuroendocrine factors, such as corticotropin releasing hormone (CRH), adrenocorticotropic-hormone (ACTH), ACh, DA, 5-HT, and norepinephrine (NE) were released into the plasma, and further decreased intestinal immunity. Subsequently, these neuroendocrine factors reach the intestine through endocrine or neural pathways and bind to their receptors to affect downstream signaling pathway factors to regulate intestinal immune homeostasis. Combined with different doses of ammonia-N exposure experiment, these findings suggest that NH4Cl may exert intestinal toxicity on shrimp by disrupting the cerebral ganglion-eyestalk axis and the cerebral ganglion-thoracic ganglion-abdominal ganglion axis, thereby damaging intestinal barrier function and inducing inflammatory response.


Assuntos
Amônia , Penaeidae , Animais , Penaeidae/imunologia , Penaeidae/efeitos dos fármacos , Penaeidae/metabolismo , Amônia/toxicidade , Intestinos/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Dopamina/metabolismo , Nitrogênio/metabolismo , Acetilcolina/metabolismo , Sistemas Neurossecretores/efeitos dos fármacos , Proteínas de Artrópodes/metabolismo
8.
Dev Comp Immunol ; 156: 105176, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38582249

RESUMO

Due to the ongoing global warming, the risk of heatwaves in the oceans is continuously increasing while our understanding of the physiological response of Litopenaeus vannamei under extreme temperature conditions remains limited. Therefore, this study aimed to evaluate the physiological responses of L. vannamei under heat stress. Our results indicated that as temperature rose, the structure of intestinal and hepatopancreatic tissues was damaged sequentially. Activity of immune-related enzymes (acid phosphatase/alkaline phosphatase) initially increased before decreased, while antioxidant enzymes (superoxide dismutase and glutathione-S transferase) activity and malondialdehyde content increased with rising temperature. In addition, the total antioxidant capacity decreased with rising temperature. With the rising temperature, there was a significant increase in the expression of caspase-3, heat shock protein 70, lipopolysaccharide-induced tumor necrosis factor-α, transcriptional enhanced associate domain and yorkie in intestinal and hepatopancreatic tissues. Following heat stress, the number of potentially beneficial bacteria (Rhodobacteraceae and Gemmonbacter) increased which maintain balance and promote vitamin synthesis. Intestinal transcriptome analysis revealed 852 differentially expressed genes in the heat stress group compared with the control group. KEGG functional annotation results showed that the endocrine system was the most abundant in Organismal systems followed by the immune system. These results indicated that heat stress leads to tissue damage in shrimp, however the shrimp may respond to stress through a coordinated interaction strategy of the endocrine system, immune system and gut microbiota. This study revealed the response mechanism of L. vannamei to acute heat stress and potentially provided a theoretical foundation for future research on shrimp environmental adaptations.


Assuntos
Microbioma Gastrointestinal , Resposta ao Choque Térmico , Penaeidae , Transcriptoma , Animais , Penaeidae/imunologia , Penaeidae/microbiologia , Penaeidae/genética , Resposta ao Choque Térmico/genética , Resposta ao Choque Térmico/imunologia , Microbioma Gastrointestinal/imunologia , Intestinos/imunologia , Intestinos/microbiologia , Sistema Imunitário/metabolismo , Sistema Imunitário/imunologia , Perfilação da Expressão Gênica , Hepatopâncreas/imunologia , Hepatopâncreas/metabolismo , Proteínas de Artrópodes/metabolismo , Proteínas de Artrópodes/genética , Antioxidantes/metabolismo
9.
Food Chem ; 449: 139304, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38608611

RESUMO

To evaluate the effect of high voltage pulsed electric field (PEF) treatment (10-20 kV/cm, 5-15 min) on the structural characteristics and sensitization of crude extracts of arginine kinase from Fenneropenaeus chinensis. By simulated in vitro gastric juice digestion (SGF), intestinal juice digestion (SIF) and enzyme-linked immunosorbent assay (ELISA), AK sensitization was reduced by 42.5% when treated for 10 min at an electric field intensity of 15 kV/cm. After PEF treatment, the α-helix content decreased, and the α-helix content gradually changed to ß-sheet and ß-turn. Compared to the untreated group, the surface hydrophobicity increased and the sulfhydryl content decreased. SEM and AFM analyses showed that the treated sample surface formed a dense porous structure and increased roughness. The protein content, dielectric properties, and amino acid content of sample also changed significantly with the changes in the treatment conditions. Non-thermal PEF has potential applications in the development of hypoallergenic foods.


Assuntos
Arginina Quinase , Penaeidae , Animais , Arginina Quinase/química , Arginina Quinase/imunologia , Arginina Quinase/metabolismo , Penaeidae/química , Penaeidae/enzimologia , Penaeidae/imunologia , Eletricidade , Interações Hidrofóbicas e Hidrofílicas , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Humanos , Alérgenos/química , Alérgenos/imunologia
10.
PLoS Pathog ; 20(4): e1012199, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38683868

RESUMO

The microsporidian Enterocytozoon hepatopenaei (EHP) is a fungi-related, spore-forming parasite. EHP infection causes growth retardation and size variation in shrimp, resulting in severe economic losses. Studies on shrimp immune response have shown that several antimicrobial peptides (AMPs) were upregulated upon EHP infection. Among those highly upregulated AMPs is c-type lysozyme (LvLyz-c). However, the immune signaling pathway responsible for LvLyz-c production in shrimp as well as its function against the EHP infection are still poorly understood. Here, we characterized major shrimp immune signaling pathways and found that Toll and JAK/STAT pathways were up-regulated upon EHP infection. Knocking down of a Domeless (DOME) receptor in the JAK/STAT pathways resulted in a significant reduction of the LvLyz-c and the elevation of EHP copy number. We further elucidated the function of LvLyz-c by heterologously expressing a recombinant LvLyz-c (rLvLyz-c) in an Escherichia coli. rLvLyz-c exhibited antibacterial activity against several bacteria such as Bacillus subtilis and Vibrio parahaemolyticus. Interestingly, we found an antifungal activity of rLvLyz-c against Candida albican, which led us to further investigate the effects of rLvLyz-c on EHP spores. Incubation of the EHP spores with rLvLyz-c followed by a chitin staining showed that the signals were dramatically decreased in a dose-dependent manner, suggesting that rLvLyz-c possibly digest a chitin coat on the EHP spores. Transmission electron microscopy analysis revealed that an endospore layer, which is composed mainly of chitin, was digested by rLvLyz-c. Lastly, we observed that EHP spores that were treated with rLvLyz-c showed a significant reduction of the spore germination rate. We hypothesize that thinning of the endospore of EHP would result in altered permeability, hence affecting spore germination. This work provides insights into shrimp immune signaling pathways responsible for LvLyz-c production and its anti-EHP property. This knowledge will serve as important foundations for developing EHP control strategies.


Assuntos
Enterocytozoon , Muramidase , Penaeidae , Transdução de Sinais , Animais , Penaeidae/imunologia , Penaeidae/microbiologia , Muramidase/metabolismo , Enterocytozoon/metabolismo , Microsporidiose/imunologia
11.
J Virol ; 98(3): e0180523, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38323810

RESUMO

Shrimp hemocytes are the vital immune cells participating in innate immune response to defend against viruses. However, the lack of specific molecular markers for shrimp hemocyte hindered the insightful understanding of their functional clusters and differential roles in combating microbial infections. In this study, we used single-cell RNA sequencing to map the transcriptomic landscape of hemocytes from the white spot syndrome virus (WSSV)-infected Litopenaeus vannamei and conjointly analyzed with our previous published single-cell RNA sequencing technology data from the healthy hemocytes. A total of 16 transcriptionally distinct cell clusters were identified, which occupied different proportions in healthy and WSSV-infected hemocytes and exerted differential roles in antiviral immune response. Following mapping of the sequencing data to the WSSV genome, we found that all types of hemocytes could be invaded by WSSV virions, especially the cluster 8, which showed the highest transcriptional levels of WSSV genes and exhibited a cell type-specific antiviral response to the viral infection. Further evaluation of the cell clusters revealed the delicate dynamic balance between hemocyte immune response and viral infestation. Unsupervised pseudo-time analysis of hemocytes showed that the hemocytes in immune-resting state could be significantly activated upon WSSV infection and then functionally differentiated to different hemocyte subsets. Collectively, our results revealed the differential responses of shrimp hemocytes and the process of immune-functional differentiation post-WSSV infection, providing essential resource for the systematic insight into the synergistic immune response mechanism against viral infection among hemocyte subtypes. IMPORTANCE: Current knowledge of shrimp hemocyte classification mainly comes from morphology, which hinder in-depth characterization of cell lineage development, functional differentiation, and different immune response of hemocyte types during pathogenic infections. Here, single-cell RNA sequencing was used for mapping hemocytes during white spot syndrome virus (WSSV) infection in Litopenaeus vannamei, identifying 16 cell clusters and evaluating their potential antiviral functional characteristics. We have described the dynamic balance between viral infestation and hemocyte immunity. And the functional differentiation of hemocytes under WSSV stimulation was further characterized. Our results provided a comprehensive transcriptional landscape and revealed the heterogeneous immune response in shrimp hemocytes during WSSV infection.


Assuntos
Proteínas de Artrópodes , Hemócitos , Interações entre Hospedeiro e Microrganismos , Penaeidae , RNA-Seq , Análise da Expressão Gênica de Célula Única , Vírus da Síndrome da Mancha Branca 1 , Animais , Proteínas de Artrópodes/genética , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Regulação da Expressão Gênica , Hemócitos/citologia , Hemócitos/imunologia , Hemócitos/metabolismo , Hemócitos/virologia , Interações entre Hospedeiro e Microrganismos/genética , Interações entre Hospedeiro e Microrganismos/imunologia , Penaeidae/citologia , Penaeidae/genética , Penaeidae/imunologia , Penaeidae/virologia , Vírus da Síndrome da Mancha Branca 1/genética , Vírus da Síndrome da Mancha Branca 1/imunologia
12.
J Fish Dis ; 47(6): e13932, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38373053

RESUMO

This study aimed to evaluate and unveil the positive impact of biofloc culture on Vibrio parahaemolyticus infection of Pacific white shrimp by reducing quorum sensing (QS) and virulence gene expression and enhancing shrimp's immunity. The shrimp with an average body weight of 0.50 ± 0.09 g were reared in containers with a volume of 2.5 L, 21 units, and a density of 20 shrimp L-1. The shrimp were cultured for 5 days, with each treatment including biofloc system maintenance with a C/N ratio of 10 and a control treatment without biofloc, followed by a challenge test through immersion using V. parahaemolyticus at densities of 103, 105, and 107 CFU mL-1 initially. The results of the in vitro experiment showed that biofloc suspension can inhibit and disperse biofilm formation, as well as reduce the exo-enzyme activity (amylase, protease, and chitinase) of V. parahaemolyticus. Furthermore, the biofloc treatment significantly reduced the expression of the QS regulatory gene OpaR, the PirB toxin gene, and the virulence factor genes T6SS1 and T6SS2 in both in vitro and in vivo. The biofloc system also increased the expression of shrimp immunity-related genes (LGBP, proPO, SP, and PE) and the survival rate of white shrimp challenged with V. parahaemolyticus.


Assuntos
Penaeidae , Percepção de Quorum , Vibrio parahaemolyticus , Animais , Vibrio parahaemolyticus/fisiologia , Vibrio parahaemolyticus/patogenicidade , Penaeidae/microbiologia , Penaeidae/imunologia , Virulência , Fatores de Virulência/genética , Aquicultura/métodos , Biofilmes
13.
World J Microbiol Biotechnol ; 39(6): 145, 2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37014486

RESUMO

The use of probiotics in aquaculture is widely recognized as an ecological and cost-effective approach to raising healthy, pathogen-tolerant aquatic animals, including fish and shrimp. In particular for shrimp, probiotics are viewed as a promising countermeasure to the recent severe damage to the shrimp industry by bacterial and viral pathogens. Purple non-sulfur bacteria (PNSB) are Gram-negative, non-pathogenic bacteria with wide application potential in agriculture, wastewater treatment, and bioenergy/biomaterials production. In aquaculture, lactic bacteria and Bacillus are the major probiotic bacteria used, but PNSB, like Rhodopseudomonas and Rhodobacter, are also used. In this review, we summarize the previous work on the use of PNSB in aquaculture, overview the previous studies on the stimulation of innate immunity of shrimp by various probiotic microorganisms, and also share our results in the probiotic performance of Rhodovulum sulfidophilum KKMI01, a marine PNSB, which showed a superior effect in promotion of growth and stimulation of immunity in shrimp at a quite low concentration of 1 × 103 cfu (colony forming unit)/ml in rearing water.


Assuntos
Aquicultura , Probióticos , Rhodospirillaceae , Aquicultura/métodos , Aquicultura/tendências , Rhodospirillaceae/fisiologia , Probióticos/normas , Penaeidae/imunologia , Penaeidae/microbiologia , Adjuvantes Imunológicos , Animais
14.
Int J Mol Sci ; 23(19)2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36233199

RESUMO

In the Hippo pathway, activation of Hippo and Warts (Wts) kinases results in the phosphorylation of Yorkie (Yki), to prevent its nuclear translocation. Shrimp aquaculture is threatened by Vibrio genus bacteria. In this study, we examine the role of the Hippo pathway in immune defense against Vibrio parahaemolyticus in Pacific white shrimp Penaeus vannamei. We show that V. parahaemolyticus infection promotes the expression of Yki and facilitates the dephosphorylation and nuclear translocation of Yki, indicating the inhibition of Hippo signaling upon bacterial infection. There is a complex regulatory relationship between the Hippo pathway components Hippo, Wts, and Yki and the immune-related transcription factors Dorsal, Relish, and STAT. Silencing of Hippo and Wts weakened hemocyte phagocytosis, while the silencing of Yki enhanced it, suggesting a positive regulation of shrimp cellular immunity by Hippo signaling activation. In vivo silencing of Hippo and Wts decreased the survival rates of V. parahaemolyticus-infected shrimp and elevated the bacterial content in tissues, while the silencing of Yki showed the opposite results. This suggests that the activation of Hippo signaling and the inhibition of Yki enhance antibacterial immunity in shrimp.


Assuntos
Penaeidae , Vibrioses , Vibrio parahaemolyticus , Animais , Imunidade , Penaeidae/imunologia , Penaeidae/microbiologia , Transdução de Sinais , Fatores de Transcrição/metabolismo , Vibrioses/veterinária
15.
Dev Comp Immunol ; 135: 104459, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35660488

RESUMO

Serine proteases are proteolytic enzymes that exhibit biological roles in many biological systems. Previously, a Vibrio parahaemolyticus serine protease was reported to be a virulence factor. Here, the serine protease gene of V. parahaemolyticus was investigated as a DNA vaccine against V. parahaemolyticus in Litopenaeus vannamei. The serine protease gene was mutated to replace the conserved residues His82, Asp131 and Ser231 with Gly, Asp and Pro, respectively. Then, a pcDNA3.1 vector to express mutVpSP (mutant serine protease) was constructed for in vitro and in vivo DNA vaccine investigation. In vivo mutVpSP transcriptional analysis revealed expression in various immunized white shrimp tissues, such as hemocytes, hepatopancreas, stomach, intestine, gills, and muscle. The efficiency of prevention of V. parahaemolyticus infection was investigated in vaccinated shrimp, and the lowest cumulative mortality percentage was 30%, while the control shrimp had a 60% cumulative mortality rate. The immune system was stimulated in shrimp vaccinated with the DNA vaccine. The mRNA expression of the shrimp immune-responsive genes phenoloxidase, peroxinectin and C-type lectin was significantly upregulated. Additionally, the humoral and cellular immune responses, including the PO, phagocytic, and encapsulation activities and nodule formation, were elevated. These results suggested that the serine protease could be a V. parahaemolyticus virulence determinant and that this DNA vaccine could be applied as an effective vaccine candidate for control of acute hepatopancreatic necrosis disease syndrome (AHPND) in shrimp.


Assuntos
Penaeidae , Serina Proteases , Vacinas de DNA , Vibrioses , Vibrio parahaemolyticus , Animais , Imunidade Inata , Penaeidae/imunologia , Penaeidae/virologia , Serina , Serina Proteases/genética , Vibrioses/prevenção & controle , Vibrioses/veterinária
16.
Mar Drugs ; 20(3)2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35323456

RESUMO

Crustin are a family of antimicrobial peptides that play an important role in protecting against pathogens infection in the innate immune system of crustaceans. Previously, we identified several novel types of crustins, including type VI and type VII crustins. However, their immune functions were still unclear. In the present study, the immune function of type VII crustin LvCrustinVII were investigated in Litopenaeus vannamei. LvCrustinVII was wildly expressed in all tested tissues, with relatively high expression levels in hepatopancreas, epidermis and lymphoid organ. Upon Vibrio parahaemolyticus infection, LvCrustinVII was significantly upregulated in hepatopancreas. Recombinant LvCrustinVII (rLvCrustinVII) showed strong inhibitory activities against Gram-negative bacteria Vibrio harveyi and V. parahaemolyticus, while weak activities against the Gram-positive bacteria Staphylococcus aureus. Binding assay showed that rLvCrustinVII could bind strongly to V. harveyi and V. parahaemolyticus, as well as the cell wall components Glu, LPS and PGN. In the presence of Ca2+, rLvCrustinVII could agglutinate V. parahaemolyticus and enhance hemocyte phagocytosis. The present data partially illustrate the immune function of LvCrustinVII, which enrich our understanding on the functional mechanisms of crustins and provide useful information for application of this kind of antimicrobial peptides.


Assuntos
Peptídeos Catiônicos Antimicrobianos , Proteínas de Artrópodes , Proteínas Opsonizantes , Penaeidae/imunologia , Aglutinação , Animais , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/imunologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Proteínas de Artrópodes/química , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/imunologia , Proteínas de Artrópodes/farmacologia , Bactérias/química , Bactérias/efeitos dos fármacos , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Epiderme/imunologia , Hemócitos/fisiologia , Hepatopâncreas/imunologia , Proteínas Opsonizantes/química , Proteínas Opsonizantes/genética , Proteínas Opsonizantes/imunologia , Proteínas Opsonizantes/farmacologia , Fagocitose , Proteínas Recombinantes/química , Proteínas Recombinantes/farmacologia
17.
Front Immunol ; 13: 807326, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35173723

RESUMO

The Toll signaling pathway plays an important role in animal innate immunity. However, its activation and signal transmission greatly differ across species and need to be investigated. Shrimp farming is a worldwide economic activity affected by bacterial disease from the 1990s, which promoted research on shrimp immunity. In this study, we first proved that, among the three identified Toll receptors in Marsupenaeus japonicus kuruma shrimp, Toll 3 plays a pivotal role in initiating the antibacterial response in vivo, especially upon anti-Staphylococcus aureus infection. Further research showed that this result was due to the activation of the Dorsal transcription factor, which induced the expression of two anti-lipopolysaccharide factors (Alfs). Moreover, the evolutionarily conserved signaling intermediate in Toll pathways, ECSIT, was proved to be needed for signal transmission from Toll 3 to Dorsal and the expression of anti-lipopolysaccharide factors. Finally, the mortality assay showed that a Toll3-ECSIT-Dorsal-Alf axis was functional in the anti-S.aureus immunity of M. japonicus shrimp. The results provide new insights into the function and signal transduction of the Toll pathway in aquatic species and offer basic knowledge for shrimp disease control and genetic breeding.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas de Artrópodes/genética , Penaeidae/imunologia , Vibrio/imunologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Sequência de Aminoácidos , Animais , Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/metabolismo , Proteínas de Artrópodes/metabolismo , Regulação da Expressão Gênica/imunologia , Interações Hospedeiro-Patógeno , Imunidade Inata , Penaeidae/genética , Filogenia , Alinhamento de Sequência , Receptores Toll-Like/fisiologia , Fatores de Transcrição/fisiologia
18.
J Immunol ; 208(5): 1214-1223, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35149533

RESUMO

For a long time, how anti-inflammatory factors evolved was largely unknown. In this study, we chose a marine invertebrate, Litopenaeus vannamei, as a model and identified that shrimp mesencephalic astrocyte-derived neurotrophic factor (MANF) was an LPS-induced plasma protein, which exerted its anti-inflammatory roles on shrimp hemocytes by suppressing ERK phosphorylation and Dorsal expression. In addition, we demonstrated that shrimp MANF could be associated with a receptor protein tyrosine phosphatase (RPTP) to mediate negative regulation of ERK activation and Dorsal expression. More interestingly, shrimp RPTP-S overexpression in 293T cells could switch shrimp and human MANF-mediated ERK pathway activation to inhibition. In general, our results indicate that this conserved RPTP is the key component for extracellular MANF-mediated ERK pathway inhibition, which gives a possible explanation about why this neurotropic factor could both protect neuron cells from apoptosis and inhibit immune cell M1 activation in various species.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fatores de Crescimento Neural/metabolismo , Neurônios/fisiologia , Penaeidae/imunologia , Receptores Proteína Tirosina Quinases/metabolismo , Sequência de Aminoácidos , Animais , Apoptose/imunologia , Linhagem Celular , Estresse do Retículo Endoplasmático/fisiologia , Células HEK293 , Humanos , Inflamação/patologia , Lipopolissacarídeos/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Fosforilação/fisiologia , Alinhamento de Sequência
19.
PLoS Pathog ; 18(1): e1010253, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35073369

RESUMO

Flagellin is a key bacterial virulence factor that can stimulate molecular immune signaling in both animals and plants. The detailed mechanisms of recognizing flagellin and mounting an efficient immune response have been uncovered in vertebrates; however, whether invertebrates can discriminate flagellin remains largely unknown. In the present study, the homolog of human SHOC2 leucine rich repeat scaffold protein in kuruma shrimp (Marsupenaeus japonicus), designated MjShoc2, was found to interact with Vibrio anguillarum flagellin A (FlaA) using yeast two-hybrid and pull-down assays. MjShoc2 plays a role in antibacterial response by mediating the FlaA-induced expression of certain antibacterial effectors, including lectin and antimicrobial peptide. FlaA challenge, via MjShoc2, led to phosphorylation of extracellular regulated kinase (Erk), and the subsequent activation of signal transducer and activator of transcription (Stat), ultimately inducing the expression of effectors. Therefore, by establishing the FlaA/MjShoc2/Erk/Stat signaling axis, this study revealed a new antibacterial strategy in shrimp, and provides insights into the flagellin sensing mechanism in invertebrates.


Assuntos
Proteínas de Artrópodes/imunologia , Flagelina/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Penaeidae/imunologia , Vibrioses/imunologia , Animais , Sistema de Sinalização das MAP Quinases/imunologia , Penaeidae/microbiologia , Fatores de Transcrição STAT/imunologia , Vibrio
20.
Fish Shellfish Immunol ; 121: 62-73, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34998096

RESUMO

The X-organ-sinus gland complex (XO-SG) in the eyestalk is an important neuroendocrine regulatory organ of crustaceans such as Litopenaeus vannamei, a prominent aquaculture species. The current study found significant changes in the enzyme activities of ALP, ACP, and T-SOD of hepatopancreatic in response to Vibrio parahaemolyticus exposure following eyestalk ablation, indicating that they were all involved in the immunological regulation of shrimps against V. parahaemolyticus infection. A total of 52,656 unigenes were obtained after RNA-Seq, with an average length of 1036 bp and an N50 of 1847 bp. Subsequently, 1899 eyestalk positive regulation genes (EPRGs), 745 eyestalk negative regulation genes (ENRGs), and 2077 non-eyestalk regulatory genes (NEGs) were identified. KEGG analysis of EPRGs revealed that eyestalk ablation might activate the neuroendocrine-immune (NEI) system. The RNA-Seq data were validated using quantitative real-time PCR (qRT-PCR). The findings suggested that eyestalk ablation might affect the expression of genes involved in the prophenoloxidase-activating system, the TLR signaling pathway, and numerous other immune-related genes in L. vannamei. All of these findings revealed that the eyestalk might have a role in the immune response of L. vannamei. The genes and pathways discovered in this study will help to elucidate the molecular mechanisms of hemocytes' immune response to V. parahaemolyticus following eyestalk ablation in shrimp, as well as provide the framework for building crustacean immunity theory.


Assuntos
Estruturas Animais/imunologia , Imunidade Inata , Penaeidae , Vibrioses , Animais , Aquicultura , Hemócitos , Penaeidae/genética , Penaeidae/imunologia , Vibrio parahaemolyticus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...