Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.060
Filtrar
1.
World J Microbiol Biotechnol ; 40(6): 179, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38668807

RESUMO

Core histones in the nucleosome are subject to a wide variety of posttranslational modifications (PTMs), such as methylation, phosphorylation, ubiquitylation, and acetylation, all of which are crucial in shaping the structure of the chromatin and the expression of the target genes. A putative histone methyltransferase LaeA/Lae1, which is conserved in numerous filamentous fungi, functions as a global regulator of fungal growth, virulence, secondary metabolite formation, and the production of extracellular glycoside hydrolases (GHs). LaeA's direct histone targets, however, were not yet recognized. Previous research has shown that LaeA interacts with core histone H2B. Using S-adenosyl-L-methionine (SAM) as a methyl group donor and recombinant human histone H2B as the substrate, it was found that Penicillium oxalicum LaeA can transfer the methyl groups to the C-terminal lysine (K) 108 and K116 residues in vitro. The H2BK108 and H2BK116 sites on recombinant histone correspond to P. oxalicum H2BK122 and H2BK130, respectively. H2BK122A and H2BK130A, two mutants with histone H2B K122 or K130 mutation to alanine (A), were constructed in P. oxalicum. The mutants H2BK122A and H2BK130A demonstrated altered asexual development and decreased extracellular GH production, consistent with the findings of the laeA gene deletion strain (ΔlaeA). The transcriptome data showed that when compared to wild-type (WT) of P. oxalicum, 38 of the 47 differentially expressed (fold change ≥ 2, FDR ≤ 0.05) genes that encode extracellular GHs showed the same expression pattern in the three mutants ΔlaeA, H2BK122A, and H2BK130A. The four secondary metabolic gene clusters that considerably decreased expression in ΔlaeA also significantly decreased in H2BK122A or H2BK130A. The chromatin of promotor regions of the key cellulolytic genes cel7A/cbh1 and cel7B/eg1 compacted in the ΔlaeA, H2BK122A, and H2BK130A mutants, according to the results of chromatin accessibility real-time PCR (CHART-PCR). The chromatin accessibility index dropped. The histone binding pocket of the LaeA-methyltransf_23 domain is compatible with particular histone H2B peptides, providing appropriate electrostatic and steric compatibility to stabilize these peptides, according to molecular docking. The findings of the study demonstrate that H2BK122 and H2BK130, which are histone targets of P. oxalicum LaeA in vitro, are crucial for fungal conidiation, the expression of gene clusters encoding secondary metabolites, and the production of extracellular GHs.


Assuntos
Proteínas Fúngicas , Regulação Fúngica da Expressão Gênica , Glicosídeo Hidrolases , Histonas , Lisina , Família Multigênica , Penicillium , Metabolismo Secundário , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Histonas/genética , Lisina/metabolismo , Lisina/biossíntese , Metilação , Penicillium/genética , Penicillium/enzimologia , Penicillium/metabolismo , Penicillium/crescimento & desenvolvimento , Processamento de Proteína Pós-Traducional , Reprodução Assexuada/genética , Metabolismo Secundário/genética
2.
J Microorg Control ; 29(1): 17-26, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38508758

RESUMO

The species diversity of xerophilic and halophilic fungi distributed in marine surface water was studied at four local sites located in two geographically distant regions in Japan. At each site, 5-10 samples were collected and isolated using an osmophilic medium. Species identification was conducted based on nucleotide sequence of calmodulin or ß -tubulin and morphological characteristics for Aspergillus, Penicillium, and Talaromyces, and on the sequences of rRNA internal transcribed spacer for the other taxa. Overall, 231 strains were isolated from all sites and classified into 85 species belonged to 12 orders and 33 genera. The isolates that showed better mycelial growth than the control(no NaCl added) in the halotolerance test were defined as halophilic fungi, and only 22 species(10 Aspergillus species and 12 Penicillium species) were halophilic. Comparison of the halophilic fungal flora of the two regions revealed that four species common to both regions were isolated for Aspergillus, but no such species were isolated for Penicillium. Given that 15 halophilic species(10 Aspergillus and 5 Penicillium species) are known to be xerophilic species distributed in indoor environments, it can be inferred that indoor xerophilic species are likely to be widely distributed in marine surface water.


Assuntos
Penicillium , Penicillium/genética , Aspergillus/genética , Cloreto de Sódio , Água , Japão
3.
G3 (Bethesda) ; 14(5)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38507596

RESUMO

Fungi biosynthesize diverse secondary metabolites, small organic bioactive molecules with key roles in fungal ecology. Fungal secondary metabolites are often encoded by physically clustered genes known as biosynthetic gene clusters (BGCs). Fungi in the genus Penicillium produce a cadre of secondary metabolites, some of which are useful (e.g. the antibiotic penicillin and the cholesterol-lowering drug mevastatin) and others harmful (e.g. the mycotoxin patulin and the immunosuppressant gliotoxin) to human affairs. Fungal genomes often also encode resistance genes that confer protection against toxic secondary metabolites. Some Penicillium species, such as Penicillium decumbens, are known to produce gliotoxin, a secondary metabolite with known immunosuppressant activity. To investigate the evolutionary conservation of homologs of the gliotoxin BGC and of genes involved in gliotoxin resistance in Penicillium, we analyzed 35 Penicillium genomes from 23 species. Homologous, lesser fragmented gliotoxin BGCs were found in 12 genomes, mostly fragmented remnants of the gliotoxin BGC were found in 21 genomes, whereas the remaining 2 Penicillium genomes lacked the gliotoxin BGC altogether. In contrast, broad conservation of homologs of resistance genes that reside outside the BGC across Penicillium genomes was observed. Evolutionary rate analysis revealed that BGCs with higher numbers of genes evolve slower than BGCs with few genes, suggestive of constraint and potential functional significance or more recent decay. Gene tree-species tree reconciliation analyses suggested that the history of homologs in the gliotoxin BGC across the genus Penicillium likely involved multiple duplications, losses, and horizontal gene transfers. Our analyses suggest that genes encoded in BGCs can have complex evolutionary histories and be retained in genomes long after the loss of secondary metabolite biosynthesis.


Assuntos
Evolução Molecular , Gliotoxina , Família Multigênica , Penicillium , Filogenia , Penicillium/genética , Gliotoxina/biossíntese , Vias Biossintéticas/genética , Genoma Fúngico
4.
Int J Biol Macromol ; 266(Pt 1): 131236, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38554901

RESUMO

Antifungal proteins (AFPs) from filamentous fungi have enormous potential as novel biomolecules for the control of fungal diseases. However, little is known about the biological roles of AFPs beyond their antifungal action. Penicillium expansum encodes three phylogenetically different AFPs (PeAfpA, PeAfpB and PeAfpC) with diverse profiles of antifungal activity. PeAfpA stands out as a highly active AFP that is naturally produced at high yields. Here, we provide new data about the function of PeAfpA in P. expansum through phenotypical characterization and transcriptomic studies of null mutants of the corresponding afpA gene. Mutation of afpA did not affect axenic growth, conidiation, virulence, stress responses or sensitivity towards P. expansum AFPs. However, RNA sequencing evidenced a massive transcriptomic change linked to the onset of PeAfpA production. We identified two large gene expression clusters putatively involved in PeAfpA function, which correspond to genes induced or repressed with the production of PeAfpA. Functional enrichment analysis unveiled significant changes in genes related to fungal cell wall remodeling, mobilization of carbohydrates and plasma membrane transporters. This study also shows a putative co-regulation between the three afp genes. Overall, our transcriptomic analyses provide valuable insights for further understanding the biological functions of AFPs.


Assuntos
Antifúngicos , Proteínas Fúngicas , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Penicillium , Penicillium/genética , Penicillium/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Antifúngicos/farmacologia , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Transcriptoma , Mutação , Virulência/genética , Filogenia
5.
Gene ; 910: 148315, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38417689

RESUMO

Penicillium expansum is an important phytopathogenic fungus that causes blue mold disease. In this study, the novel mitochondrial genome of P. expansum was sequenced, assembled, annotated, and compared with the previously published Penicillium mitogenomes. P. expansum mitogenome is composed of circular DNA molecules with a genome size of 25,496 bp. It encodes 16 protein-encoding genes (PCGs), two rRNA genes, and 25 tRNA genes. Comparative analysis with six other Penicillium species revealed that gene length, GC content, AT skew, and GC skew were variable among the core protein-coding genes. The Penicillium species' gene synteny analysis identified several gene rearrangements. Among the core 15 PCGs, atp8 had the lowest K2P genetic distance, which shows that this gene is highly conserved. The Ka/Ks value of most PCGs was less than 1, which shows that these genes have undergone purifying selection. Phylogenetic analysis based on 14 concatenated core mitochondrial genes revealed that P. expansum shares a close relationship with P. solitum. This study served as a first report on the complete mitochondrial genome of P. expansum and its comparative analysis that will contribute to population genetics and rapid evolutionary studies among Penicillium species.


Assuntos
Genoma Mitocondrial , Penicillium , Filogenia , Sequência de Bases , Penicillium/genética
6.
Arch Microbiol ; 206(3): 97, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38349544

RESUMO

Cordyceps militaris is a well-known medicinal mushroom in Asian countries. This edible fungus has been widely exploited for traditional medicine and functional food production. C. militaris is a heterothallic fungus that requires both the mating-type loci, MAT1-1 and MAT1-2, for fruiting body formation. However, recent studies also indicated two groups of C. militaris, including monokaryotic strains carrying only MAT1-1 in their genomes and heterokaryotic strains harboring both MAT1-1 and MAT1-2. These strain groups are able to produce fruiting bodies under suitable cultivating conditions. In previous work, we showed that monokaryotic strains are more stable than heterokaryotic strains in fruiting body formation through successive culturing generations. In this study, we report a high cordycepin-producing monokaryotic C. militaris strain (HL8) collected in Vietnam. This strain could form normal fruiting bodies with high biological efficiency and contain a cordycepin content of 14.43 mg/g lyophilized fruiting body biomass. The ethanol extraction of the HL8 fruiting bodies resulted in a crude extract with a cordycepin content of 69.15 mg/g. Assays of cytotoxic activity on six human cancer cell lines showed that the extract inhibited the growth of all these cell lines with the IC50 values of 6.41-11.51 µg/mL. Notably, the extract significantly reduced cell proliferation and promoted apoptosis of breast cancer cells. Furthermore, the extract also exhibited strong antifungal activity against Malassezia skin yeasts and the citrus postharvest pathogen Penicillium digitatum. Our work provides a promising monokaryotic C. militaris strain as a bioresource for medicine, cosmetics, and fruit preservation.


Assuntos
Antineoplásicos , Cordyceps , Neoplasias , Penicillium , Humanos , Penicillium/genética , Carpóforos
7.
Fungal Genet Biol ; 171: 103862, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38218228

RESUMO

Although Penicillium molds can have significant impacts on agricultural, industrial, and biomedical systems, the ecological roles of Penicillium species in many microbiomes are not well characterized. Here we utilized a collection of 35 Penicillium strains isolated from cheese rinds to broadly investigate the genomic potential for secondary metabolism in cheese-associated Penicillium species, the impact of Penicillium on bacterial community assembly, and mechanisms of Penicillium-bacteria interactions. Using antiSMASH, we identified 1558 biosynthetic gene clusters, 406 of which were mapped to known pathways, including several mycotoxins and antimicrobial compounds. By measuring bacterial abundance and fungal mRNA expression when culturing representative Penicillium strains with a cheese rind bacterial community, we observed divergent impacts of different Penicillium strains, from strong inhibitors of bacterial growth to those with no impact on bacterial growth or community composition. Through differential mRNA expression analyses, Penicillium strains demonstrated limited differential gene expression in response to the bacterial community. We identified a few shared responses between the eight tested Penicillium strains, primarily upregulation of nutrient metabolic pathways, but we did not identify a conserved fungal response to growth in a multispecies community. These results in tandem suggest high variation among cheese-associated Penicillium species in their ability to shape bacterial community development and highlight important ecological diversity within this iconic genus.


Assuntos
Queijo , Microbiota , Penicillium , Queijo/microbiologia , Penicillium/genética , Perfilação da Expressão Gênica , Microbiota/genética , Genômica , Bactérias , RNA Mensageiro/metabolismo
8.
Toxins (Basel) ; 16(1)2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-38251268

RESUMO

Penicillium expansum is one the major postharvest pathogens of pome fruit during postharvest handling and storage. This fungus also produces patulin, which is a highly toxic mycotoxin that can contaminate infected fruits and their derived products and whose levels are regulated in many countries. In this study, we investigated the biocontrol potential of non-mycotoxigenic strains of Penicillium expansum against a mycotoxigenic strain. We analyzed the competitive behavior of two knockout mutants that were unable to produce patulin. The first mutant (∆patK) involved the deletion of the patK gene, which is the initial gene in patulin biosynthesis. The second mutant (∆veA) involved the deletion of veA, which is a global regulator of primary and secondary metabolism. At the phenotypic level, the ∆patK mutant exhibited similar phenotypic characteristics to the wild-type strain. In contrast, the ∆veA mutant displayed altered growth characteristics compared with the wild type, including reduced conidiation and abnormal conidiophores. Neither mutant produced patulin under the tested conditions. Under various stress conditions, the ∆veA mutants exhibited reduced growth and conidiation when exposed to stressors, including cell membrane stress, oxidative stress, osmotic stress, and different pH values. However, no significant changes were observed in the ∆patK mutant. In competitive growth experiments, the presence of non-mycotoxigenic strains reduced the population of the wild-type strain during in vitro growth. Furthermore, the addition of either of the non-mycotoxigenic strains resulted in a significant decrease in patulin levels. Overall, our results suggest the potential use of non-mycotoxigenic mutants, particularly ∆patK mutants, as biocontrol agents to reduce patulin contamination in food and feed.


Assuntos
Patulina , Penicillium , Patulina/toxicidade , Penicillium/genética , Membrana Celular , Frutas
9.
J Struct Biol ; 216(1): 108060, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38184156

RESUMO

Copalyl diphosphate synthase from Penicillium fellutanum (PfCPS) is an assembly-line terpene synthase that contains both prenyltransferase and class II cyclase activities. The prenyltransferase catalyzes processive chain elongation reactions using dimethylallyl diphosphate and three equivalents of isopentenyl diphosphate to yield geranylgeranyl diphosphate, which is then utilized as a substrate by the class II cyclase domain to generate copalyl diphosphate. Here, we report the 2.81 Å-resolution cryo-EM structure of the hexameric prenyltransferase of full-length PfCPS, which is surrounded by randomly splayed-out class II cyclase domains connected by disordered polypeptide linkers. The hexamer can be described as a trimer of dimers; surprisingly, one of the three dimer-dimer interfaces is separated to yield an open hexamer conformation, thus breaking the D3 symmetry typically observed in crystal structures of other prenyltransferase hexamers such as wild-type human GGPP synthase (hGGPPS). Interestingly, however, an open hexamer conformation was previously observed in the crystal structure of D188Y hGGPPS, apparently facilitated by hexamer-hexamer packing in the crystal lattice. The cryo-EM structure of the PfCPS prenyltransferase hexamer is the first to reveal that an open conformation can be achieved even in the absence of a point mutation or interaction with another hexamer. Even though PfCPS octamers are not detected, we suggest that the open hexamer conformation represents an intermediate in the hexamer-octamer equilibrium for those prenyltransferases that do exhibit oligomeric heterogeneity.


Assuntos
Alquil e Aril Transferases , Dimetilaliltranstransferase , Penicillium , Humanos , Dimetilaliltranstransferase/genética , Penicillium/genética , Proteínas de Plantas/genética
10.
PLoS One ; 19(1): e0296499, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38165907

RESUMO

Fungi associated with the marine echinoderm, Holothuria scabra, produces extracellular enzymes and bioactive metabolites, and mycoviruses that could be used for biotechnological and pharmaceutical applications. The species identification based on molecular and morphological characteristics classified the culturable fungi into twenty-three genera belonging to eight orders, Chaetothyriales, Eurotiales, Hypocreales, Mucorales, Mycosphaerellales, Onygenales, Pleosporales and Venturiales, from four classes, Eurotiomycetes, Dothideomycetes, Mucoromycetes and Sordariomycetes of the two phyla Ascomycota and Mucoromycota. The most frequent genera were Aspergillus (relative frequency, 45.30%) and Penicillium (relative frequency, 22.68%). The Menhinick species richness and Shannon species diversity indices were 1.64 and 2.36, respectively, indicating a high diversity of fungi. An enzymatic production test revealed that sixteen isolates could produce proteases and amylases at different levels. The presence of mycoviruses was detected in eight isolates with different genomic profiles. Thirty-two of the 55 isolates produced antimicrobial metabolites which had an inhibitory effect on various microbial pathogens. Most of these active isolates were identified as Aspergillus, Penicillium and Trichoderma. Notably, Aspergillus terreus F10M7, Trichoderma harzianum F31M4 and T. harzianum F31M5 showed the most potent activity against both Gram-positive and Gram-negative bacteria and human pathogenic fungi. Our study represents the first report of the mycobiota associated with the marine echinoderm Holothuria scabra.


Assuntos
Ascomicetos , Holothuria , Penicillium , Pepinos-do-Mar , Animais , Humanos , Holothuria/microbiologia , Antibacterianos/metabolismo , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Fungos , Ascomicetos/genética , Penicillium/genética , Filogenia
11.
Int J Biol Macromol ; 259(Pt 1): 129113, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38181919

RESUMO

Chitosan is a natural polysaccharide that is abundant, biocompatible and exhibits effective antifungal activity against various pathogenic fungi. However, the potential intracellular targets of chitosan in pathogenic fungi and the way of activity of chitosan are far from well known. The present work demonstrated that chitosan could inhibit Penicillium expansum, the principal causal agent of postharvest blue mold decay on apple fruits, by binding to DNA and triggering apoptosis. UV-visible spectroscopy, fluorescence spectroscopy and electrophoretic mobility assay proved the interaction between chitosan and DNA, while atomic force microscope (AFM) observation revealed the binding morphology of chitosan to DNA. Chitosan could inhibit in vitro DNA replication, and cell cycle analysis employing flow cytometry demonstrated that cell cycle was retarded by chitosan treatment. Furthermore, the reactive oxygen species (ROS) assay and membrane potential analysis showed that apoptosis was induced in P. expansum cells after exposure to chitosan. In conclusion, our results confirmed that chitosan interacts with DNA and induces apoptosis. These findings are expected to provide a feasible theoretical basis and practical direction for the promoting and implementing of chitosan in plant protection and further illuminate the possible antifungal mechanisms of chitosan against fungal pathogens.


Assuntos
Quitosana , Malus , Penicillium , Antifúngicos/farmacologia , Quitosana/farmacologia , Penicillium/genética , Frutas , DNA/farmacologia
12.
J Agric Food Chem ; 72(2): 1025-1034, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38181197

RESUMO

In this study, the role of WSC1 in the infection of pear fruit by Penicillium expansum was investigated. The WSC1 gene was knocked out and complemented by Agrobacterium-mediated homologous recombination technology. Then, the changes in growth, development, and pathogenic processes of the knockout mutant and the complement mutant were analyzed. The results indicated that deletion of WSC1 slowed the growth rate, reduced the mycelial and spore yield, and reduced the ability to produce toxins and pathogenicity of P. expansum in pear fruits. At the same time, the deletion of WSC1 reduced the tolerance of P. expansum to cell wall stress factors, enhanced antioxidant capacity, decreased hypertonic sensitivity, decreased salt stress resistance, and was more sensitive to most metal ions. Our results confirmed that WSC1 plays an important role in maintaining cell wall integrity and responding to stress, toxin production, and the pathogenicity of P. expansum.


Assuntos
Patulina , Penicillium , Pyrus , Frutas , Penicillium/genética , Penicillium/patogenicidade , Virulência
13.
Int J Biol Macromol ; 254(Pt 3): 127966, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37944726

RESUMO

Endo-1,4-ß-galactanase is an indispensable tool for preparing prebiotic ß-galacto-oligosaccharides (ß-GOS) from pectic galactan resources. In the present study, a novel endo-1,4-ß-galactanase (PoßGal53) belonging to glycoside hydrolase family 53 from Penicillium oxalicum sp. 68 was cloned and expressed in Pichia pastoris GS115. Upon purification by affinity chromatography, recombinant PoßGal53 exhibited a single band on SDS-PAGE with a molecular weight of 45.0 kDa. Using potato galactan as substrate, PoßGal53 showed optimal reaction conditions of pH 4.0, 40 °C, and was thermostable, retaining >80 % activity after incubating below 45 °C for 12 h. Significantly, PoßGal53 exhibited relatively conserved substrate specificity for (1 â†’ 4)-ß-D-galactan with an activity of 6244 ± 282 U/mg. In this regard, the enzyme is in effect the most efficient endo-1,4-ß-galactanase identified to date. By using PoßGal53, ß-GOS monomers were prepared from potato galactan and separated using medium pressure liquid chromatography. HPAEC-PAD, MALDI-TOF-MS and ESI-MS/MS analyses demonstrated that these ß-GOS species ranged from 1,4-ß-D-galactobiose to 1,4-ß-D-galactooctaose (DP 2-8) with high purity. This work provides not only a highly active tool for enzymatic degradation of pectic galactan, but an efficient protocol for preparing ß-GOS.


Assuntos
Penicillium , Espectrometria de Massas em Tandem , Glicosídeo Hidrolases/metabolismo , Penicillium/genética , Penicillium/metabolismo , Galactanos/química , Oligossacarídeos/metabolismo , Pectinas , Especificidade por Substrato
14.
Int J Food Microbiol ; 411: 110511, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38043476

RESUMO

The co-occurrence of fungi and mycotoxins in various foods has been frequently reported in many countries, posing a serious threat to the health and safety of consumers. In this study, the mycobiota in five types of commercial bee pollen samples from China were first revealed by DNA metabarcoding. Meanwhile, the content of total aflatoxins in each sample was investigated by high-performance liquid chromatography with fluorescence detection. The results demonstrated that Cladosporium (0.16 %-89.29 %) was the most prevalent genus in bee pollen, followed by Metschnikowia (0-81.12 %), unclassified genus in the phylum Ascomycota (0-81.13 %), Kodamaea (0-73.57 %), and Penicillium (0-36.13 %). Meanwhile, none of the assayed aflatoxins were determined in the 18 batches of bee pollen samples. In addition, the fungal diversity, community composition, and trophic mode varied significantly among five groups. This study provides comprehensive information for better understanding the fungal communities and aflatoxin residues in bee pollen from different floral origins in China.


Assuntos
Aflatoxinas , Micotoxinas , Penicillium , Animais , Abelhas , Aflatoxinas/análise , Micotoxinas/análise , Penicillium/genética , Cromatografia Líquida de Alta Pressão/métodos , Pólen/microbiologia , Contaminação de Alimentos/análise , Fungos
15.
Arch Microbiol ; 206(1): 36, 2023 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-38142242

RESUMO

The draft genome sequence and main genomic features of Penicillium pancosmium MUM 23.27, isolated from Portuguese raw honey are reported. The genome size is 34.82 Mb, containing a 48.99% GC content, 11,394 genes, with 39 rRNAs and 147 tRNAs/tmRNAs. Twenty-six BGCs were predicted with four exhibiting significant similarities with YWA1, chaetoglobosin A/chaetoglobosin C, squalestatin S1, and nidulanin A. Moreover, the whole-genome sequencing and in silico genomic analysis, allowed to further understand some aspects of this species habitat, resistance, and evolutionary genomic events. Altogether, the results obtained also allow to dwell deeper on particular Penicillia biological characteristics and genomic traits, permitting them to thrive in these honey substrates. In addition, this resource represents the first genome for the species and one of the first for raw honeys filamentous fungi.


Assuntos
Mel , Penicillium , Penicillium/genética , Genômica , Sequenciamento Completo do Genoma
16.
J Agric Food Chem ; 71(51): 20782-20792, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38103029

RESUMO

Naringenin is a natural product with several reported bioactivities and is the key intermediate for the entire class of plant flavonoids. The translation of flavonoids into modern medicine as pure compounds is often hampered by their low abundance in nature and their difficult chemical synthesis. Here, we investigated the possibility to use the filamentous fungus Penicillium rubens as a host for flavonoid production. P. rubens is a well-characterized, highly engineered, traditional "workhorse" for the production of ß-lactam antibiotics. We integrated two plant genes encoding enzymes in the naringenin biosynthesis pathway into the genome of the secondary metabolite-deficient P. rubens 4xKO strain. After optimization of the fermentation conditions, we obtained an excellent molar yield of naringenin from fed p-coumaric acid (88%) with a titer of 0.88 mM. Along with product accumulation over 36 h, however, we also observed rapid degradation of naringenin. Based on high-resolution mass spectrometry analysis, we propose a naringenin degradation pathway in P. rubens 4xKO, which is distinct from other flavonoid-converting pathways reported in fungi. Our work demonstrates that P. rubens is a promising host for recombinant flavonoid production, and it represents an interesting starting point for further investigation into the utilization of plant biomass by filamentous fungi.


Assuntos
Flavanonas , Penicillium , Flavanonas/química , Flavonoides/química , Penicillium/genética , Penicillium/metabolismo , Fungos/metabolismo
17.
Fungal Genet Biol ; 169: 103843, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37922979

RESUMO

Penicillium brevicompactum is a critical industrial strain for the production of mycophenolic acid (MPA). However, the genetic background of Penicillium brevicompactum is unclear, and there are few tools available for genetic manipulation. To investigate its gene function, we first verified the feasibility of a pair of citrate synthase promoter (Pcit) and terminator (Tcit) from P. brevicompactum by constructing a fluorescent expression cassette. Based on this, an RNAi vector was designed and constructed with reverse promoters. This study focused on the functional investigation of the pbpcz gene in P. brevicompactum, a regulator belonging to the Zn(II)2Cys6 family. RNAi was used to silence the pbpcz gene, providing a valuable tool for genetic studies in P. brevicompactum. After seven days, we observed differences in the number of spores between different phenotypes strains of pbpcz gene. Compared to the wild-type strain (WT), the spore yield of the pbpcz gene silencing mutant (M2) was only 51.4 %, while that of the pbpcz gene overexpressed mutant (SE4) was increased by 50 %. Expression levels of the three genes (brlA, abaA, and wetA) comprising conidia's central regulatory pathway were significantly reduced in the pbpcz gene silencing mutant, while fluorescence localization showed that PbPCZ protein was mainly distributed in spores. The results indicated that the pbpcz gene is critical for conidia and asexual development of P. brevicompactum. In addition, overexpressing the pbpcz gene resulted in a 30.3 % increase in MPA production compared to the wild type, with a final yield of 3.57 g/L. These results provide evidence that PbPCZ acts as a positive regulator in P. brevicompactum, controlling MPA production and regulating conidia and asexual development.


Assuntos
Ácido Micofenólico , Penicillium , Interferência de RNA , Ácido Micofenólico/metabolismo , Penicillium/genética , Penicillium/metabolismo , Inativação Gênica
18.
Sci Rep ; 13(1): 17433, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37833355

RESUMO

Penicillium species are an industrially important group of fungi. Cyclophilins are ubiquitous proteins and several members of this family exhibit peptidyl-prolyl cis-trans isomerase (PPIase) activity. We had earlier demonstrated that the salt-induced PPIase activity in a halotolerant strain of P. oxalicum was associated with enhanced expression of a cyclophilin gene, PoxCYP18. Cloning and characterization of PoxCYP18 revealed that its cDNA consists of 522 bp encoding a protein of 173 amino acid residues, with predicted molecular mass and pI values of 18.91 kDa and 8.87, respectively. The recombinant PoxCYP18 can catalyze cis-trans isomerization of peptidyl-prolyl bond with a catalytic efficiency of 1.46 × 107 M-1 s-1 and is inhibited specifically only by cyclosporin A, with an inhibition constant of 5.04 ± 1.13 nM. PoxCYP18 consists of two cysteine residues at positions - 45 and - 170, and loses its activity under oxidizing conditions. Substitution of these residues alone or together by site-directed mutagenesis revealed that the PPIase activity of PoxCYP18 is regulated through a redox mechanism involving the formation of disulfide linkages. Heterologous expression of PoxCYP18 conferred enhanced tolerance to salt stress in transgenic E. coli cells, implying that this protein imparts protection to cellular processes against salt-induced damage.


Assuntos
Ciclofilinas , Penicillium , Ciclofilinas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Peptidilprolil Isomerase/genética , Penicillium/genética , Penicillium/metabolismo , Ciclosporina/farmacologia
19.
FEBS J ; 290(21): 5094-5097, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37794568

RESUMO

Since the first CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated) system was developed for creating double-stranded DNA breaks, it has been adapted and improved for different biotechnological applications. In this issue of The FEBS Journal, Arentshorst et al. developed a novel approach to enhance transgene expression of a specific protein, patulin synthase (PatE) from Penicillium expansum, in the important industrial filamentous fungus Aspergillus niger. Their technique involved the disruption of selected genes with counter-effects on targeted protein production and simultaneous integration of glucoamylase landing sites into the disrupted gene locus such as protease regulator (prtT) in an ATP-dependent DNA helicase II subunit 1 (kusA or ku70)-deletion strain. Multiple copies of the PatE transgene expression cassette were introduced by CRISPR-Cas9-mediated insertion. The purified PatE was further used for structural and functional studies, and the technique laid the foundation for elevating the overall production of various proteins or chemicals in those industrially important fungi.


Assuntos
Patulina , Penicillium , Edição de Genes/métodos , Aspergillus niger/genética , Patulina/genética , Patulina/metabolismo , Penicillium/genética , Sistemas CRISPR-Cas/genética
20.
Fungal Genet Biol ; 169: 103837, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37722619

RESUMO

Epigenetic modification of chromosome structure has increasingly been associated with alterations in secondary metabolism and sporulation defects in filamentous fungal pathogens. Recently, the epigenetic reader protein SntB was shown to govern virulence, spore production and mycotoxin synthesis in the fruit pathogen Penicillium expansum. Through immunoprecipitation-coupled mass spectrometry, we found that SntB is a member of a protein complex with KdmB, a histone demethylase and the essential protein RpdA, a histone deacetylase. Deletion of kdmB phenocopied some but not all characteristics of the ΔsntB mutant. KdmB deletion strains exhibited reduced lesion development on Golden Delicious apples and this was accompanied by decreased production of patulin and citrinin in host tissue. In addition, ΔkdmB mutants were sensitive to several cell wall stressors which possibly contributed to the decreased virulence observed on apples. Slight differences in spore production and germination rates of ΔkdmB mutants in vitro did not impact overall diameter growth in culture.


Assuntos
Malus , Patulina , Penicillium , Virulência/genética , Patulina/análise , Patulina/metabolismo , Frutas/química , Frutas/metabolismo , Frutas/microbiologia , Penicillium/genética , Penicillium/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...