Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 768
Filtrar
1.
Immunohorizons ; 8(3): 269-280, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38517345

RESUMO

Bacillus anthracis peptidoglycan (PGN) is a major component of the bacterial cell wall and a key pathogen-associated molecular pattern contributing to anthrax pathology, including organ dysfunction and coagulopathy. Increases in apoptotic leukocytes are a late-stage feature of anthrax and sepsis, suggesting there is a defect in apoptotic clearance. In this study, we tested the hypothesis that B. anthracis PGN inhibits the capacity of human monocyte-derived macrophages (MΦ) to efferocytose apoptotic cells. Exposure of CD163+CD206+ MΦ to PGN for 24 h impaired efferocytosis in a manner dependent on human serum opsonins but independent of complement component C3. PGN treatment reduced cell surface expression of the proefferocytic signaling receptors MERTK, TYRO3, AXL, integrin αVß5, CD36, and TIM-3, whereas TIM-1, αVß3, CD300b, CD300f, STABILIN-1, and STABILIN-2 were unaffected. ADAM17 is a major membrane-bound protease implicated in mediating efferocytotic receptor cleavage. We found multiple ADAM17-mediated substrates increased in PGN-treated supernatant, suggesting involvement of membrane-bound proteases. ADAM17 inhibitors TAPI-0 and Marimastat prevented TNF release, indicating effective protease inhibition, and modestly increased cell-surface levels of MerTK and TIM-3 but only partially restored efferocytic capacity by PGN-treated MΦ. We conclude that human serum factors are required for optimal recognition of PGN by human MΦ and that B. anthracis PGN inhibits efferocytosis in part by reducing cell surface expression of MERTK and TIM-3.


Assuntos
Antraz , Bacillus anthracis , Humanos , c-Mer Tirosina Quinase/metabolismo , Peptidoglicano/farmacologia , Peptidoglicano/metabolismo , Antraz/metabolismo , Antraz/patologia , Eferocitose , Receptor Celular 2 do Vírus da Hepatite A/metabolismo , Macrófagos/metabolismo , Parede Celular/metabolismo , Parede Celular/patologia
2.
Fish Shellfish Immunol ; 147: 109451, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38360193

RESUMO

Fibrinogen-related proteins (FREPs) are a family of glycoproteins that contain a fibrinogen-like (FBG) domain. Many members of FREPs have been shown to play an important role in innate immune response in both vertebrates and invertebrates. Here we reported the immune functional characterization of ANGPT4, member of FREPs, in zebrafish Danio rerio. Quantitative real time PCR showed that the expression of zebrafish ANGPT4 gene is up-regulated by the challenge with lipoteichoic acid (LTA) or lipopolysaccharides (LPS), hinting its involvement in innate immune response. The recombinant ANGPT4 (rANGPT4) could bind to both gram-positive bacteria Staphylococcus aureus and Bacillus subtilis and the gram-negative bacteria Escherichia coli and Aeromonas hydrophila as well as the pathogen-associated molecular patterns (PAMPs) on the bacterial surfaces including LTA, LPS and peptidoglycan (PGN), suggesting it capable of identifying pathogens via LTA, LPS and PGN. In addition, rANGPT4 also displayed strong bacteriolytic activities against both gram-positive and -negative bacteria tested via inducing membrane depolarization and intracellular ROS production. Moreover, the bacterial clearance assay in vivo showed that the rANGPT4 could also accelerate the clearance of bacteria in zebrafish embryos/larvae. Finally, we showed that the eukaryotically expressed recombinant ANGPT4 maintained antibacterial activity and binding activity to bacteria and LTA, LPS and PGN. All these suggested that ANGPT4 could not only capable of recognizing pathogens via LTA, LPS and PGN, but also capable of killing the Gram-positive and Gram-negative bacteria, in innate immune response. This work also provides further information to understand the biological roles of FREPs and the innate immunity in vertebrates.


Assuntos
Proteínas de Transporte , Ácidos Teicoicos , Peixe-Zebra , Animais , Lipopolissacarídeos/farmacologia , Peptidoglicano/farmacologia , Antibacterianos , Fibrinogênio , Bactérias Gram-Negativas/fisiologia , Bactérias Gram-Positivas/fisiologia , Bactérias/metabolismo , Proteínas de Peixe-Zebra/genética
3.
Int J Biol Macromol ; 254(Pt 3): 127784, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37949278

RESUMO

Penicillin-binding proteins (PBPs) include transpeptidases, carboxypeptidases, and endopeptidases for biosynthesis of peptidoglycans in the cell wall to maintain bacterial morphology and survival in the environment. Streptococcus pneumoniae expresses six PBPs, but their enzymatic kinetic characteristics and inhibitory effects on different ß-lactam antibiotics remain poorly understood. In this study, all the six recombinant PBPs of S. pneumoniae displayed transpeptidase activity with different substrate affinities (Km = 1.56-9.11 mM) in a concentration-dependent manner, and rPBP3 showed a greater catalytic efficiency (Kcat = 2.38 s-1) than the other rPBPs (Kcat = 3.20-7.49 × 10-2 s-1). However, only rPBP3 was identified as a carboxypeptidase (Km = 8.57 mM and Kcat = 2.57 s-1). None of the rPBPs exhibited endopeptidase activity. Penicillin and cefotaxime inhibited the transpeptidase and carboxypeptidase activity of all the rPBPs but imipenem did not inhibited the enzymatic activities of rPBP3. Except for the lack of binding of imipenem to rPBP3, penicillin, cefotaxime, and imipenem bound to all the other rPBPs (KD = 3.71-9.35 × 10-4 M). Sublethal concentrations of penicillin, cefotaxime, and imipenem induced a decrease of pneumococcal pbps-mRNA levels (p < 0.05). These results indicated that all six PBPs of S. pneumoniae are transpeptidases, while only PBP3 is a carboxypeptidase. Imipenem has no inhibitory effect on pneumococcal PBP3. The pneumococcal genes for encoding endopeptidases remain to be determined.


Assuntos
Peptidil Transferases , Proteínas de Ligação às Penicilinas/genética , Proteínas de Ligação às Penicilinas/metabolismo , Proteínas de Ligação às Penicilinas/farmacologia , Peptidil Transferases/genética , Peptidil Transferases/farmacologia , Streptococcus pneumoniae/metabolismo , Antibacterianos/farmacologia , Peptidoglicano/farmacologia , Proteínas de Bactérias/metabolismo , Penicilinas/metabolismo , Penicilinas/farmacologia , Imipenem/farmacologia , Cefotaxima , Monobactamas/farmacologia , Carboxipeptidases , Antibióticos beta Lactam , Endopeptidases/farmacologia
4.
Int J Mol Sci ; 24(23)2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38069229

RESUMO

Lacticaseibacillus rhamnosus CRL1505 beneficially modulates the inflammation-coagulation response during respiratory viral infections. This study evaluated the capacity of the peptidoglycan obtained from the CRL1505 strain (PG-Lr1505) to modulate the immuno-coagulative response triggered by the viral pathogen-associated molecular pattern poly(I:C) in the respiratory tract. Adult BALB/c mice were nasally treated with PG-Lr1505 for two days. Treated and untreated control mice were then nasally challenged with poly(I:C). Mice received three doses of poly(I:C) with a 24 h rest period between each administration. The immuno-coagulative response was studied after the last administration of poly(I:C). The challenge with poly(I:C) significantly increased blood and respiratory pro-inflammatory mediators, decreased prothrombin activity (PT), and increased von Willebrand factor (vWF) levels in plasma. Furthermore, tissue factor (TF), tissue factor pathway inhibitor (TFPI), and thrombomodulin (TM) expressions were increased in the lungs. PG-Lr1505-treated mice showed significant modulation of hemostatic parameters in plasma (PT in %, Control = 71.3 ± 3.8, PG-Lr1505 = 94.0 ± 4.0, p < 0.01) and lungs. Moreover, PG-Lr1505-treated mice demonstrated reduced TF in F4/80 cells from lungs, higher pro-inflammatory mediators, and increased IL-10 compared to poly(I:C) control mice (IL-10 in pg/mL, Control = 379.1 ± 12.1, PG-Lr1505 = 483.9 ± 11.3, p < 0.0001). These changes induced by PG-Lr1505 correlated with a significant reduction in lung tissue damage. Complementary in vitro studies using Raw 264.7 cells confirmed the beneficial effect of PG-Lr1505 on poly(I:C)-induced inflammation, since increased IL-10 expression, as well as reduced damage, production of inflammatory mediators, and hemostatic parameter expressions were observed. In addition, protease-activated receptor-1 (PAR1) activation in lungs and Raw 264.7 cells was observed after TLR3 stimulation, which was differentially modulated by PG-Lr1505. The peptidoglycan from L. rhamnosus CRL1505 is able to regulate inflammation, the procoagulant state, and PAR1 activation in mice and macrophages in the context of the activation of TLR3 signaling pathways, contributing to a beneficial modulation of inflammation-hemostasis crosstalk.


Assuntos
Hemostáticos , Lacticaseibacillus rhamnosus , Animais , Camundongos , Interleucina-10 , Peptidoglicano/farmacologia , Citocinas/metabolismo , Receptor PAR-1 , Receptor 3 Toll-Like , Pulmão/metabolismo , Inflamação , Mediadores da Inflamação
5.
Eur J Pharm Sci ; 191: 106602, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37806408

RESUMO

Staphylococcus aureus is an important pathogenic bacterium responsible for various organ infections. The serious side effects and the development of antibiotic resistance have rendered the antibiotic therapy against S. aureus increasingly challenging, emphasizing the pressing need for the exploration of novel therapeutic agents. Our research has uncovered the promising antimicrobial properties of 8-octyl berberine (OBBR), a novel compound derived from berberine (BBR), against S. aureus. OBBR exhibited a minimum inhibitory concentration (MIC) of 1.0 µg/mL, which closely approximated that of levofloxacin. Intriguingly, a multipassage resistance assay demonstrated that the MIC of OBBR against S. aureus remained relatively stable, while levofloxacin exhibited a 4-fold increase over 20 days, suggesting that OBBR was less prone to inducing resistance. Mechanistically, our investigation, employing Zeta potential measurements, flow cytometry, scanning electron microscopy, and transmission electron microscopy, unveiled that OBBR induced morphological alterations in the bacteria. Furthermore, it disrupted the bacterial cell wall and membrane by altering membrane potential and compromising membrane integrity. These actions culminated in bacterial disintegration and apoptosis. Transcriptomic analysis shed light on significant downregulation of gene ontology terms, predominantly associated with membranes. The Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis implicated OBBR in disturbing peptidoglycan biosynthesis, with the membrane protein MraY emerging as a potential target for OBBR's action against S. aureus. Notably, experiments involving the overexpression of MraY confirmed OBBR's inhibitory effect on peptidoglycan synthesis. Furthermore, molecular docking and cellular thermal shift assay revealed OBBR's direct interaction with MraY, potentially leading to the inhibition of the enzymatic activity of MraY and, consequently, impeding peptidoglycan synthesis. In summary, OBBR, by targeting MraY and inhibiting peptidoglycan synthesis, emerges as a promising alternative antibiotic against S. aureus, offering potential advantages in terms of limited drug resistance development.


Assuntos
Berberina , Infecções Estafilocócicas , Humanos , Staphylococcus aureus , Berberina/farmacologia , Peptidoglicano/metabolismo , Peptidoglicano/farmacologia , Simulação de Acoplamento Molecular , Levofloxacino , Antibacterianos/uso terapêutico , Infecções Estafilocócicas/tratamento farmacológico , Testes de Sensibilidade Microbiana
6.
Environ Res ; 227: 115754, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-36966998

RESUMO

Microbiologically influenced corrosion (MIC) caused by biofilm is a serious problem in many industries. D-amino acids could be a potential strategy to enhance traditional corrosion inhibitors due to their roles in biofilm reduction. However, the synergistic mechanism of D-amino acids and inhibitors remains unknown. In this study, D-Phenylalanine (D-Phe) and 1-hydroxyethane-1,1-diphosphonic acid (HEDP) were selected as the typical D-amino acid and corrosion inhibitor to evaluate their effect on the corrosion caused by Desulfovibrio vulgaris. The combination of HEDP and D-Phe obviously slowed down the corrosion process by 32.25%, decreased the corrosion pit depth and retarded cathodic reaction. SEM and CLSM analysis indicated that D-Phe reduced the content of extracellular protein and thus inhibited the biofilm formation. The molecular mechanism of D-Phe and HEDP on corrosion inhibition was further explored via transcriptome. The combination of HEDP and D-Phe down-regulated the gene expression of peptidoglycan, flagellum, electron transfer, ferredoxin and quorum sensing (QS) molecules, leading to less peptidoglycan synthesis, weaker electron transfer and stronger QS factor inhibition. This work provides a new strategy for improving traditional corrosion inhibitors, retarding MIC and mitigating subsequent water eutrophication.


Assuntos
Ácido Etidrônico , Fenilalanina , Ácido Etidrônico/farmacologia , Fenilalanina/farmacologia , Corrosão , Peptidoglicano/farmacologia , Biofilmes , Aminoácidos/farmacologia , Aço/química , Aço/farmacologia
7.
Int J Mol Sci ; 25(1)2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38203215

RESUMO

Periodontitis is an oral infectious disease caused by various pathogenic bacteria, such as Porphyromonas gingivalis. Although probiotics and their cellular components have demonstrated positive effects on periodontitis, the beneficial impact of peptidoglycan (PGN) from probiotic Lactobacillus remains unclear. Therefore, our study sought to investigate the inhibitory effect of PGN isolated from L. reuteri (LrPGN) on P. gingivalis-induced inflammatory responses. Pretreatment with LrPGN significantly inhibited the production of interleukin (IL)-1ß, IL-6, and CCL20 in RAW 264.7 cells induced by P. gingivalis lipopolysaccharide (LPS). LrPGN reduced the phosphorylation of PI3K/Akt and MAPKs, as well as NF-κB activation, which were induced by P. gingivalis LPS. Furthermore, LrPGN dose-dependently reduced the expression of Toll-like receptor 4 (TLR4), indicating that LrPGN inhibits periodontal inflammation by regulating cellular signaling cascades through TLR4 suppression. Notably, LrPGN exhibited stronger inhibition of P. gingivalis LPS-induced production of inflammatory mediators compared to insoluble LrPGN and proteinase K-treated LrPGN. Moreover, MDP, a minimal bioactive PGN motif, also dose-dependently inhibited P. gingivalis LPS-induced inflammatory mediators, suggesting that MDP-like molecules present in the LrPGN structure may play a crucial role in the inhibition of inflammatory responses. Collectively, these findings suggest that LrPGN can mitigate periodontal inflammation and could be a useful agent for the prevention and treatment of periodontitis.


Assuntos
Endopeptidases , Limosilactobacillus reuteri , Periodontite , Humanos , Receptor 4 Toll-Like , Lipopolissacarídeos/toxicidade , Peptidoglicano/farmacologia , Porphyromonas gingivalis , Fosfatidilinositol 3-Quinases , Inflamação , Mediadores da Inflamação
8.
J Neurosci ; 42(41): 7809-7823, 2022 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-36414007

RESUMO

Probing the external world is essential for eukaryotes to distinguish beneficial from pathogenic micro-organisms. If it is clear that the main part of this task falls to the immune cells, recent work shows that neurons can also detect microbes, although the molecules and mechanisms involved are less characterized. In Drosophila, detection of bacteria-derived peptidoglycan by pattern recognition receptors of the peptidoglycan recognition protein (PGRP) family expressed in immune cells triggers nuclear factor-κB (NF-κB)/immune deficiency (IMD)-dependent signaling. We show here that one PGRP protein, called PGRP-LB, is expressed in bitter gustatory neurons of proboscises. In vivo calcium imaging in female flies reveals that the PGRP/IMD pathway is cell-autonomously required in these neurons to transduce the peptidoglycan signal. We finally show that NF-κB/IMD pathway activation in bitter-sensing gustatory neurons influences fly behavior. This demonstrates that a major immune response elicitor and signaling module are required in the peripheral nervous system to sense the presence of bacteria in the environment.SIGNIFICANCE STATEMENT In addition to the classical immune response, eukaryotes rely on neuronally controlled mechanisms to detect microbes and engage in adapted behaviors. However, the mechanisms of microbe detection by the nervous system are poorly understood. Using genetic analysis and calcium imaging, we demonstrate here that bacteria-derived peptidoglycan can activate bitter gustatory neurons. We further show that this response is mediated by the PGRP-LC membrane receptor and downstream components of a noncanonical NF-κB signaling cascade. Activation of this signaling cascade triggers behavior changes. These data demonstrate that bitter-sensing neurons and immune cells share a common detection and signaling module to either trigger the production of antibacterial effectors or to modulate the behavior of flies that are in contact with bacteria. Because peptidoglycan detection doesn't mobilize the known gustatory receptors, it also demonstrates that taste perception is much more complex than anticipated.


Assuntos
Drosophila , Peptidoglicano , Animais , Feminino , Drosophila/genética , Peptidoglicano/farmacologia , Peptidoglicano/metabolismo , NF-kappa B , Cálcio , Bactérias/metabolismo , Neurônios/metabolismo
9.
Int J Mol Sci ; 23(19)2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36233224

RESUMO

Mesangial cells (MC) maintain the architecture and cellular communication and indirectly join in the glomerular filtration rate for the correct functioning of the glomerulus. Consequently, these cells are activated constantly in response to changes in the intraglomerular environment due to a metabolic imbalance or infection. IL-36, a member of the IL-1 family, is a cytokine that initiates and maintains inflammation in different tissues in acute and chronic pathologies, including the skin, lungs, and intestines. In the kidney, IL-36 has been described in the development of tubulointerstitial lesions, the production of an inflammatory environment, and is associated with metabolic and mesangioproliferative disorders. The participation of IL-36 in functional dysregulation and the consequent generation of the inflammatory environment by MCs in the presence of microbial stimulation is not yet elucidated. In this work, the MES SV40 cell cultures were stimulated with classical pathogen-associated molecular patterns (PAMPs), mimicking an infection by negative and positive bacteria as well as a viral infection. Lipopolysaccharide (LPS), peptidoglycan (PGN) microbial wall components, and a viral mimic poly I:C were used, and the mRNA and protein expression of the IL-36 members were assessed. We observed a differential and dose-dependent IL-36 mRNA and protein expression under LPS, PGN, and poly I:C stimulation. IL-36ß was only found when the cells were treated with LPS, while IL-36α and IL-36γ were favored by PGN and poly I:C stimulation. We suggest that the microbial components participate in the activation of MCs, leading them to the production of IL-36, in which a specific member may participate in the origin and maintenance of inflammation in the glomerular environment that is associated with infections.


Assuntos
Citocinas , Lipopolissacarídeos , Citocinas/metabolismo , Humanos , Inflamação , Interleucina-1/genética , Interleucina-1/metabolismo , Lipopolissacarídeos/farmacologia , Moléculas com Motivos Associados a Patógenos , Peptidoglicano/farmacologia , Poli I-C , RNA Mensageiro/genética
10.
Fish Shellfish Immunol ; 131: 559-569, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36241004

RESUMO

Peptidoglycan recognition proteins (PGRPs) belong to the pattern recognition receptor (PRR) family and are conserved from insects to mammals. PGRPs show specific binding abilities to peptidoglycans (PGNs) in various microbes. In this study, molecular and functional analyses of PGRP-SC2 from Amphiprion clarkii (AcPGRP-SC2) were conducted. The 492 bp ORF of AcPGRP-SC2 encoded a protein of 164 amino acids with a molecular weight of 17.58 kDa and pI of 8.9. The PGRP superfamily domain was identified from the protein sequence of AcPGRP-SC2 and sequence similarities were observed with homologous proteins. Quantitative polymerase chain reaction (qPCR) analysis revealed that AcPGRP-SC2 transcripts were ubiquitously expressed in all tested tissues, with high levels in the skin, and transcript expression was significantly modulated by immune stimulation with lipopolysaccharide (LPS), Polyinosinic:polycytidylic acid (poly I:C), and Vibrio harveyi post-immune challenge. Recombinant AcPGRP-SC2 with the maltose-binding protein fusion (rAcPGRP-SC2) was used to evaluate LPS-, PGN-, and bacterial-binding activities and to conduct bacterial agglutination assays, and the results demonstrated that AcPGRP-SC2 exhibited bacterial recognition, binding, and colonization abilities to a range of Gram-positive and Gram-negative bacterial strains. Moreover, rAcPGRP-SC2-pre-treated Fat Head Minnow (FHM) cells exhibited significant upregulation in NF-ĸB1, NF-ĸB2, and stat3 expression upon treatment with killed bacteria. Taken together, our findings suggest that AcPGRP-SC2 plays an important role in the immune response against microbial pathogens in A. clarkii.


Assuntos
Lipopolissacarídeos , Perciformes , Animais , Estrutura Molecular , Imunidade Inata/genética , Proteínas de Transporte , Peptidoglicano/farmacologia , Peptidoglicano/metabolismo , Mamíferos/metabolismo
11.
Fish Shellfish Immunol ; 131: 612-623, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36272520

RESUMO

Mytilus shows great immune resistance to various bacteria from the living waters, indicating a complex immune recognition mechanism against various microbes. Peptidoglycan recognition proteins (PGRPs) play an important role in the defense against invading microbes via the recognition of the immunogenic substance peptidoglycan (PGN). Therefore, eight PGRPs were identified from the gill transcriptome of Mytilus coruscus. The sequence features, expression pattern in various organs and larval development stages, and microbes induced expression profiles of these Mytilus PGRPs were determined. Our data revealed the constitutive expression of PGRPs in various organs with relative higher expression level in immune-related organs. The expression of PGRPs is developmentally regulated, and most PGRPs are undetectable in larvae stages. The expression level of most PGRPs was significantly increased with in vivo microbial challenges, showing strong response to Gram-positive strain in gill and digestive gland, strong response to Gram-negative strain in hemocytes, and relative weaker response to fungus in the three tested organs. In addition, the function analysis of the representative recombinant expressed PGRP (rMcPGRP-2) confirmed the antimicrobial and agglutination activities, showing the immune-related importance of PGRP in Mytilus. Our work suggests that Mytilus PGRPs can act as pattern recognition receptors to recognize the invading microorganisms and the antimicrobial effectors during the innate immune response of Mytilus.


Assuntos
Mytilus , Animais , Proteínas de Transporte , Peptidoglicano/farmacologia , Peptidoglicano/metabolismo , Receptores de Reconhecimento de Padrão/genética , Receptores de Reconhecimento de Padrão/metabolismo , Imunidade Inata/genética
12.
Front Immunol ; 13: 971883, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36275759

RESUMO

The Apextrin C-terminal (ApeC) domain is a new protein domain largely specific to aquatic invertebrates. In amphioxus, a short-form ApeC-containing protein (ACP) family is capable of binding peptidoglycan (PGN) and agglutinating bacteria via its ApeC domain. However, the functions of ApeC in other phyla remain unknown. Here we examined 130 ACPs from gastropods and bivalves, the first and second biggest mollusk classes. They were classified into nine groups based on their phylogenetics and architectures, including three groups of short-form ACPs, one group of apextrins and two groups of ACPs of complex architectures. No groups have orthologs in other phyla and only four groups have members in both gastropods and bivalves, suggesting that mollusk ACPs are highly diversified. We selected one bivalve ACP (CgACP1; from the oyster Crossostrea gigas) and one gastropod ACP (BgACP1; from the snail Biomphalaria glabrata) for functional experiments. Both are highly-expressed, secreted short-form ACPs and hence comparable to the amphioxus ACPs previously reported. We found that recombinant CgACP1 and BgACP1 bound with yeasts and several bacteria with different affinities. They also agglutinated these microbes, but showed no inhibiting or killing effects. Further analyses show that both ACPs had high affinities to the Lys-type PGN from S. aureus but weak or no affinities to the DAP-type PGN from Bacillus subtilis. Both recombinant ACPs displayed weak or no affinities to other microbial cell wall components, including lipopolysaccharide (LPS), lipoteichoic acid (LTA), zymosan A, chitin, chitosan and cellulose, as well as to several PGN moieties, including muramyl dipeptide (MDP), N-acetylglucosamine (GlcNAc) and N-acetylmuramic acid (MurNAc). Besides, CgACP1 had the highest expression in the gill and could be greatly up-regulated quickly after bacterial challenge. This is reminiscent of the amphioxus ACP1/2 which serve as essential mucus lectins in the gill. Taken together, the current findings from mollusk and amphioxus ACPs suggest several basic common traits for the ApeC domains, including the high affinity to Lys-type PGN, the bacterial binding and agglutinating capacity, and the role as mucus proteins to protect the mucosal surface.


Assuntos
Quitosana , Anfioxos , Animais , Peptidoglicano/farmacologia , Lipopolissacarídeos , Acetilmuramil-Alanil-Isoglutamina/farmacologia , Staphylococcus aureus/metabolismo , Acetilglucosamina/química , Zimosan , Anfioxos/metabolismo , Bactérias/metabolismo , Parede Celular/metabolismo , Lectinas , Moluscos , Celulose
13.
PLoS One ; 17(9): e0271420, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36155485

RESUMO

Cutibacterium acnes is a pathogenic bacterium that cause inflammatory diseases of the skin and intervertebral discs. The immune activation induced by C. acnes requires multiple cellular responses in the host. Silkworm, an invertebrate, generates melanin by phenoloxidase upon recognizing bacterial or fungal components. Therefore, the melanization reaction can be used as an indicator of innate immune activation. A silkworm infection model was developed for evaluating the virulence of C. acnes, but a system for evaluating the induction of innate immunity by C. acnes using melanization as an indicator has not yet been established. Here we demonstrated that C. acnes rapidly causes melanization of the silkworm hemolymph. On the other hand, Staphylococcus aureus, a gram-positive bacterium identical to C. acnes, does not cause immediate melanization. Even injection of heat-killed C. acnes cells caused melanization of the silkworm hemolymph. DNase, RNase, and protease treatment of the heat-treated C. acnes cells did not decrease the silkworm hemolymph melanization. Treatment with peptidoglycan-degrading enzymes, such as lysostaphin and lysozyme, however, decreased the induction of melanization by the heat-treated C. acnes cells. These findings suggest that silkworm hemolymph melanization may be a useful indicator to evaluate innate immune activation by C. acnes and that C. acnes peptidoglycans are involved in the induction of innate immunity in silkworms.


Assuntos
Bombyx , Animais , Desoxirribonucleases , Hemolinfa/microbiologia , Humanos , Lisostafina , Melaninas , Monofenol Mono-Oxigenase , Muramidase , Peptidoglicano/farmacologia , Propionibacterium acnes , Ribonucleases
14.
Int J Biol Macromol ; 220: 493-509, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35981681

RESUMO

In mammals, six interleukin-17 (IL-17) genes, as potent pro-inflammatory cytokines, all accelerate the inflammatory responses. In teleosts, seven IL-17 genes have been found in various species, but little is known about the function of teleost-specific IL-17N. In this study, teleost IL-17N and IL-17A/F2 genes all had six conserved cysteine residues forming three intrachain disulfide bridges, the length of three exons of teleost IL-17N gene was similar to that of teleost IL-17A/F2 gene, and the neighbor-joining (NJ) phylogenetic tree showed that teleost IL-17N was clustered with vertebrate IL-17A/F, implying that teleost IL-17N gene may be a paralog of teleost IL-17A/F gene. Pelteobagrus fulvidraco (Pf) IL-17N gene was highly expressed in the blood, brain and kidney of healthy yellow catfish. Pf_IL-17N transcript and protein were notably up-regulated in the spleen, head kidney, gill and kidney detected after Edwardsiella ictaluri infection. Lipopolysaccharides (LPS), polyinosinic-polycytidylic acid (Poly I:C) and peptidoglycan (PGN) also remarkably induced the expression of Pf_IL-17N in the isolated peripheral blood leucocytes (PBLs) of yellow catfish. These results reveal that Pf_IL-17N may play important roles in preventing the invasion of pathogens. Furthermore, the recombinant (r) Pf_IL-17N protein could significantly induce the mRNA expressions of inflammatory cytokines, chemokines and antimicrobial peptide genes in yellow catfish in vivo and in vitro, and it also notably promoted the phagocytosis of myeloid cells in the PBLs and the chemotaxis of the PBLs and gill leucocytes (GLs) in yellow catfish. Besides, though the rPf_IL-17N protein could induce and aggravate inflammation infiltration in the kidney of yellow catfish, it did not effectively and notably increase the survival rate of yellow catfish after E. ictaluri infection. Furthermore, the rPf_IL-17N protein could induce the mRNA expressions of nuclear factor kappa-B (NF-κB) and mitogen-activated protein kinase (MAPK) signal pathways related genes, and the inhibitor of NF-κB and MAPK signal pathways could restrain the rPf_IL-17N protein-induced inflammatory response. This study provides crucial evidence that the Pf_IL-17N may mediate inflammatory response to eliminate invasive pathogens.


Assuntos
Peixes-Gato , Infecções por Enterobacteriaceae , Doenças dos Peixes , Animais , Peixes-Gato/metabolismo , Cisteína/genética , Dissulfetos , Infecções por Enterobacteriaceae/genética , Infecções por Enterobacteriaceae/prevenção & controle , Infecções por Enterobacteriaceae/veterinária , Doenças dos Peixes/genética , Doenças dos Peixes/prevenção & controle , Proteínas de Peixes/química , Interleucina-17/genética , Interleucinas/genética , Lipopolissacarídeos/farmacologia , Mamíferos/genética , Proteínas Quinases Ativadas por Mitógeno/genética , NF-kappa B/genética , Peptidoglicano/farmacologia , Filogenia , Poli I-C/farmacologia , RNA Mensageiro/metabolismo
15.
Molecules ; 27(9)2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35566155

RESUMO

Targeting enzymes that play a role in the biosynthesis of the bacterial cell wall has long been a strategy for antibacterial discovery. In particular, the cell wall of Mycobacterium tuberculosis (Mtb) is a complex of three layers, one of which is Peptidoglycan, an essential component providing rigidity and strength. UDP-GlcNAc, a precursor for the synthesis of peptidoglycan, is formed by GlmU, a bi-functional enzyme. Inhibiting GlmU Uridyltransferase activity has been proven to be an effective anti-bacterial, but its similarity with human enzymes has been a deterrent to drug development. To develop Mtb selective hits, the Mtb GlmU substrate binding pocket was compared with structurally similar human enzymes to identify selectivity determining factors. Substrate binding pockets and conformational changes upon substrate binding were analyzed and MD simulations with substrates were performed to quantify crucial interactions to develop critical pharmacophore features. Thereafter, two strategies were applied to propose potent and selective bacterial GlmU Uridyltransferase domain inhibitors: (i) optimization of existing inhibitors, and (ii) identification by virtual screening. The binding modes of hits identified from virtual screening and ligand growing approaches were evaluated further for their ability to retain stable contacts within the pocket during 20 ns MD simulations. Hits that are predicted to be more potent than existing inhibitors and selective against human homologues could be of great interest for rejuvenating drug discovery efforts towards targeting the Mtb cell wall for antibacterial discovery.


Assuntos
Mycobacterium tuberculosis , UDPglucose-Hexose-1-Fosfato Uridiltransferase , Antibacterianos/farmacologia , Desenho de Fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Humanos , Ligantes , Simulação de Acoplamento Molecular , Peptidoglicano/farmacologia
16.
Nutrients ; 14(3)2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35276864

RESUMO

Pharyngitis is an inflammation of the pharynx caused by viral, bacterial, or non-infectious factors. In the present study, the anti-inflammatory efficacy of carvacrol was assessed using an in vitro model of streptococcal pharyngitis using human tonsil epithelial cells (HTonEpiCs) induced with Streptococcus pyogenes cell wall antigens. HTonEpiCs were stimulated by a mixture of lipoteichoic acid (LTA) and peptidoglycan (PGN) for 4 h followed by exposure to carvacrol for 20 h. Following exposure, interleukin (IL)-6, IL-8, human beta defensin-2 (HBD-2), epithelial-derived neutrophil-activating protein-78 (ENA-78), granulocyte chemotactic protein-2 (GCP-2), cyclooxygenase-2 (COX-2), tumor necrosis factor-alpha (TNF-α), and prostaglandin (PGE2) were measured by enzyme-linked immunosorbent assays (ELISA). The levels of pro-inflammatory cytokines, IL-6, IL-8, ENA-78, and GCP-2 were decreased in a carvacrol dose-dependent manner. The production of HBD-2 was significantly suppressed over 24 h carvacrol treatments. PGE2 and COX-2 levels in the cell suspensions were affected by carvacrol treatment. TNF-α was not detected. The cell viability of all the tested carvacrol concentrations was greater than 80%, with no morphological changes. The results suggest that carvacrol has anti-inflammatory properties, and carvacrol needs to be further assessed for potential clinical or healthcare applications to manage the pain associated with streptococcal pharyngitis.


Assuntos
Tonsila Palatina , Peptidoglicano , Biomarcadores , Parede Celular , Cimenos , Células Epiteliais , Humanos , Lipopolissacarídeos , Peptidoglicano/farmacologia , Ácidos Teicoicos
17.
Int J Mol Sci ; 23(5)2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35269651

RESUMO

Acne is a common inflammatory disorder of the human skin and a multifactorial disease caused by the sebaceous gland and Propionibacterium acnes (P. acnes). This study aimed to evaluate the anti-inflammatory effect of micro-current stimulation (MC) on peptidoglycan (PGN)-treated raw 264.7 macrophages and P. acnes-induced skin inflammation. To specify the intensity with anti-inflammatory effects, nitric oxide (NO) production was compared according to various levels of MC. As the lowest NO production was shown at an intensity of 50 µA, subsequent experiments used this intensity. The changes of expression of the proteins related to TLR2/NF-κB signaling were examined by immunoblotting. Also, immunofluorescence analysis was performed for observing NF-κB p65 localization. All of the expression levels of proteins regarding TLR2/NF-κB signaling were decreased by the application of MC. Moreover, the application of MC to PGN-treated raw 264.7 cells showed a significant decrease in the amount of nuclear p65-protein. In the case of animal models with P. acnes-induced skin inflammation, various pro-inflammatory cytokines and mediators significantly decreased in MC-applied mice. In particular, the concentration of IL-1ß in serum decreased, and the area of acne lesions, decreased from the histological analysis. We suggest for the first time that MC can be a novel treatment for acne.


Assuntos
Acne Vulgar , Dermatite , Acne Vulgar/microbiologia , Animais , Anti-Inflamatórios/farmacologia , Inflamação/tratamento farmacológico , Macrófagos/metabolismo , Camundongos , NF-kappa B/metabolismo , Peptidoglicano/metabolismo , Peptidoglicano/farmacologia , Propionibacterium acnes , Transdução de Sinais , Receptor 2 Toll-Like/metabolismo
18.
J Cell Physiol ; 237(3): 1768-1779, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34791644

RESUMO

Peptidoglycan (PGN) is a major polymer in bacterial cell walls and may constrain gut functionality and lower intestinal efficiencies in livestock. Citral has been reported to exhibit antibacterial and anti-inflammatory biological activities, improving the gastrointestinal function of swine. However, the protective effect of citral against PGN-elicited cellular responses and possible underlying mechanisms are unknown. In this study, the porcine jejunal epithelial cell line (IPEC-J2) was challenged with PGN from Staphylococcus aureus (S. aureus) or Bacillus subtilis (B. subtilis) to explore PGN-induced inflammatory responses. Our data showed that the inflammatory response stimulated by PGN from harmful bacteria (S. aureus) was more potent than that from commensal bacteria (B. subtilis) in IPEC-J2 cells. Based on the inflammatory model by PGN from S. aureus, it was demonstrated that PGN could significantly induce inflammatory cytokine production and influence nutrient absorption and barrier function in a dose-dependent manner. However, the PGN-mediated immune responses were remarkably suppressed by citral. In addition, citral significantly attenuated the effect of PGN on the intestine nutrient absorption and barrier function. The expression of TLR2 was strongly induced by PGN stimulation, which was suppressed by citral. All data nominated that citral downregulated PGN-induced inflammation via TLR2-mediated activation of the NF-κB signaling pathway in IPEC-J2 cells. Furthermore, the results also indicate that the PGN degradation through the inclusion of enzymes (e.g., muramidase) as well as the inclusion of citral for attenuating inflammation may improve pig gut health and functionality.


Assuntos
Peptidoglicano , Receptor 2 Toll-Like , Monoterpenos Acíclicos , Animais , Parede Celular/metabolismo , Células Epiteliais/metabolismo , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Peptidoglicano/farmacologia , Staphylococcus aureus/metabolismo , Suínos , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo
19.
Biol Pharm Bull ; 44(11): 1653-1661, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34719642

RESUMO

TP0463518 (TS-143) is a competitive prolyl hydroxylase 1/2/3 pan-inhibitor, and has been shown to specifically stabilize hypoxia-inducible factor-2 alpha in the liver to increase erythropoietin production. While TP0463518 has been shown to improve renal anemia, its effect on anemia of inflammation is still unknown. In this study, we created a rat model of anemia of inflammation by administering peptidoglycan-polysaccharide (PG-PS) to Lewis rats; the PG-PS-treated rats developed anemia within 2 weeks after the PG-PS challenge. The hematopoietic effects of oral TP0463518 administration at 10 mg/kg once daily for 6 weeks were examined in this rat model. The hematocrit values in the TP0463518-treated group increased significantly from 32.8 ± 0.8 to 44.5 ± 2.1% after the treatment, which was comparable to that in the healthy control group. The change of the mean corpuscular volume following TP0463518 treatment was similar to that in the healthy control group up to week 4, and significantly higher than that in the vehicle-treated group. TP0463518 increased divalent metal transporter 1 and duodenal cytochrome b expressions in the intestine. Conversely, TP0465318 did not exert any effects on the expressions of genes involved in iron metabolism in the liver, even though TP0463518 dramatically increased erythropoietin expression. Furthermore, TP0463518 had no effect on the expressions of inflammation markers in the liver. These results suggest that TP0463518 increased iron absorption and improved anemia of inflammation without exacerbating liver inflammation. TP0463518 appears to have an acceptable safety profile and could become a useful new therapeutic option for anemia of inflammation.


Assuntos
Anemia/tratamento farmacológico , Di-Hidropiridinas/farmacologia , Inflamação/tratamento farmacológico , Inibidores de Prolil-Hidrolase/farmacologia , Piridinas/farmacologia , Anemia/etiologia , Animais , Western Blotting , Di-Hidropiridinas/uso terapêutico , Ensaio de Imunoadsorção Enzimática , Feminino , Inflamação/induzido quimicamente , Inflamação/complicações , Ferro/sangue , Peptidoglicano/farmacologia , Polissacarídeos/farmacologia , Inibidores de Prolil-Hidrolase/uso terapêutico , Piridinas/uso terapêutico , Ratos , Ratos Endogâmicos Lew , Transferrina/análise
20.
Cell Rep ; 36(11): 109691, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34525353

RESUMO

Lipopolysaccharides (LPSs) can promote metabolic endotoxemia, which is considered inflammatory and metabolically detrimental based on Toll-like receptor (TLR)4 agonists, such as Escherichia coli-derived LPS. LPSs from certain bacteria antagonize TLR4 yet contribute to endotoxemia measured by endotoxin units (EUs). We found that E. coli LPS impairs gut barrier function and worsens glycemic control in mice, but equal doses of LPSs from other bacteria do not. Matching the LPS dose from R. sphaeroides and E. coli by EUs reveals that only E. coli LPS promotes dysglycemia and adipose inflammation, delays intestinal glucose absorption, and augments insulin and glucagon-like peptide (GLP)-1 secretion. Metabolically beneficial endotoxemia promoted by R. sphaeroides LPS counteracts dysglycemia caused by an equal dose of E. coli LPS and improves glucose control in obese mice. The concept of metabolic endotoxemia should be expanded beyond LPS load to include LPS characteristics, such as lipid A acylation, which dictates the effect of metabolic endotoxemia.


Assuntos
Endotoxemia/etiologia , Intestinos/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Animais , Glicemia/análise , Peso Corporal/efeitos dos fármacos , Endotoxemia/metabolismo , Escherichia coli/metabolismo , Peptídeo 1 Semelhante ao Glucagon/sangue , Glucose/metabolismo , Insulina/sangue , Intestinos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade/metabolismo , Obesidade/patologia , Peptidoglicano/farmacologia , Rhodobacter sphaeroides/metabolismo , Receptor 4 Toll-Like/agonistas , Receptor 4 Toll-Like/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...