Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Transl Res ; 233: 162-179, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33582242

RESUMO

Once thought of as arising from "junk DNA," noncoding RNAs (ncRNAs) have emerged as key molecules in cellular processes and response to stress. From diseases such as cancer, coronary artery disease, and diabetes to the effects of ionizing radiation (IR), ncRNAs play important roles in disease progression and as biomarkers of damage. Noncoding RNAs regulate cellular processes by competitively binding DNA, mRNA, proteins, and other ncRNAs. Through these interactions, specific ncRNAs can modulate the radiosensitivity of cells and serve as diagnostic and prognostic biomarkers of radiation damage, whether from incidental exposure in radiotherapy or in accidental exposure scenarios. Analysis of RNA expression after radiation exposure has shown alterations not only in mRNAs, but also in ncRNAs (primarily miRNA, circRNA, and lncRNA), implying an important role in cellular stress response. Due to their abundance and stability in serum and other biofluids, ncRNAs also have great potential as minimally invasive biomarkers with advantages over current biodosimetry methods. Several studies have examined changes in ncRNA expression profiles in response to IR and other forms of oxidative stress. Furthermore, some studies have reported modulation of radiosensitivity by altering expression levels of these ncRNAs. This review discusses the roles of ncRNAs in the radiation response and evaluates prior research on ncRNAs as biomarkers of radiation damage. Future directions and applications of ncRNAs in radiation research are introduced, including the potential for a clinical ncRNA assay for assessing radiation damage and for the therapeutic use of RNA interference (RNAi).


Assuntos
RNA Longo não Codificante/efeitos da radiação , Pequeno RNA não Traduzido/efeitos da radiação , Animais , Biomarcadores/metabolismo , Feminino , Humanos , Masculino , MicroRNAs/genética , MicroRNAs/metabolismo , Modelos Biológicos , Especificidade de Órgãos , Estresse Oxidativo/genética , Estresse Oxidativo/efeitos da radiação , RNA Circular/genética , RNA Circular/metabolismo , RNA Circular/efeitos da radiação , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Pequeno RNA não Traduzido/genética , Pequeno RNA não Traduzido/metabolismo , Lesões por Radiação/genética , Lesões por Radiação/metabolismo , Tolerância a Radiação/genética , Radiometria/métodos , Pesquisa Translacional Biomédica
2.
Oncotarget ; 7(18): 26496-515, 2016 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-27034163

RESUMO

Emerging evidence indicates that ionizing radiation (IR) and chemotherapy activate Type I interferon (IFN) signaling in tumor and host cells. However, the mechanism of induction is poorly understood. We identified a novel radioprotective role for the DEXH box RNA helicase LGP2 (DHX58) through its suppression of IR-induced cytotoxic IFN-beta [1]. LGP2 inhibits activation of the RIG-I-like receptor (RLR) pathway upon binding of viral RNA to the cytoplasmic sensors RIG-I (DDX58) and MDA5 (IFIH1) and subsequent IFN signaling via the mitochondrial adaptor protein MAVS (IPS1). Here we show that MAVS is necessary for IFN-beta induction and interferon-stimulated gene expression in the response to IR. Suppression of MAVS conferred radioresistance in normal and cancer cells. Germline deletion of RIG-I, but not MDA5, protected mice from death following total body irradiation, while deletion of LGP2 accelerated the death of irradiated animals. In human tumors depletion of RIG-I conferred resistance to IR and different classes of chemotherapy drugs. Mechanistically, IR stimulated the binding of cytoplasmic RIG-I with small endogenous non-coding RNAs (sncRNAs), which triggered IFN-beta activity. We demonstrate that the small nuclear RNAs U1 and U2 translocate to the cytoplasm after IR treatment, thus stimulating the formation of RIG-I: RNA complexes and initiating downstream signaling events. Taken together, these findings suggest that the physiologic responses to radio-/chemo-therapy converge on an antiviral program in recruitment of the RLR pathway by a sncRNA-dependent activation of RIG-I which commences cytotoxic IFN signaling. Importantly, activation of interferon genes by radiation or chemotherapy is associated with a favorable outcome in patients undergoing treatment for cancer. To our knowledge, this is the first demonstration of a cell-intrinsic response to clinically relevant genotoxic treatments mediated by an RNA-dependent mechanism.


Assuntos
Proteína DEAD-box 58/efeitos dos fármacos , Proteína DEAD-box 58/metabolismo , Proteína DEAD-box 58/efeitos da radiação , Interferon beta/biossíntese , Neoplasias/metabolismo , Animais , Linhagem Celular Tumoral , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias/terapia , Pequeno RNA não Traduzido/efeitos dos fármacos , Pequeno RNA não Traduzido/metabolismo , Pequeno RNA não Traduzido/efeitos da radiação , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...