Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.546
Filtrar
1.
J Acoust Soc Am ; 155(5): 3101-3117, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38722101

RESUMO

Cochlear implant (CI) users often report being unsatisfied by music listening through their hearing device. Vibrotactile stimulation could help alleviate those challenges. Previous research has shown that musical stimuli was given higher preference ratings by normal-hearing listeners when concurrent vibrotactile stimulation was congruent in intensity and timing with the corresponding auditory signal compared to incongruent. However, it is not known whether this is also the case for CI users. Therefore, in this experiment, we presented 18 CI users and 24 normal-hearing listeners with five melodies and five different audio-to-tactile maps. Each map varied the congruence between the audio and tactile signals related to intensity, fundamental frequency, and timing. Participants were asked to rate the maps from zero to 100, based on preference. It was shown that almost all normal-hearing listeners, as well as a subset of the CI users, preferred tactile stimulation, which was congruent with the audio in intensity and timing. However, many CI users had no difference in preference between timing aligned and timing unaligned stimuli. The results provide evidence that vibrotactile music enjoyment enhancement could be a solution for some CI users; however, more research is needed to understand which CI users can benefit from it most.


Assuntos
Estimulação Acústica , Percepção Auditiva , Implantes Cocleares , Música , Humanos , Feminino , Masculino , Adulto , Pessoa de Meia-Idade , Idoso , Percepção Auditiva/fisiologia , Adulto Jovem , Preferência do Paciente , Implante Coclear/instrumentação , Percepção do Tato/fisiologia , Vibração , Tato
2.
Science ; 384(6696): 660-665, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38723082

RESUMO

Rapid processing of tactile information is essential to human haptic exploration and dexterous object manipulation. Conventional electronic skins generate frames of tactile signals upon interaction with objects. Unfortunately, they are generally ill-suited for efficient coding of temporal information and rapid feature extraction. In this work, we report a neuromorphic tactile system that uses spike timing, especially the first-spike timing, to code dynamic tactile information about touch and grasp. This strategy enables the system to seamlessly code highly dynamic information with millisecond temporal resolution on par with the biological nervous system, yielding dynamic extraction of tactile features. Upon interaction with objects, the system rapidly classifies them in the initial phase of touch and grasp, thus paving the way to fast tactile feedback desired for neuro-robotics and neuro-prosthetics.


Assuntos
Tato , Humanos , Tato/fisiologia , Percepção do Tato , Força da Mão , Biomimética , Potenciais de Ação
3.
Science ; 384(6696): 624-625, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38723096

RESUMO

An artificial tactile system mimicking human touch enables effective object recognition.


Assuntos
Tato , Humanos , Biomimética , Percepção do Tato
4.
Sci Rep ; 14(1): 10164, 2024 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702338

RESUMO

Orientation processing is one of the most fundamental functions in both visual and somatosensory perception. Converging findings suggest that orientation processing in both modalities is closely linked: somatosensory neurons share a similar orientation organisation as visual neurons, and the visual cortex has been found to be heavily involved in tactile orientation perception. Hence, we hypothesized that somatosensation would exhibit a similar orientation adaptation effect, and this adaptation effect would be transferable between the two modalities, considering the above-mentioned connection. The tilt aftereffect (TAE) is a demonstration of orientation adaptation and is used widely in behavioural experiments to investigate orientation mechanisms in vision. By testing the classic TAE paradigm in both tactile and crossmodal orientation tasks between vision and touch, we were able to show that tactile perception of orientation shows a very robust TAE, similar to its visual counterpart. We further show that orientation adaptation in touch transfers to produce a TAE when tested in vision, but not vice versa. Additionally, when examining the test sequence following adaptation for serial effects, we observed another asymmetry between the two conditions where the visual test sequence displayed a repulsive intramodal serial dependence effect while the tactile test sequence exhibited an attractive serial dependence. These findings provide concrete evidence that vision and touch engage a similar orientation processing mechanism. However, the asymmetry in the crossmodal transfer of TAE and serial dependence points to a non-reciprocal connection between the two modalities, providing further insights into the underlying processing mechanism.


Assuntos
Adaptação Fisiológica , Percepção do Tato , Percepção Visual , Humanos , Masculino , Feminino , Adulto , Percepção do Tato/fisiologia , Percepção Visual/fisiologia , Adulto Jovem , Orientação/fisiologia , Tato/fisiologia , Orientação Espacial/fisiologia , Visão Ocular/fisiologia , Córtex Visual/fisiologia
5.
Sci Rep ; 14(1): 10011, 2024 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-38693174

RESUMO

Interacting with the environment often requires the integration of visual and haptic information. Notably, perceiving external objects depends on how our brain binds sensory inputs into a unitary experience. The feedback provided by objects when we interact (through our movements) with them might then influence our perception. In VR, the interaction with an object can be dissociated by the size of the object itself by means of 'colliders' (interactive spaces surrounding the objects). The present study investigates possible after-effects in size discrimination for virtual objects after exposure to a prolonged interaction characterized by visual and haptic incongruencies. A total of 96 participants participated in this virtual reality study. Participants were distributed into four groups, in which they were required to perform a size discrimination task between two cubes before and after 15 min of a visuomotor task involving the interaction with the same virtual cubes. Each group interacted with a different cube where the visual (normal vs. small collider) and the virtual cube's haptic (vibration vs. no vibration) features were manipulated. The quality of interaction (number of touches and trials performed) was used as a dependent variable to investigate the performance in the visuomotor task. To measure bias in size perception, we compared changes in point of subjective equality (PSE) before and after the task in the four groups. The results showed that a small visual collider decreased manipulation performance, regardless of the presence or not of the haptic signal. However, change in PSE was found only in the group exposed to the small visual collider with haptic feedback, leading to increased perception of the cube size. This after-effect was absent in the only visual incongruency condition, suggesting that haptic information and multisensory integration played a crucial role in inducing perceptual changes. The results are discussed considering the recent findings in visual-haptic integration during multisensory information processing in real and virtual environments.


Assuntos
Realidade Virtual , Percepção Visual , Humanos , Masculino , Feminino , Adulto , Percepção Visual/fisiologia , Adulto Jovem , Desempenho Psicomotor/fisiologia , Percepção do Tato/fisiologia , Percepção de Tamanho/fisiologia
6.
Commun Biol ; 7(1): 522, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702520

RESUMO

An organism's ability to accurately anticipate the sensations caused by its own actions is crucial for a wide range of behavioral, perceptual, and cognitive functions. Notably, the sensorimotor expectations produced when touching one's own body attenuate such sensations, making them feel weaker and less ticklish and rendering them easily distinguishable from potentially harmful touches of external origin. How the brain learns and keeps these action-related sensory expectations updated is unclear. Here we employ psychophysics and functional magnetic resonance imaging to pinpoint the behavioral and neural substrates of dynamic recalibration of expected temporal delays in self-touch. Our psychophysical results reveal that self-touches are less attenuated after systematic exposure to delayed self-generated touches, while responses in the contralateral somatosensory cortex that normally distinguish between delayed and nondelayed self-generated touches become indistinguishable. During the exposure, the ipsilateral anterior cerebellum shows increased activity, supporting its proposed role in recalibrating sensorimotor predictions. Moreover, responses in the cingulate areas gradually increase, suggesting that as delay adaptation progresses, the nondelayed self-touches trigger activity related to cognitive conflict. Together, our results show that sensorimotor predictions in the simplest act of touching one's own body are upheld by a sophisticated and flexible neural mechanism that maintains them accurate in time.


Assuntos
Cerebelo , Imageamento por Ressonância Magnética , Córtex Somatossensorial , Humanos , Córtex Somatossensorial/fisiologia , Masculino , Cerebelo/fisiologia , Cerebelo/diagnóstico por imagem , Feminino , Adulto , Adulto Jovem , Percepção do Tato/fisiologia , Tato/fisiologia
7.
Curr Biol ; 34(8): 1718-1730.e3, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38582078

RESUMO

Recent evidence suggests that primary sensory cortical regions play a role in the integration of information from multiple sensory modalities. How primary cortical neurons integrate different sources of sensory information is unclear, partly because non-primary sensory input to a cortical sensory region is often weak or modulatory. To address this question, we take advantage of the robust representation of thermal (cooling) and tactile stimuli in mouse forelimb primary somatosensory cortex (fS1). Using a thermotactile detection task, we show that the perception of threshold-level cool or tactile information is enhanced when they are presented simultaneously, compared with presentation alone. To investigate the cortical cellular correlates of thermotactile integration, we performed in vivo extracellular recordings from fS1 in awake resting and anesthetized mice during unimodal and bimodal stimulation of the forepaw. Unimodal stimulation evoked thermal- or tactile- specific excitatory and inhibitory responses of fS1 neurons. The most prominent features of combined thermotactile stimulation are the recruitment of unimodally silent fS1 neurons, non-linear integration features, and response dynamics that favor longer response durations with additional spikes. Together, we identify quantitative and qualitative changes in cortical encoding that may underlie the improvement in perception of thermotactile surfaces during haptic exploration.


Assuntos
Córtex Somatossensorial , Animais , Camundongos , Córtex Somatossensorial/fisiologia , Tato/fisiologia , Neurônios/fisiologia , Camundongos Endogâmicos C57BL , Membro Anterior/fisiologia , Percepção do Tato/fisiologia , Masculino , Estimulação Física
8.
Cereb Cortex ; 34(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38642106

RESUMO

The spatial coding of tactile information is functionally essential for touch-based shape perception and motor control. However, the spatiotemporal dynamics of how tactile information is remapped from the somatotopic reference frame in the primary somatosensory cortex to the spatiotopic reference frame remains unclear. This study investigated how hand position in space or posture influences cortical somatosensory processing. Twenty-two healthy subjects received electrical stimulation to the right thumb (D1) or little finger (D5) in three position conditions: palm down on right side of the body (baseline), hand crossing the body midline (effect of position), and palm up (effect of posture). Somatosensory-evoked potentials (SEPs) were recorded using electroencephalography. One early-, two mid-, and two late-latency neurophysiological components were identified for both fingers: P50, P1, N125, P200, and N250. D1 and D5 showed different cortical activation patterns: compared with baseline, the crossing condition showed significant clustering at P1 for D1, and at P50 and N125 for D5; the change in posture showed a significant cluster at N125 for D5. Clusters predominated at centro-parietal electrodes. These results suggest that tactile remapping of fingers after electrical stimulation occurs around 100-125 ms in the parietal cortex.


Assuntos
Percepção do Tato , Tato , Humanos , Tato/fisiologia , Dedos/fisiologia , Percepção do Tato/fisiologia , Mãos/fisiologia , Eletroencefalografia , Córtex Somatossensorial
9.
PLoS One ; 19(4): e0295342, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38568979

RESUMO

It has been shown that observing a face being touched or moving in synchrony with our own face increases self-identification with the former which might alter both cognitive and affective processes. The induction of this phenomenon, termed enfacement illusion, has often relied on laboratory tools that are unavailable to a large audience. However, digital face filters applications are nowadays regularly used and might provide an interesting tool to study similar mechanisms in a wider population. Digital filters are able to render our faces in real time while changing important facial features, for example, rendering them more masculine or feminine according to normative standards. Recent literature using full-body illusions has shown that participants' own gender identity shifts when embodying a different gendered avatar. Here we studied whether participants' filtered faces, observed while moving in synchrony with their own face, may induce an enfacement illusion and if so, modulate their gender identity. We collected data from 35 female and 33 male participants who observed a stereotypically gender mismatched version of themselves either moving synchronously or asynchronously with their own face on a screen. Our findings showed a successful induction of the enfacement illusion in the synchronous condition according to a questionnaire addressing the feelings of ownership, agency and perceived similarity. However, we found no evidence of gender identity being modulated, neither in explicit nor in implicit measures of gender identification. We discuss the distinction between full-body and facial processing and the relevance of studying widely accessible devices that may impact the sense of a bodily self and our cognition, emotion and behaviour.


Assuntos
Ilusões , Percepção do Tato , Humanos , Masculino , Feminino , Identidade de Gênero , Autoimagem , Tato
10.
eNeuro ; 11(4)2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38621992

RESUMO

Phase entrainment of cells by theta oscillations is thought to globally coordinate the activity of cell assemblies across different structures, such as the hippocampus and neocortex. This coordination is likely required for optimal processing of sensory input during recognition and decision-making processes. In quadruple-area ensemble recordings from male rats engaged in a multisensory discrimination task, we investigated phase entrainment of cells by theta oscillations in areas along the corticohippocampal hierarchy: somatosensory barrel cortex (S1BF), secondary visual cortex (V2L), perirhinal cortex (PER), and dorsal hippocampus (dHC). Rats discriminated between two 3D objects presented in tactile-only, visual-only, or both tactile and visual modalities. During task engagement, S1BF, V2L, PER, and dHC LFP signals showed coherent theta-band activity. We found phase entrainment of single-cell spiking activity to locally recorded as well as hippocampal theta activity in S1BF, V2L, PER, and dHC. While phase entrainment of hippocampal spikes to local theta oscillations occurred during sustained epochs of task trials and was nonselective for behavior and modality, somatosensory and visual cortical cells were only phase entrained during stimulus presentation, mainly in their preferred modality (S1BF, tactile; V2L, visual), with subsets of cells selectively phase-entrained during cross-modal stimulus presentation (S1BF: visual; V2L: tactile). This effect could not be explained by modulations of firing rate or theta amplitude. Thus, hippocampal cells are phase entrained during prolonged epochs, while sensory and perirhinal neurons are selectively entrained during sensory stimulus presentation, providing a brief time window for coordination of activity.


Assuntos
Discriminação Psicológica , Neurônios , Córtex Somatossensorial , Ritmo Teta , Córtex Visual , Animais , Masculino , Ritmo Teta/fisiologia , Córtex Somatossensorial/fisiologia , Córtex Visual/fisiologia , Discriminação Psicológica/fisiologia , Neurônios/fisiologia , Hipocampo/fisiologia , Percepção Visual/fisiologia , Percepção do Tato/fisiologia , Potenciais de Ação/fisiologia , Ratos Long-Evans , Ratos
11.
Behav Brain Res ; 466: 115007, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38648867

RESUMO

Although active touch in rodents arises from the forepaws as well as whiskers, most research on active touch only focuses on whiskers. This results in a paucity of tasks designed to assess the process of active touch with a forepaw. We develop a new experimental task, the Reach-to-Grasp and Tactile Discrimination task (RGTD task), to examine active touch with a forepaw in rodents, particularly changes in processes of active touch during motor skill learning. In the RGTD task, animals are required to (1) extend their forelimb to an object, (2) grasp the object, and (3) manipulate the grasped object with the forelimb. The animals must determine the direction of the manipulation based on active touch sensations arising during the period of the grasping. In experiment 1 of the present study, we showed that rats can learn the RGTD task. In experiment 2, we confirmed that the rats are capable of reversal learning of the RGTD task. The RGTD task shared most of the reaching movements involved with conventional forelimb reaching tasks. From the standpoint of a discrimination task, the RGTD task enables rigorous experimental control, for example by removing bias in the stimulus-response correspondence, and makes it possible to utilize diverse experimental procedures that have been difficult in prior tasks.


Assuntos
Aprendizagem por Discriminação , Membro Anterior , Tato , Animais , Ratos , Masculino , Membro Anterior/fisiologia , Tato/fisiologia , Aprendizagem por Discriminação/fisiologia , Força da Mão/fisiologia , Percepção do Tato/fisiologia , Desempenho Psicomotor/fisiologia , Discriminação Psicológica/fisiologia , Destreza Motora/fisiologia , Ratos Long-Evans , Reversão de Aprendizagem/fisiologia
12.
Sci Rep ; 14(1): 8707, 2024 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622201

RESUMO

In this study, we explored spatial-temporal dependencies and their impact on the tactile perception of moving objects. Building on previous research linking visual perception and human movement, we examined if an imputed motion mechanism operates within the tactile modality. We focused on how biological coherence between space and time, characteristic of human movement, influences tactile perception. An experiment was designed wherein participants were stimulated on their right palm with tactile patterns, either ambiguous (incongruent conditions) or non-ambiguous (congruent conditions) relative to a biological motion law (two-thirds power law) and asked to report perceived shape and associated confidence. Our findings reveal that introducing ambiguous tactile patterns (1) significantly diminishes tactile discrimination performance, implying motor features of shape recognition in vision are also observed in the tactile modality, and (2) undermines participants' response confidence, uncovering the accessibility degree of information determining the tactile percept's conscious representation. Analysis based on the Hierarchical Drift Diffusion Model unveiled the sensitivity of the evidence accumulation process to the stimulus's informational ambiguity and provides insight into tactile perception as predictive dynamics for reducing uncertainty. These discoveries deepen our understanding of tactile perception mechanisms and underscore the criticality of predictions in sensory information processing.


Assuntos
Percepção de Movimento , Percepção do Tato , Humanos , Tato/fisiologia , Percepção do Tato/fisiologia , Percepção Visual , Mãos/fisiologia , Movimento/fisiologia , Percepção de Movimento/fisiologia
13.
Cortex ; 174: 241-255, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38582629

RESUMO

Shape is a property that could be perceived by vision and touch, and is classically considered to be supramodal. While there is mounting evidence for the shared cognitive and neural representation space between visual and tactile shape, previous research tended to rely on dissimilarity structures between objects and had not examined the detailed properties of shape representation in the absence of vision. To address this gap, we conducted three explicit object shape knowledge production experiments with congenitally blind and sighted participants, who were asked to produce verbal features, 3D clay models, and 2D drawings of familiar objects with varying levels of tactile exposure, including tools, large nonmanipulable objects, and animals. We found that the absence of visual experience (i.e., in the blind group) led to stronger differences in animals than in tools and large objects, suggesting that direct tactile experience of objects is essential for shape representation when vision is unavailable. For tools with rich tactile/manipulation experiences, the blind produced overall good shapes comparable to the sighted, yet also showed intriguing differences. The blind group had more variations and a systematic bias in the geometric property of tools (making them stubbier than the sighted), indicating that visual experience contributes to aligning internal representations and calibrating overall object configurations, at least for tools. Taken together, the object shape representation reflects the intricate orchestration of vision, touch and language.


Assuntos
Cegueira , Percepção do Tato , Humanos , Cegueira/psicologia , Visão Ocular , Tato
14.
J Neuroeng Rehabil ; 21(1): 65, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38678291

RESUMO

BACKGROUND: Sensory reafferents are crucial to correct our posture and movements, both reflexively and in a cognitively driven manner. They are also integral to developing and maintaining a sense of agency for our actions. In cases of compromised reafferents, such as for persons with amputated or congenitally missing limbs, or diseases of the peripheral and central nervous systems, augmented sensory feedback therefore has the potential for a strong, neurorehabilitative impact. We here developed an untethered vibrotactile garment that provides walking-related sensory feedback remapped non-invasively to the wearer's back. Using the so-called FeetBack system, we investigated if healthy individuals perceive synchronous remapped feedback as corresponding to their own movement (motor awareness) and how temporal delays in tactile locomotor feedback affect both motor awareness and walking characteristics (adaptation). METHODS: We designed the system to remap somatosensory information from the foot-soles of healthy participants (N = 29), using vibrotactile apparent movement, to two linear arrays of vibrators mounted ipsilaterally on the back. This mimics the translation of the centre-of-mass over each foot during stance-phase. The intervention included trials with real-time or delayed feedback, resulting in a total of 120 trials and approximately 750 step-cycles, i.e. 1500 steps, per participant. Based on previous work, experimental delays ranged from 0ms to 1500ms to include up to a full step-cycle (baseline stride-time: µ = 1144 ± 9ms, range 986-1379ms). After each trial participants were asked to report their motor awareness. RESULTS: Participants reported high correspondence between their movement and the remapped feedback for real-time trials (85 ± 3%, µ ± σ), and lowest correspondence for trials with left-right reversed feedback (22 ± 6% at 600ms delay). Participants further reported high correspondence of trials delayed by a full gait-cycle (78 ± 4% at 1200ms delay), such that the modulation of motor awareness is best expressed as a sinusoidal relationship reflecting the phase-shifts between actual and remapped tactile feedback (cos model: 38% reduction of residual sum of squares (RSS) compared to linear fit, p < 0.001). The temporal delay systematically but only moderately modulated participant stride-time in a sinusoidal fashion (3% reduction of RSS compared a linear fit, p < 0.01). CONCLUSIONS: We here demonstrate that lateralized, remapped haptic feedback modulates motor awareness in a systematic, gait-cycle dependent manner. Based on this approach, the FeetBack system was used to provide augmented sensory information pertinent to the user's on-going movement such that they reported high motor awareness for (re)synchronized feedback of their movements. While motor adaptation was limited in the current cohort of healthy participants, the next step will be to evaluate if individuals with a compromised peripheral nervous system, as well as those with conditions of the central nervous system such as Parkinson's Disease, may benefit from the FeetBack system, both for maintaining a sense of agency over their movements as well as for systematic gait-adaptation in response to the remapped, self-paced, rhythmic feedback.


Assuntos
Retroalimentação Sensorial , , Percepção do Tato , Humanos , Masculino , Feminino , Adulto , Retroalimentação Sensorial/fisiologia , Pé/fisiologia , Percepção do Tato/fisiologia , Adulto Jovem , Caminhada/fisiologia , Vibração , Tato/fisiologia
15.
Cell Rep ; 43(4): 113991, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38573855

RESUMO

The brain receives constant tactile input, but only a subset guides ongoing behavior. Actions associated with tactile stimuli thus endow them with behavioral relevance. It remains unclear how the relevance of tactile stimuli affects processing in the somatosensory (S1) cortex. We developed a cross-modal selection task in which head-fixed mice switched between responding to tactile stimuli in the presence of visual distractors or to visual stimuli in the presence of tactile distractors using licking movements to the left or right side in different blocks of trials. S1 spiking encoded tactile stimuli, licking actions, and direction of licking in response to tactile but not visual stimuli. Bidirectional optogenetic manipulations showed that sensory-motor activity in S1 guided behavior when touch but not vision was relevant. Our results show that S1 activity and its impact on behavior depend on the actions associated with a tactile stimulus.


Assuntos
Córtex Somatossensorial , Animais , Camundongos , Córtex Somatossensorial/fisiologia , Masculino , Tato/fisiologia , Camundongos Endogâmicos C57BL , Optogenética , Percepção do Tato/fisiologia , Comportamento Animal , Feminino
16.
Proc Natl Acad Sci U S A ; 121(18): e2322157121, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38648473

RESUMO

Affective touch-a slow, gentle, and pleasant form of touch-activates a different neural network than which is activated during discriminative touch in humans. Affective touch perception is enabled by specialized low-threshold mechanoreceptors in the skin with unmyelinated fibers called C tactile (CT) afferents. These CT afferents are conserved across mammalian species, including macaque monkeys. However, it is unknown whether the neural representation of affective touch is the same across species and whether affective touch's capacity to activate the hubs of the brain that compute socioaffective information requires conscious perception. Here, we used functional MRI to assess the preferential activation of neural hubs by slow (affective) vs. fast (discriminative) touch in anesthetized rhesus monkeys (Macaca mulatta). The insula, anterior cingulate cortex (ACC), amygdala, and secondary somatosensory cortex were all significantly more active during slow touch relative to fast touch, suggesting homologous activation of the interoceptive-allostatic network across primate species during affective touch. Further, we found that neural responses to affective vs. discriminative touch in the insula and ACC (the primary cortical hubs for interoceptive processing) changed significantly with age. Insula and ACC in younger animals differentiated between slow and fast touch, while activity was comparable between conditions for aged monkeys (equivalent to >70 y in humans). These results, together with prior studies establishing conserved peripheral nervous system mechanisms of affective touch transduction, suggest that neural responses to affective touch are evolutionarily conserved in monkeys, significantly impacted in old age, and do not necessitate conscious experience of touch.


Assuntos
Estado de Consciência , Macaca mulatta , Imageamento por Ressonância Magnética , Percepção do Tato , Animais , Estado de Consciência/fisiologia , Percepção do Tato/fisiologia , Masculino , Tato/fisiologia , Evolução Biológica , Córtex Somatossensorial/fisiologia , Encéfalo/fisiologia , Envelhecimento/fisiologia , Feminino , Giro do Cíngulo/fisiologia
17.
Cortex ; 173: 222-233, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38430652

RESUMO

Anticipating physical contact with objects in the environment is a key component of efficient motor performance. Peripersonal neurons are thought to play a determinant role in these predictions by enhancing responses to touch when combined with visual stimuli in peripersonal space (PPS). However, recent research challenges the idea that this visuo-tactile integration contributing to the prediction of tactile events occurs strictly in PPS. We hypothesised that enhanced sensory sensitivity in a multisensory context involves not only contact anticipation but also heightened attention towards near-body visual stimuli. To test this hypothesis, Experiment 1 required participants to respond promptly to tactile (probing contact anticipation) and auditory (probing enhanced attention) stimulations presented at different moments of the trajectory of a (social and non-social) looming visual stimulus. Reduction in reaction time as compared to a unisensory baseline was observed from an egocentric distance of around 2 m (inside and outside PPS) for all multisensory conditions and types of visual stimuli. Experiment 2 tested whether these facilitation effects still occur in the absence of a multisensory context, i.e., in a visuo-visual condition. Overall, facilitation effects induced by the looming visual stimulus were comparable in the three sensory modalities outside PPS but were more pronounced for the tactile modality inside PPS (84 cm from the body as estimated by a reachability judgement task). Considered together, the results suggest that facilitation effects induced by visual looming stimuli in multimodal sensory processing rely on the combination of attentional factors and contact anticipation depending on their distance from the body.


Assuntos
Percepção do Tato , Tato , Humanos , Tato/fisiologia , Estimulação Luminosa , Espaço Pessoal , Percepção do Tato/fisiologia , Tempo de Reação/fisiologia , Percepção Espacial/fisiologia
18.
PLoS One ; 19(3): e0299213, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38530828

RESUMO

Multimodal perception is the predominant means by which individuals experience and interact with the world. However, sensory dysfunction or loss can significantly impede this process. In such cases, cross-modality research offers valuable insight into how we can compensate for these sensory deficits through sensory substitution. Although sight and hearing are both used to estimate the distance to an object (e.g., by visual size and sound volume) and the perception of distance is an important element in navigation and guidance, it is not widely studied in cross-modal research. We investigate the relationship between audio and vibrotactile frequencies (in the ranges 47-2,764 Hz and 10-99 Hz, respectively) and distances uniformly distributed in the range 1-12 m. In our experiments participants mapped the distance (represented by an image of a model at that distance) to a frequency via adjusting a virtual tuning knob. The results revealed that the majority (more than 76%) of participants demonstrated a strong negative monotonic relationship between frequency and distance, across both vibrotactile (represented by a natural log function) and auditory domains (represented by an exponential function). However, a subgroup of participants showed the opposite positive linear relationship between frequency and distance. The strong cross-modal sensory correlation could contribute to the development of assistive robotic technologies and devices to augment human perception. This work provides the fundamental foundation for future assisted HRI applications where a mapping between distance and frequency is needed, for example for people with vision or hearing loss, drivers with loss of focus or response delay, doctors undertaking teleoperation surgery, and users in augmented reality (AR) or virtual reality (VR) environments.


Assuntos
Surdez , Perda Auditiva , Percepção do Tato , Humanos , Tato , Audição , Percepção do Tato/fisiologia
19.
IEEE Trans Vis Comput Graph ; 30(5): 2247-2256, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38437075

RESUMO

Physical QWERTY keyboards are the current standard for performing precision text-entry with extended reality devices. Ideally, there would exist a comparable, self-contained solution that works anywhere, without requiring external keyboards. Unfortunately, when physical keyboards are recreated virtually, we currently lose critical haptic feedback information from the sense of touch, which impedes typing. In this paper, we introduce the MusiKeys Technique, which uses auditory feedback in virtual reality to communicate missing haptic feedback information typists normally receive when using a physical keyboard. To examine this concept, we conducted a user study with 24 participants which encompassed four mid-air virtual keyboards augmented with increasing amounts of feedback information, along with a fifth physical keyboard for reference. Results suggest that providing clicking feedback on key-press and key-release improves typing performance compared to not providing auditory feedback, which is consistent with the literature. We also found that audio can serve as a substitute for information contained in haptic feedback, in that users can accurately perceive the presented information. However, under our specific study conditions, this awareness of the feedback information did not yield significant differences in typing performance. Our results suggest this kind of feedback replacement can be perceived by users but needs more research to tune and improve the specific techniques.


Assuntos
Tecnologia Háptica , Percepção do Tato , Humanos , Desenho de Equipamento , Gráficos por Computador , Tato , Interface Usuário-Computador
20.
PLoS One ; 19(3): e0298733, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38451923

RESUMO

Caress-like is a crucial component of caregiving and a key factor in mother-infant interactions. Mother's experience of touch during her own childhood (i.e., tactile biography) has been found to be related to maternal actual use of caress-like touch (i.e., stroking) during mother-infant exchanges. Evidence also suggests that maternal interoceptive sensibility (i.e., self-perceived sensitivity to inner-body sensations) might be related to sensitive caregiving abilities. However, further empirical investigation is needed to understand to what extent tactile biography and interoceptive sensibility have an impact on mothers' stroking when interacting with their infants. Using an online survey, this cross-sectional study explored the potential association between maternal tactile biography, interoceptive sensibility and use of touch for interaction with their own infants in a group of 377 Italian mothers (mean age = 33.29; SD = 4.79). We tested and compared a series of multivariate linear mediation models using maternal tactile biography as predictor, maternal use of affective touch as outcome variable and Multidimensional Assessment of Interoceptive Awareness (MAIA) subscale scores as mediators. We found that, if a mother had positive touch experiences in her own childhood, she may be more likely to use touch in a positive and nurturing way with her own infant (i.e., stroking). Furthermore, mothers' interoceptive sensibility in the form of attention regulation, self-regulation and body listening mediates the association between their past experiences of positive touch and their use of caress-like touch in mother-infant exchanges. This study highlights that maternal tactile biography is directly associated with mothers' use of caress-like touch and indirectly linked to it through the mediating role of interoceptive sensibility.


Assuntos
Mães , Percepção do Tato , Adulto , Feminino , Humanos , Lactente , Estudos Transversais , Relações Mãe-Filho/psicologia , Mães/psicologia , Tato/fisiologia , Percepção do Tato/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...