Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 412
Filtrar
1.
Mol Reprod Dev ; 91(5): e23760, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38769918

RESUMO

e-Lysine acetylation is a prominent histone mark found at transcriptionally active loci. Among many lysine acetyl transferases, nonspecific lethal complex (NSL) members are known to mediate the modification of histone H4. In addition to histone modifications, the KAT8 regulatory complex subunit 3 gene (Kansl3), a core member of NSL complex, has been shown to be involved in several other cellular processes such as mitosis and mitochondrial activity. Although functional studies have been performed on NSL complex members, none of the four core proteins, including Kansl3, have been studied during early mouse development. Here we show that homozygous knockout Kansl3 embryos are lethal at peri-implantation stages, failing to hatch out of the zona pellucida. When the zona pellucida is removed in vitro, Kansl3 null embryos form an abnormal outgrowth with significantly disrupted inner cell mass (ICM) morphology. We document lineage-specific defects at the blastocyst stage with significantly reduced ICM cell number but no difference in trophectoderm cell numbers. Both epiblast and primitive endoderm lineages are altered with reduced cell numbers in null mutants. These results show that Kansl3 is indispensable during early mouse embryonic development and with defects in both ICM and trophectoderm lineages.


Assuntos
Camundongos Knockout , Animais , Camundongos , Massa Celular Interna do Blastocisto/metabolismo , Massa Celular Interna do Blastocisto/citologia , Feminino , Desenvolvimento Embrionário , Perda do Embrião/patologia , Perda do Embrião/genética , Perda do Embrião/metabolismo , Histona Acetiltransferases/metabolismo , Histona Acetiltransferases/genética , Histona Acetiltransferases/deficiência , Blastocisto/metabolismo , Blastocisto/citologia
2.
Exp Hematol ; 133: 104205, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38490577

RESUMO

Protein phosphatase 6 (PP6) is a serine/threonine (Ser/Thr) protein phosphatase, and its catalytic subunit is Ppp6c. PP6 forms the PP2A subfamily with PP2A and PP4. The diverse phenotypes observed following small interfering RNA (siRNA)-based knockdown of Ppp6c in cultured mammalian cells suggest that PP6 plays roles in cell growth and DNA repair. There is also evidence that PP6 regulates nuclear factor kappa B (NF-κB) signaling and mitogen-activated protein kinases and inactivates transforming growth factor-ß-activated kinase 1 (TAK1). Loss of Ppp6c causes several abnormalities, including those of T cell and regulatory T cell function, neurogenesis, oogenesis, and spermatogenesis. PP2A has been reported to play an important role in erythropoiesis. However, the roles of PP6 in other hematopoietic cells have not been investigated. We generated Ppp6cfl/fl;Tie2-Cre (Ppp6cTKO) mice, in which Ppp6c was specifically deleted in hematopoietic and vascular endothelial cells. Ppp6cTKO mice displayed embryonic lethality. Ppp6c deficiency increased the number of dead cells and decreased the percentages of erythroid and monocytic cells during fetal hematopoiesis. By contrast, the number of Lin-Sca-1+c-Kit+ cells, which give rise to all hematopoietic cells, was slightly increased, but their colony-forming cell activity was markedly decreased. Ppp6c deficiency also increased phosphorylation of extracellular signal-regulated kinase 1/2 and c-Jun amino (N)-terminal kinase in fetal liver hematopoietic cells.


Assuntos
Hematopoese , Camundongos Knockout , Fosfoproteínas Fosfatases , Animais , Camundongos , Fosfoproteínas Fosfatases/genética , Fosfoproteínas Fosfatases/metabolismo , Fosfoproteínas Fosfatases/deficiência , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Células-Tronco Hematopoéticas/metabolismo , Perda do Embrião/genética , Perda do Embrião/patologia , MAP Quinase Quinase Quinases/genética , MAP Quinase Quinase Quinases/metabolismo , Feminino
4.
Mediators Inflamm ; 2023: 8215567, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37035756

RESUMO

This study explored the role of T cell subsets and the expression of related microRNAs in patients with recurrent early pregnancy loss (EPL). Fifty patients with EPL loss between May 2018 and May 2021 were randomly selected as the EPL group, and 50 pregnant women with normal pregnancies or normal delivery outcomes were randomly selected as the control group. The expression levels of T cell subset-related markers and T cell subset-related miRNAs, in addition to the frequencies of T cell subsets, in peripheral blood of the two groups were analyzed. In terms of T cell-related markers, the results showed that the expression levels of the transcriptional regulator TBX-21 (T-bet) and interferon regulatory factor 4 (IRF4) were significantly upregulated in peripheral blood of the patients in the EPL group (P < 0.05), whereas the expression levels of GATA binding protein 3 (GATA3) and glucocorticoid-induced tumor necrosis factor receptor (GITR) were significantly downregulated (P < 0.05). In the EPL group, the expression of mir-106b, mir-93, and mir-25 was upregulated (1.51 ± 0.129, 1.43 ± 0.132, and 1.73 ± 0.156, respectively) in regulatory T (Treg) cell-related T cell subsets, whereas the expression of miR-146a and miR-155 was downregulated (P < 0.05). The frequencies of Treg and exhausted T cells in the EPL group were significantly lower than those in the control group (P < 0.05). The cell frequencies of T helper 17 (Th17) cells and exhausted Treg cells in the EPL group were significantly higher than those in the control group (P < 0.05). In conclusion, immune cells and associated miRNA profiles can be used as prognostic biomarkers for the treatment of human reproductive disorders, such as EPL.


Assuntos
Aborto Habitual , Perda do Embrião , MicroRNAs , Subpopulações de Linfócitos T , Feminino , Humanos , Gravidez , Aborto Habitual/genética , Aborto Habitual/imunologia , Perda do Embrião/genética , Perda do Embrião/imunologia , Expressão Gênica , MicroRNAs/genética , MicroRNAs/imunologia , Subpopulações de Linfócitos T/imunologia , Linfócitos T Reguladores/imunologia , Células Th17/imunologia
5.
Nature ; 613(7943): 365-374, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36544019

RESUMO

How paternal exposure to ionizing radiation affects genetic inheritance and disease risk in the offspring has been a long-standing question in radiation biology. In humans, nearly 80% of transmitted mutations arise in the paternal germline1, but the transgenerational effects of ionizing radiation exposure has remained controversial and the mechanisms are unknown. Here we show that in sex-separated Caenorhabditis elegans strains, paternal, but not maternal, exposure to ionizing radiation leads to transgenerational embryonic lethality. The offspring of irradiated males displayed various genome instability phenotypes, including DNA fragmentation, chromosomal rearrangement and aneuploidy. Paternal DNA double strand breaks were repaired by maternally provided error-prone polymerase theta-mediated end joining. Mechanistically, we show that depletion of an orthologue of human histone H1.0, HIS-24, or the heterochromatin protein HPL-1, could significantly reverse the transgenerational embryonic lethality. Removal of HIS-24 or HPL-1 reduced histone 3 lysine 9 dimethylation and enabled error-free homologous recombination repair in the germline of the F1 generation from ionizing radiation-treated P0 males, consequently improving the viability of the F2 generation. This work establishes the mechanistic underpinnings of the heritable consequences of paternal radiation exposure on the health of offspring, which may lead to congenital disorders and cancer in humans.


Assuntos
Caenorhabditis elegans , Dano ao DNA , Reparo do DNA , Histonas , Animais , Humanos , Masculino , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/genética , Caenorhabditis elegans/efeitos da radiação , Dano ao DNA/efeitos da radiação , Instabilidade Genômica/efeitos da radiação , Histonas/metabolismo , Mutação , Radiação Ionizante , Perda do Embrião/genética , Feminino , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Reparo do DNA por Junção de Extremidades , DNA Polimerase teta
6.
Science ; 378(6625): 1201-1207, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36520901

RESUMO

Cell death induced by tumor necrosis factor (TNF) can be beneficial during infection by helping to mount proper immune responses. However, TNF-induced death can also drive a variety of inflammatory pathologies. Protectives brakes, or cell-death checkpoints, normally repress TNF cytotoxicity to protect the organism from its potential detrimental consequences. Thus, although TNF can kill, this only occurs when one of the checkpoints is inactivated. Here, we describe a checkpoint that prevents apoptosis through the detoxification of the cytotoxic complex IIa that forms upon TNF sensing. We found that autophagy-related 9A (ATG9A) and 200kD FAK family kinase-interacting protein (FIP200) promote the degradation of this complex through a light chain 3 (LC3)-independent lysosomal targeting pathway. This detoxification mechanism was found to counteract TNF receptor 1 (TNFR1)-mediated embryonic lethality and inflammatory skin disease in mouse models.


Assuntos
Apoptose , Proteínas Relacionadas à Autofagia , Proteínas de Membrana , Fator de Necrose Tumoral alfa , Proteínas de Transporte Vesicular , Animais , Camundongos , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Dermatite/genética , Dermatite/metabolismo , Dermatite/patologia , Modelos Animais de Doenças , Perda do Embrião/genética , Perda do Embrião/metabolismo , Perda do Embrião/patologia , Lisossomos/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
7.
Int J Mol Sci ; 23(15)2022 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-35897733

RESUMO

Litter size is an important indicator to measure the production capacity of commercial pigs. Spontaneous embryo loss is an essential factor in determining sow litter size. In early pregnancy, spontaneous embryo loss in porcine is as high as 20-30% during embryo implantation. However, the specific molecular mechanism underlying spontaneous embryo loss at the end of embryo implantation remains unknown. Therefore, we comprehensively used small RNA sequencing technology, bioinformatics analysis, and molecular experiments to determine the microRNA (miRNA) expression profile in the healthy and arresting embryo implantation site of porcine endometrium on day of gestation (DG) 28. A total of 464 miRNAs were identified in arresting endometrium (AE) and healthy endometrium (HE), and 139 differentially expressed miRNAs (DEMs) were screened. We combined the mRNA sequencing dataset from the SRA database to predict the target genes of these miRNAs. A quantitative real-time PCR assay identified the expression levels of miRNAs and mRNAs. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were performed on differentially expressed target genes of DEMs, mainly enriched in epithelial development and amino acids metabolism-related pathways. We performed fluorescence in situ hybridization (FISH) and the dual-luciferase report gene assay to confirm miRNA and predicted target gene binding. miR-205 may inhibit its expression by combining 3'-untranslated regions (3' UTR) of tubulointerstitial nephritis antigen-like 1 (TINAGL1). The resulting inhibition of angiogenesis in the maternal endometrium ultimately leads to the formation of arresting embryos during the implantation period. This study provides a reference for the effect of miRNA on the successful implantation of pig embryos in early gestation.


Assuntos
Perda do Embrião , MicroRNAs , Regiões 3' não Traduzidas , Animais , Implantação do Embrião/genética , Perda do Embrião/genética , Endométrio/metabolismo , Feminino , Humanos , Hibridização in Situ Fluorescente , MicroRNAs/genética , MicroRNAs/metabolismo , Gravidez , Suínos
8.
Int J Mol Sci ; 22(21)2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34769078

RESUMO

Selenophosphate synthetase 1 (SEPHS1) plays an essential role in cell growth and survival. However, the underlying molecular mechanisms remain unclear. In the present study, the pathways regulated by SEPHS1 during gastrulation were determined by bioinformatical analyses and experimental verification using systemic knockout mice targeting Sephs1. We found that the coagulation system and retinoic acid signaling were most highly affected by SEPHS1 deficiency throughout gastrulation. Gene expression patterns of altered embryo morphogenesis and inhibition of Wnt signaling were predicted with high probability at E6.5. These predictions were verified by structural abnormalities in the dermal layer of Sephs1-/- embryos. At E7.5, organogenesis and activation of prolactin signaling were predicted to be affected by Sephs1 knockout. Delay of head fold formation was observed in the Sephs1-/- embryos. At E8.5, gene expression associated with organ development and insulin-like growth hormone signaling that regulates organ growth during development was altered. Consistent with these observations, various morphological abnormalities of organs and axial rotation failure were observed. We also found that the gene sets related to redox homeostasis and apoptosis were gradually enriched in a time-dependent manner until E8.5. However, DNA damage and apoptosis markers were detected only when the Sephs1-/- embryos aged to E9.5. Our results suggest that SEPHS1 deficiency causes a gradual increase of oxidative stress which changes signaling pathways during gastrulation, and afterwards leads to apoptosis.


Assuntos
Gastrulação , Regulação da Expressão Gênica no Desenvolvimento , Camundongos/embriologia , Fosfotransferases/genética , Animais , Perda do Embrião/genética , Perda do Embrião/metabolismo , Perda do Embrião/patologia , Feminino , Deleção de Genes , Camundongos/genética , Camundongos/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosfotransferases/metabolismo , Gravidez , Transdução de Sinais
9.
Nat Commun ; 12(1): 5005, 2021 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-34408140

RESUMO

Embryonic aneuploidy from mis-segregation of chromosomes during meiosis causes pregnancy loss. Proper disjunction of homologous chromosomes requires the mismatch repair (MMR) genes MLH1 and MLH3, essential in mice for fertility. Variants in these genes can increase colorectal cancer risk, yet the reproductive impacts are unclear. To determine if MLH1/3 single nucleotide polymorphisms (SNPs) in human populations could cause reproductive abnormalities, we use computational predictions, yeast two-hybrid assays, and MMR and recombination assays in yeast, selecting nine MLH1 and MLH3 variants to model in mice via genome editing. We identify seven alleles causing reproductive defects in mice including female subfertility and male infertility. Remarkably, in females these alleles cause age-dependent decreases in litter size and increased embryo resorption, likely a consequence of fewer chiasmata that increase univalents at meiotic metaphase I. Our data suggest that hypomorphic alleles of meiotic recombination genes can predispose females to increased incidence of pregnancy loss from gamete aneuploidy.


Assuntos
Aborto Espontâneo/genética , Aneuploidia , Perda do Embrião/genética , Proteína 1 Homóloga a MutL/genética , Proteínas MutL/genética , Aborto Espontâneo/metabolismo , Aborto Espontâneo/fisiopatologia , Alelos , Animais , Troca Genética , Reparo de Erro de Pareamento de DNA , Perda do Embrião/fisiopatologia , Feminino , Recombinação Homóloga , Humanos , Tamanho da Ninhada de Vivíparos , Masculino , Meiose , Camundongos , Proteína 1 Homóloga a MutL/metabolismo , Proteínas MutL/metabolismo , Gravidez , Reprodução , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
10.
Cells Dev ; 165: 203663, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33993984

RESUMO

Asb2, ankyrin repeat, and SOCS box protein 2 form an E3 ubiquitin ligase complex. Asb2 ubiquitin ligase activity drives the degradation of filamins, which have essential functions in humans. The placenta is a temporary organ that forms during pregnancy, and normal placentation is important for survival and growth of the fetus. Recent studies have shown that approximately 25-30% of knockout (KO) mice have non-viable offspring, and 68% of knockout lines exhibit placental dysmorphologies. There are very few studies on Asb2, with insufficient research on its role in placental development. Therefore, we generated Asb2 knockout mice and undertook to investigate Asb2 expression during organogenesis, and to identify its role in early embryonic and placental development. The external morphology of KO embryos revealed abnormal phenotypes including growth retardation, pericardial effusion, pale color, and especially heart beat defect from E 9.5. Furthermore, Asb2 expression was observed in the heart from E 9.5, indicating that it is specifically expressed during early heart formation, resulting in embryonic lethality. Histological analysis of E 10.5 KO heart showed malformations such as failure of chamber formation, reduction in trabeculated myocardium length, absence of mesenchymal cells, and destruction of myocardium wall. Moreover, the histological results of Asb2-deficient placenta showed abnormal phenotypes including small labyrinth and reduced vascular complexity, indicating that failure to establish mature circulatory pattern affects the embryonic development and results in early mortality. Collectively, our results demonstrate that Asb2 knockout mice have placental defects, that subsequently result in failure to form a normal cardiac septum, and thereby result in embryo mortality in utero at around E 9.5.


Assuntos
Perda do Embrião/patologia , Cardiopatias Congênitas/patologia , Placenta/patologia , Proteínas Supressoras da Sinalização de Citocina/deficiência , Alelos , Animais , Cruzamentos Genéticos , Perda do Embrião/genética , Embrião de Mamíferos/patologia , Desenvolvimento Embrionário/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Marcação de Genes , Cardiopatias Congênitas/genética , Masculino , Camundongos Knockout , Fenótipo , Gravidez , Proteínas Supressoras da Sinalização de Citocina/metabolismo
11.
Mol Reprod Dev ; 88(5): 338-348, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33843124

RESUMO

Embryo development requires orchestrated events, finely regulated at the molecular and cellular level by mechanisms which are progressively emerging from animal studies. With progress in genetic technologies-such as genome editing and single-cell RNA analysis-we can now assess embryo gene expression with increased precision and gain new insights into complex processes until recently difficult to explore. Multiple genes and regulative pathways have been identified for each developmental stage. We have learned that embryos with undisturbed and timely gene expression have higher chances of successful development. For example, selected genes are highly expressed during the first stages, being involved in cell adhesion, cell cycle, and regulation of transcription; other genes are instead crucial for lineage specification and therefore expressed at later stages. Due to ethical constraints, studies on human embryos remain scarce, mainly descriptive, and unable to provide functional evidence. This highlights the importance of animal studies as basic knowledge to test and appraise in a clinical context. In this review, we report on preimplantation development with a focus on genes whose impairment leads to developmental arrest. Preconceptional genetic screening could identify loss-of-function mutations of these genes; thereby, novel biomarkers of embryo quality could be adopted to improve diagnosis and treatment of infertility.


Assuntos
Blastocisto , Perda do Embrião/genética , Desenvolvimento Embrionário/genética , Animais , Blastocisto/fisiologia , Linhagem da Célula , Implantação do Embrião/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Infertilidade/genética , Masculino , Camundongos , Camundongos Knockout , Mórula/fisiologia , Mutação , Gravidez , Via de Sinalização Wnt
12.
Sci Rep ; 11(1): 8297, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33859300

RESUMO

E26 avian leukemia oncogene 2, 3' domain (Ets2) has been implicated in various biological processes. An Ets2 mutant model (Ets2db1/db1), which lacks the DNA-binding domain, was previously reported to exhibit embryonic lethality caused by a trophoblast abnormality. This phenotype could be rescued by tetraploid complementation, resulting in pups with wavy hair and curly whiskers. Here, we generated new Ets2 mutant models with a frame-shift mutation in exon 8 using the CRISPR/Cas9 method. Homozygous mutants could not be obtained by natural mating as embryonic development stopped before E8.5, as previously reported. When we rescued them by tetraploid complementation, these mice did not exhibit wavy hair or curly whisker phenotypes. Our newly generated mice exhibited exon 8 skipping, which led to in-frame mutant mRNA expression in the skin and thymus but not in E7.5 Ets2em1/em1 embryos. This exon 8-skipped Ets2 mRNA was translated into protein, suggesting that this Ets2 mutant protein complemented the Ets2 function in the skin. Our data implies that novel splicing variants incidentally generated after genome editing may complicate the phenotypic analysis but may also give insight into the new mechanisms related to biological gene functions.


Assuntos
Mutação da Fase de Leitura/genética , Fenótipo , Proteína Proto-Oncogênica c-ets-2/genética , Splicing de RNA/genética , Sistemas CRISPR-Cas , Proteínas de Ligação a DNA/genética , Perda do Embrião/genética , Perda do Embrião/patologia , Desenvolvimento Embrionário/genética , Éxons/genética , Feminino , Edição de Genes/métodos , Humanos , Masculino , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Pele/metabolismo , Trofoblastos/patologia
13.
Mol Hum Reprod ; 27(5)2021 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-33830236

RESUMO

The human endometrium is a dynamic tissue that only is receptive to host the embryo during a brief time in the middle secretory phase, called the window of implantation (WOI). Despite its importance, regulation of the menstrual cycle remains incompletely understood. The aim of this study was to characterize the gene cooperation and regulation of menstrual cycle progression, to dissect the molecular complexity underlying acquisition of endometrial receptivity for a successful pregnancy, and to provide the scientific community with detailed gene co-expression information throughout the menstrual cycle on a user-friendly web-tool database. A retrospective gene co-expression analysis was performed based on the endometrial receptivity array (ERarray) gene signature from 523 human endometrial samples collected across the menstrual cycle, including during the WOI. Gene co-expression analysis revealed the WOI as having the significantly smallest proportion of negative correlations for transcriptional profiles associated with successful pregnancies compared to other cycle stages, pointing to a global transcriptional derepression being involved in acquisition of endometrial receptivity. Regulation was greatest during the transition between proliferative and secretory endometrial phases. Further, we prioritized nuclear hormone receptors as major regulators of this derepression and proved that some genes and transcription factors involved in this process were dysregulated in patients with recurrent implantation failure. We also compiled the wealth of gene co-expression data to stimulate hypothesis-driven single-molecule endometrial studies in a user-friendly database: Menstrual Cycle Gene Co-expression Network (www.menstrualcyclegcn.com). This study revealed a global transcriptional repression across the menstrual cycle, which relaxes when the WOI opens for transcriptional profiles associated with successful pregnancies. These findings suggest that a global transcriptional derepression is needed for embryo implantation and early development.


Assuntos
Implantação do Embrião/genética , Regulação da Expressão Gênica no Desenvolvimento , Ciclo Menstrual/genética , Estudos de Coortes , Perda do Embrião/genética , Endométrio/fisiologia , Feminino , Humanos , Gravidez , Transcrição Gênica , Transcriptoma
14.
FEBS Lett ; 595(10): 1462-1472, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33686659

RESUMO

Centrosomal protein FOR20 has been reported to be crucial for essential cellular processes, including ciliogenesis, cell migration, and cell cycle in vertebrates. However, the function of FOR20 during mammalian embryonic development remains unknown. To investigate the in vivo function of the For20 gene in mammals, we generated For20 homozygous knockout mice by gene targeting. Our data reveal that homozygous knockout of For20 results in significant embryonic growth arrest and lethality during gestation, while the heterozygotes show no obvious defects. The absence of For20 leads to impaired left-right patterning of embryos and reduced cilia in the embryonic node. Deletion of For20 also disrupts angiogenesis in yolk sacs and embryos. These results highlight a critical role of For20 in early mammalian embryogenesis.


Assuntos
Padronização Corporal/genética , Perda do Embrião/genética , Embrião de Mamíferos/anormalidades , Embrião de Mamíferos/patologia , Deleção de Genes , Animais , Cílios/patologia , Embrião de Mamíferos/irrigação sanguínea , Desenvolvimento Embrionário , Feminino , Heterozigoto , Homozigoto , Masculino , Camundongos , Camundongos Knockout , Neovascularização Patológica , RNA Mensageiro/genética
15.
Reprod Biol Endocrinol ; 19(1): 18, 2021 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-33536035

RESUMO

OBJECTIVE: The aim of this study is to investigate the effect of irisin on leukemia inhibitory factor (LIF) and integrin αvß3 in implantation failure uterus. METHODS: Early pregnant rats were randomly divided into normal group (N), mifepristone treated group (M), irisin group (I) and progestin group (P). The implantation failure model was established using mifepristone. Second, we evaluated the average number of embryos and detected the expression of LIF and integrin αvß3 protein and mRNA in endometrium. RESULTS: Compared with group M, the average number of embryos was significantly higher in group N, P and I, the expression of LIF and integrin αvß3 in endometrium was significantly higher in group N, P and I. CONCLUSION: Irisin could improve the poor receptive state of endometrium by promoting LIF and integrin αvß3 secretion to improve blastocyst implantation in rats of implantation failure.


Assuntos
Implantação do Embrião/efeitos dos fármacos , Fibronectinas/farmacologia , Integrina alfaVbeta3/genética , Fator Inibidor de Leucemia/genética , Animais , Implantação do Embrião/genética , Perda do Embrião/induzido quimicamente , Perda do Embrião/genética , Perda do Embrião/metabolismo , Perda do Embrião/patologia , Endométrio/efeitos dos fármacos , Endométrio/metabolismo , Feminino , Fibronectinas/administração & dosagem , Regulação da Expressão Gênica/efeitos dos fármacos , Injeções Intramusculares , Integrina alfaVbeta3/metabolismo , Fator Inibidor de Leucemia/metabolismo , Mifepristona/farmacologia , Gravidez , Progestinas/administração & dosagem , Progestinas/farmacologia , Ratos , Ratos Wistar
16.
Blood ; 137(14): 1945-1958, 2021 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-33512417

RESUMO

Although BCL-xL is critical to the survival of mature erythrocytes, it is still unclear whether other antiapoptotic molecules mediate survival during earlier stages of erythropoiesis. Here, we demonstrate that erythroid-specific Mcl1 deletion results in embryonic lethality beyond embryonic day 13.5 as a result of severe anemia caused by a lack of mature red blood cells (RBCs). Mcl1-deleted embryos exhibit stunted growth, ischemic necrosis, and decreased RBCs in the blood. Furthermore, we demonstrate that MCL-1 is only required during early definitive erythropoiesis; during later stages, developing erythrocytes become MCL-1 independent and upregulate the expression of BCL-xL. Functionally, MCL-1 relies upon its ability to prevent apoptosis to promote erythroid development because codeletion of the proapoptotic effectors Bax and Bak can overcome the requirement for MCL-1 expression. Furthermore, ectopic expression of human BCL2 in erythroid progenitors can compensate for Mcl1 deletion, indicating redundancy between these 2 antiapoptotic family members. These data clearly demonstrate a requirement for MCL-1 in promoting survival of early erythroid progenitors.


Assuntos
Eritropoese , Deleção de Genes , Regulação da Expressão Gênica no Desenvolvimento , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Anemia/genética , Anemia/patologia , Animais , Apoptose , Células Cultivadas , Perda do Embrião/genética , Perda do Embrião/patologia , Eritrócitos/patologia , Células Eritroides/patologia , Humanos , Camundongos Endogâmicos C57BL
17.
Physiol Res ; 70(1): 3-12, 2021 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-33453719

RESUMO

Approximately 35 % of the mouse genes are indispensable for life, thus, global knock-out (KO) of those genes may result in embryonic or early postnatal lethality due to developmental abnormalities. Several KO mouse lines are valuable human disease models, but viable homozygous mutant mice are frequently required to mirror most symptoms of a human disease. The site-specific gene editing systems, the transcription activator-like effector nucleases (TALENs), Zinc-finger nucleases (ZFNs) and the clustered regularly interspaced short palindrome repeat-associated Cas9 nuclease (CRISPR/Cas9) made the generation of KO mice more efficient than before, but the homozygous lethality is still an undesired side-effect in case of many genes. The literature search was conducted using PubMed and Web of Science databases until June 30th, 2020. The following terms were combined to find relevant studies: "lethality", "mice", "knock-out", "deficient", "embryonic", "perinatal", "rescue". Additional manual search was also performed to find the related human diseases in the Online Mendelian Inheritance in Man (OMIM) database and to check the citations of the selected studies for rescuing methods. In this review, the possible solutions for rescuing human disease-relevant homozygous KO mice lethal phenotypes were summarized.


Assuntos
Sistemas CRISPR-Cas/genética , Perda do Embrião/prevenção & controle , Edição de Genes/métodos , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição/genética , Nucleases de Dedos de Zinco/genética , Animais , Perda do Embrião/genética , Camundongos , Camundongos Knockout , Fenótipo
18.
Biol Reprod ; 104(4): 835-849, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33354716

RESUMO

Defects in the maternal reproductive system that result in early pregnancy loss are important causes of human female infertility. A wide variety of biological processes are involved in implantation and establishment of a successful pregnancy. Although chromatin remodelers have been shown to play an important role in many biological processes, our understanding of the role of chromatin remodelers in female reproduction remains limited. Here, we demonstrate that female mice mutant for chromatin remodeler Cecr2 are subfertile, with defects detected at the peri-implantation stage or early pregnancy. Using both a less severe hypomorphic mutation (Cecr2GT) and a more severe presumptive null mutation (Cecr2Del), we demonstrate a clear difference in the severity of the phenotype depending on the mutation. Although neither strain shows detectable defects in folliculogenesis, both Cecr2GT/GT and Cecr2GT/Del dams show defects in pregnancy. Cecr2GT/GT females have a normal number of implantation sites at embryonic day 5.5 (E5.5), but significant embryo loss by E10.5 accompanied by the presence of vaginal blood. Cecr2GT/Del females show a more severe phenotype, with significantly fewer detectable implantation sites than wild type at E5.5. Some Cecr2GT/Del females also show premature loss of decidual tissue after artificial decidualization. Together, these results suggest a role for Cecr2 in the establishment of a successful pregnancy.


Assuntos
Implantação do Embrião/genética , Perda do Embrião/genética , Infertilidade Feminina/genética , Fatores de Transcrição/genética , Animais , Embrião de Mamíferos , Feminino , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Mutação , Gravidez , Fatores de Transcrição/fisiologia
19.
Ultrasound Med Biol ; 47(3): 751-758, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33293111

RESUMO

In vivo micro-imaging of mice is useful in studying the genetic basis of cardiac development in mutant embryos. We examined Phox2b-/- mutant mice, which lack autonomic innervation to the heart and die in utero, and investigated whether this lack of innervation causes cardiac dysfunction during embryogenesis. A VisualSonics Vevo 2100 ultrahigh-frequency linear array ultrasound machine with 30- and 40-MHz probes was used to analyze embryo size, gross characteristics, ventricular contractility and rhythm. Phox2b-/- mutant embryos underwent cessation of heartbeat and death at a greater rate than wild-type controls. We did not observe a hydrops phenotype or congenital heart defects in Phox2b-/- mutants. Analysis of heart rhythm revealed no significant correlation with genotype. Absent these signs of a progressive pathology, we suggest that Phox2b-/- mutant embryos likely die of sudden death secondary to acute arrhythmia. These data provide insight into the role of cardiac autonomic innervation during development.


Assuntos
Ecocardiografia/métodos , Perda do Embrião/genética , Coração/diagnóstico por imagem , Coração/embriologia , Proteínas de Homeodomínio/genética , Fatores de Transcrição/genética , Animais , Homozigoto , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo
20.
Mol Cell Probes ; 55: 101688, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33279530

RESUMO

Jersey haplotype (JH) 1, a stop-gain lethal mutation in the CWC15 gene, causes embryonic losses in Jersey cattle. Two PCR based assays using Amplification Refractory Mutation System (T-ARMS-PCR) and restriction fragment length polymorphism (PCR-RFLP) were developed for screening of the JH1 in cattle. During the screening, seven among 30 Indian Jersey bulls were identified as carriers of the mutant JH1 allele, the first time in the country. These PCR assays are economical, rapid and accurate; and can be used separately or in combination for screening and cross-validation of the JH1 carriers in Jersey cattle.


Assuntos
Bovinos/embriologia , Bovinos/genética , Perda do Embrião/genética , Haplótipos/genética , Mutação/genética , Reação em Cadeia da Polimerase/métodos , Animais , Sequência de Bases , Bioensaio , Polimorfismo de Fragmento de Restrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...