Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(11): e2117245119, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35254893

RESUMO

SignificanceHow flagella sense complex environments and control bacterial motility remain fascinating questions. Here, we deploy cryo-electron tomography to determine in situ structures of the flagellar motor in wild-type and mutant cells of Borrelia burgdorferi, revealing that three flagellar proteins (FliL, MotA, and MotB) form a unique supramolecular complex in situ. Importantly, FliL not only enhances motor function by forming a ring around the stator complex MotA/MotB in its extended, active conformation but also facilitates assembly of the stator complex around the motor. Our in situ data provide insights into how cooperative remodeling of the FliL-stator supramolecular complex helps regulate the collective ion flux and establishes the optimal function of the flagellar motor to guide bacterial motility in various environments.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/ultraestrutura , Flagelos/ultraestrutura , Proteínas de Membrana/química , Proteínas de Membrana/ultraestrutura , Periplasma/ultraestrutura , Fenômenos Fisiológicos Bacterianos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Borrelia burgdorferi , Flagelos/metabolismo , Regulação Bacteriana da Expressão Gênica , Proteínas de Membrana/metabolismo , Modelos Biológicos , Modelos Moleculares , Proteínas Motores Moleculares/genética , Proteínas Motores Moleculares/metabolismo , Periplasma/metabolismo
2.
Mol Microbiol ; 113(2): 418-429, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31743518

RESUMO

Borrelia burgdorferi is a highly motile spirochete due to its periplasmic flagella. Unlike flagella of other bacteria, spirochetes' periplasmic flagella possess a complex structure called the collar, about which little is known in terms of function and composition. Using various approaches, we have identified a novel protein, BB0326, as a key component of the collar. We show that a peripheral portion of the collar is diminished in the Δbb0326 mutant and restored in the complemented bb0326+ cells, leading us to rename BB0326 as periplasmic flagellar collar protein A or FlcA. The ΔflcA mutant cells produced fewer, abnormally tilted and shorter flagella, as well as diminished stators, suggesting that FlcA is crucial for flagellar and stator assemblies. We provide further evidence that FlcA interacts with the stator and that this collar-stator interaction is essential for the high torque needed to power the spirochete's periplasmic flagellar motors. These observations suggest that the collar provides various important functions to the spirochete's periplasmic flagellar assembly and rotation.


Assuntos
Proteínas de Bactérias/ultraestrutura , Borrelia burgdorferi , Flagelos/ultraestrutura , Proteínas de Bactérias/metabolismo , Borrelia burgdorferi/fisiologia , Borrelia burgdorferi/ultraestrutura , Movimento Celular , Microscopia Crioeletrônica , Tomografia com Microscopia Eletrônica , Flagelos/metabolismo , Flagelos/microbiologia , Periplasma/metabolismo , Periplasma/ultraestrutura
3.
Structure ; 27(12): 1855-1861.e3, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31604608

RESUMO

Extracellular bacterial cellulose contributes to biofilm stability and to the integrity of the bacterial cell envelope. In Gram-negative bacteria, cellulose is synthesized and secreted by a multi-component cellulose synthase complex. The BcsA subunit synthesizes cellulose and also transports the polymer across the inner membrane. Translocation across the outer membrane occurs through the BcsC porin, which extends into the periplasm via 19 tetra-tricopeptide repeats (TPR). We present the crystal structure of a truncated BcsC, encompassing the last TPR repeat and the complete outer membrane channel domain, revealing a 16-stranded, ß barrel pore architecture. The pore is blocked by an extracellular gating loop, while the extended C terminus inserts deeply into the channel and positions a conserved Trp residue near its extracellular exit. The channel is lined with hydrophilic and aromatic residues suggesting a mechanism for facilitated cellulose diffusion based on aromatic stacking and hydrogen bonding.


Assuntos
Celulose/química , Proteínas de Escherichia coli/química , Escherichia coli/genética , Glucosiltransferases/química , Porinas/química , Repetições de Tetratricopeptídeos/genética , Sítios de Ligação , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Celulose/metabolismo , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Periplasma/metabolismo , Periplasma/ultraestrutura , Porinas/genética , Porinas/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Multimerização Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Termodinâmica
4.
FEBS J ; 286(21): 4294-4309, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31230405

RESUMO

The VirB/D type IV secretion system (T4SS) plays an essential role in materials transport between host cells and pathogenic Helicobacter pylori and is considered the major pathogenic mediator of H. pylori-associated gastric disease. VirB8, an inner membrane protein that interacts with many other proteins, is a crucial component for secretory function. Here, we present a crystal structure of the periplasmic domain of CagV, the VirB8 counterpart in the H. pylori Cag-T4SS. The structure reveals a fold similar to that of other VirB8 members except for the absence of the α5 helix, a discontinuous ß1 strand, a larger angle between the α2 and α3 helices, a more hydrophobic surface groove, but exhibits a different dimer interface. Whether the dimerization occurs in solution was proved by mutagenesis, size-exclusion chromatography and cross-linking assays. Unlike the classical dimerization mode, the interface of the CagV dimer is principally formed by several hydrogen bonds, which indicates instability of dimerization. The structure here demonstrates the difference in dimerization among VirB8 homologues and indicates the considerable compositional and functional diversity of them in T4SS. DATABASE: Coordinates and structure factors have been deposited in the Protein Data Bank under accession codes 6IQT.


Assuntos
Infecções por Helicobacter/microbiologia , Helicobacter pylori/química , Proteínas de Membrana/ultraestrutura , Conformação Proteica , Cristalografia por Raios X , Helicobacter pylori/patogenicidade , Helicobacter pylori/ultraestrutura , Interações Hospedeiro-Patógeno/genética , Humanos , Proteínas de Membrana/química , Periplasma/química , Periplasma/ultraestrutura , Ligação Proteica , Dobramento de Proteína , Multimerização Proteica/genética , Sistemas de Secreção Tipo IV/química , Sistemas de Secreção Tipo IV/genética
5.
Nat Microbiol ; 4(7): 1173-1182, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31011165

RESUMO

Legionella pneumophila survives and replicates inside host cells by secreting ~300 effectors through the defective in organelle trafficking (Dot)/intracellular multiplication (Icm) type IVB secretion system (T4BSS). Here, we used complementary electron cryotomography and immunofluorescence microscopy to investigate the molecular architecture and biogenesis of the Dot/Icm secretion apparatus. Electron cryotomography mapped the location of the core and accessory components of the Legionella core transmembrane subcomplex, revealing a well-ordered central channel that opens into a large, windowed secretion chamber with an unusual 13-fold symmetry. Immunofluorescence microscopy deciphered an early-stage assembly process that begins with the targeting of Dot/Icm components to the bacterial poles. Polar targeting of this T4BSS is mediated by two Dot/Icm proteins, DotU and IcmF, that, interestingly, are homologues of the T6SS membrane complex components TssL and TssM, suggesting that the Dot/Icm T4BSS is a hybrid system. Together, these results revealed that the Dot/Icm complex assembles in an 'axial-to-peripheral' pattern.


Assuntos
Legionella pneumophila/química , Sistemas de Secreção Tipo IV/metabolismo , Sistemas de Secreção Tipo IV/ultraestrutura , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Membrana Celular/química , Membrana Celular/ultraestrutura , Polaridade Celular , Tomografia com Microscopia Eletrônica , Legionella pneumophila/citologia , Legionella pneumophila/genética , Legionella pneumophila/ultraestrutura , Microscopia de Fluorescência , Mutação , Periplasma/química , Periplasma/ultraestrutura , Multimerização Proteica , Sistemas de Secreção Tipo IV/química
6.
Elife ; 82019 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-30648971

RESUMO

The bacterial flagellar motor, a cell-envelope-embedded macromolecular machine that functions as a cellular propeller, exhibits significant structural variability between species. Different torque-generating stator modules allow motors to operate in different pH, salt or viscosity levels. How such diversity evolved is unknown. Here, we use electron cryo-tomography to determine the in situ macromolecular structures of three Gammaproteobacteria motors: Legionella pneumophila, Pseudomonas aeruginosa, and Shewanella oneidensis, providing the first views of intact motors with dual stator systems. Complementing our imaging with bioinformatics analysis, we find a correlation between the motor's stator system and its structural elaboration. Motors with a single H+-driven stator have only the core periplasmic P- and L-rings; those with dual H+-driven stators have an elaborated P-ring; and motors with Na+ or Na+/H+-driven stators have both their P- and L-rings embellished. Our results suggest an evolution of structural elaboration that may have enabled pathogenic bacteria to colonize higher-viscosity environments in animal hosts.


Assuntos
Flagelos/metabolismo , Gammaproteobacteria/metabolismo , Proteínas Motores Moleculares/química , Periplasma/metabolismo , Flagelos/ultraestrutura , Gammaproteobacteria/ultraestrutura , Periplasma/ultraestrutura , Filogenia , Sódio/metabolismo
7.
Mol Plant Microbe Interact ; 30(12): 997-1008, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29028412

RESUMO

The functional role of the periplasm of nitrogen-fixing bacteroids has not been determined. Proteins were isolated from the periplasm and cytoplasm of Bradyrhizobium diazoefficiens bacteroids and were analyzed using liquid chromatography tandem mass spectrometry proteomics. Identification of bacteroid periplasmic proteins was aided by periplasm prediction programs. Approximately 40% of all the proteins identified as periplasmic in the B. diazoefficiens genome were found expressed in the bacteroid form of the bacteria, indicating the periplasm is a metabolically active symbiotic space. The bacteroid periplasm possesses many fatty acid metabolic enzymes, which was in contrast to the bacteroid cytoplasm. Amino acid analysis of the periplasm revealed an abundance of phosphoserine, phosphoethanolamine, and glycine, which are metabolites of phospholipid metabolism. These results suggest the periplasm is a unique space and not a continuum with the peribacteroid space. A number of plant proteins were found in the periplasm fraction, which suggested contamination. However, antibodies to two of the identified plant proteins, histone H2A and lipoxygenase, yielded immunogold labeling that demonstrated the plant proteins were specifically targeted to the bacteroids. This suggests that the periplasm is an interkingdom symbiotic space containing proteins from both the bacteroid and the plant.


Assuntos
Proteínas de Bactérias/metabolismo , Glycine max/microbiologia , Periplasma/metabolismo , Nódulos Radiculares de Plantas/microbiologia , Simbiose , Aminoácidos/metabolismo , Sequência de Bases , Periplasma/ultraestrutura , Nódulos Radiculares de Plantas/ultraestrutura
8.
Biochem J ; 474(23): 3951-3961, 2017 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-28974626

RESUMO

Outer membrane (OM) ß-barrel proteins play important roles in importing nutrients, exporting wastes and conducting signals in Gram-negative bacteria, mitochondria and chloroplasts. The outer membrane proteins (OMPs) are inserted and assembled into the OM by OMP85 family proteins. In Escherichia coli, the ß-barrel assembly machinery (BAM) contains four lipoproteins such as BamB, BamC, BamD and BamE, and one OMP BamA, forming a 'top hat'-like structure. Structural and functional studies of the E. coli BAM machinery have revealed that the rotation of periplasmic ring may trigger the barrel ß1C-ß6C scissor-like movement that promote the unfolded OMP insertion without using ATP. Here, we report the BamA C-terminal barrel structure of Salmonella enterica Typhimurium str. LT2 and functional assays, which reveal that the BamA's C-terminal residue Trp, the ß16C strand of the barrel and the periplasmic turns are critical for the functionality of BamA. These findings indicate that the unique ß16C strand and the periplasmic turns of BamA are important for the outer membrane insertion and assembly. The periplasmic turns might mediate the rotation of the periplasmic ring to the scissor-like movement of BamA ß1C-ß6C, triggering the OMP insertion. These results are important for understanding the OMP insertion in Gram-negative bacteria, as well as in mitochondria and chloroplasts.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Proteínas de Escherichia coli/química , Escherichia coli/metabolismo , Periplasma/metabolismo , Plasmídeos/química , Salmonella typhimurium/metabolismo , Motivos de Aminoácidos , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/ultraestrutura , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Expressão Gênica , Modelos Moleculares , Mutação , Periplasma/genética , Periplasma/ultraestrutura , Plasmídeos/metabolismo , Ligação Proteica , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Salmonella typhimurium/genética , Salmonella typhimurium/ultraestrutura
9.
Nature ; 549(7671): 233-237, 2017 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-28869968

RESUMO

Lipopolysaccharide (LPS) in the outer membrane of Gram-negative bacteria is critical for the assembly of their cell envelopes. LPS synthesized in the cytoplasmic leaflet of the inner membrane is flipped to the periplasmic leaflet by MsbA, an ATP-binding cassette transporter. Despite substantial efforts, the structural mechanisms underlying MsbA-driven LPS flipping remain elusive. Here we use single-particle cryo-electron microscopy to elucidate the structures of lipid-nanodisc-embedded MsbA in three functional states. The 4.2 Å-resolution structure of the transmembrane domains of nucleotide-free MsbA reveals that LPS binds deep inside MsbA at the height of the periplasmic leaflet, establishing extensive hydrophilic and hydrophobic interactions with MsbA. Two sub-nanometre-resolution structures of MsbA with ADP-vanadate and ADP reveal an unprecedented closed and an inward-facing conformation, respectively. Our study uncovers the structural basis for LPS recognition, delineates the conformational transitions of MsbA to flip LPS, and paves the way for structural characterization of other lipid flippases.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/ultraestrutura , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/ultraestrutura , Microscopia Crioeletrônica , Escherichia coli , Lipopolissacarídeos/metabolismo , Transportadores de Cassetes de Ligação de ATP/química , Difosfato de Adenosina/química , Difosfato de Adenosina/metabolismo , Proteínas de Bactérias/química , Transporte Biológico , Membrana Celular/química , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Escherichia coli/citologia , Escherichia coli/enzimologia , Escherichia coli/ultraestrutura , Interações Hidrofóbicas e Hidrofílicas , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Modelos Moleculares , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Periplasma/química , Periplasma/metabolismo , Periplasma/ultraestrutura , Ligação Proteica , Domínios Proteicos
10.
mBio ; 8(5)2017 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-28900026

RESUMO

One of the mechanisms of ß-lactam antibiotic resistance requires the activity of d,d-carboxypeptidases (d,d-CPases) involved in peptidoglycan (PG) synthesis, making them putative targets for new antibiotic development. The activity of PG-synthesizing enzymes is often correlated with their association with other proteins. The PG layer is maintained in the periplasm between the two membranes of the Gram-negative cell envelope. Because no methods existed to detect in vivo interactions in this compartment, we have developed and validated a Förster resonance energy transfer assay. Using the fluorescent-protein donor-acceptor pair mNeonGreen-mCherry, periplasmic protein interactions were detected in fixed and in living bacteria, in single samples or in plate reader 96-well format. We show that the d,d-CPases PBP5, PBP6a, and PBP6b of Escherichia coli change dimer conformation between resting and active states. Complementation studies and changes in localization suggest that these d,d-CPases are not redundant but that their balanced activity is required for robust PG synthesis.IMPORTANCE The periplasmic space between the outer and the inner membrane of Gram-negative bacteria contains many essential regulatory, transport, and cell wall-synthesizing and -hydrolyzing proteins. To date, no assay is available to determine protein interactions in this compartment. We have developed a periplasmic protein interaction assay for living and fixed bacteria in single samples or 96-well-plate format. Using this assay, we were able to demonstrate conformation changes related to the activity of proteins that could not have been detected by any other living-cell method available. The assay uniquely expands our toolbox for antibiotic screening and mode-of-action studies.


Assuntos
Carboxipeptidases/química , Carboxipeptidases/metabolismo , Escherichia coli/enzimologia , Periplasma/ultraestrutura , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Transferência Ressonante de Energia de Fluorescência , Proteínas Luminescentes , Peptidoglicano/química , Peptidoglicano/metabolismo , Periplasma/química , Periplasma/metabolismo , Conformação Proteica , D-Ala-D-Ala Carboxipeptidase Tipo Serina/química , D-Ala-D-Ala Carboxipeptidase Tipo Serina/metabolismo , Proteína Vermelha Fluorescente
11.
Science ; 356(6334): 197-200, 2017 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-28408605

RESUMO

The bacterial flagellum exemplifies a system where even small deviations from the highly regulated flagellar assembly process can abolish motility and cause negative physiological outcomes. Consequently, bacteria have evolved elegant and robust regulatory mechanisms to ensure that flagellar morphogenesis follows a defined path, with each component self-assembling to predetermined dimensions. The flagellar rod acts as a driveshaft to transmit torque from the cytoplasmic rotor to the external filament. The rod self-assembles to a defined length of ~25 nanometers. Here, we provide evidence that rod length is limited by the width of the periplasmic space between the inner and outer membranes. The length of Braun's lipoprotein determines periplasmic width by tethering the outer membrane to the peptidoglycan layer.


Assuntos
Bactérias/ultraestrutura , Proteínas de Bactérias/ultraestrutura , Membrana Celular/ultraestrutura , Flagelos/ultraestrutura , Lipoproteínas/ultraestrutura , Peptidoglicano/ultraestrutura , Escherichia coli/ultraestrutura , Periplasma/ultraestrutura , Salmonella enterica/ultraestrutura , Torque
12.
Trends Biochem Sci ; 41(11): 970-981, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27669651

RESUMO

Biochemical processes take place in heterogeneous and highly volume-occupied or crowded environments that can considerably influence the reactivity and distribution of participating macromolecules. We summarize here the thermodynamic consequences of excluded-volume and long-range nonspecific intermolecular interactions for macromolecular reactions in volume-occupied media. In addition, we summarize and compare the information content of studies of crowding in vitro and in vivo. We emphasize the importance of characterizing the behavior not only of labeled tracer macromolecules but also the composition and behavior of unlabeled macromolecules in the immediate vicinity of the tracer. Finally, we propose strategies for extending quantitative analyses of crowding in simple model systems to increasingly complex media up to and including intact cells.


Assuntos
Proteínas de Bactérias/química , DNA Bacteriano/química , Escherichia coli/química , RNA Bacteriano/química , Compartimento Celular , Membrana Celular/química , Membrana Celular/ultraestrutura , Escherichia coli/ultraestrutura , Cinética , Organelas/química , Organelas/ultraestrutura , Periplasma/química , Periplasma/ultraestrutura , Termodinâmica
13.
Trends Biochem Sci ; 41(10): 872-882, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27450425

RESUMO

Outer membrane proteins (OMPs) play a central role in the integrity of the outer membrane of Gram-negative bacteria. Unfolded OMPs (uOMPs) transit across the periplasm, and subsequent folding and assembly are crucial for biogenesis. Chaperones and the essential ß-barrel assembly machinery (BAM) complex facilitate these processes. In vitro studies suggest that some chaperones sequester uOMPs in internal cavities during their periplasmic transit to prevent deleterious aggregation. Upon reaching the outer membrane, the BAM complex acts catalytically to accelerate uOMP folding. Complementary in vivo experiments have revealed the localization and activity of the BAM complex in living cells. Completing an understanding of OMP biogenesis will require a holistic view of the interplay among the individual components discussed here.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Proteínas de Escherichia coli/química , Escherichia coli/metabolismo , Chaperonas Moleculares/química , Periplasma/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Sítios de Ligação , Escherichia coli/genética , Escherichia coli/ultraestrutura , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Expressão Gênica , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Simulação de Dinâmica Molecular , Periplasma/genética , Periplasma/ultraestrutura , Ligação Proteica , Conformação Proteica em Folha beta , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , Transporte Proteico , Desdobramento de Proteína , Termodinâmica
14.
Artigo em Russo | MEDLINE | ID: mdl-26950984

RESUMO

AIM: Detection of bactericidal effect of pulse-periodic corona discharge (PPCD) on cells and biofilms of Escherichia coli M17. MATERIALS AND METHODS: A gas-discharge device was created based on PPCD in air with power supply parameters: amplitude values of voltage of 30 - 60 kV, pulse repetition rate of 250 - 400 kHz. Ultrastructure changes in cells and biofilms of E. coli M17, affected by PPCD, generated in air, were studied by typical methods of transmission electron microscopy. RESULTS: Disturbances of integrity of surface and abyssal structures of biofilms, as well as changes of morphological properties of E. coli M17 cells, characteristic for sub-lethal heat impact, were detected. Destructive changes of bacterial cells were developed by formation of focal disturbance of cytoplasmic membrane, extension of periplasmic space, formation of globular structures, characteristic for heat effect, and destruction of cytoplasm. CONCLUSION: Bactericidal effect of PPCD on E. coli M17 cells as part of biofilms was shown. Destructive morphological changes in cells and biofilms of E. coli M17 after the effect of PPCD were detected for the first time on electron-microscopic level.


Assuntos
Biofilmes/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Periplasma/efeitos dos fármacos , Gases em Plasma/farmacologia , Biofilmes/crescimento & desenvolvimento , Membrana Celular/ultraestrutura , Eletricidade , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/ultraestrutura , Temperatura Alta , Microscopia Eletrônica de Transmissão , Periplasma/ultraestrutura
15.
Curr Top Microbiol Immunol ; 387: 21-41, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25388131

RESUMO

Members of the family Leptospiraceae are thin, spiral, highly motile bacteria that are best visualized by darkfield microscopy. These characteristics are shared with other members of the Order Spirochaetales, but few additional parallels exist among spirochetes. This chapter describes basal features of Leptospira Leptospira that are central to survival and, in the case of pathogenic leptospiral species, intimately linked with pathogenesis, including its morphology, characteristic motility, and unusual metabolism. This chapter also describes the general methodology and critical requirements for in vitro cultivation and storage of Leptospira within a laboratory setting.


Assuntos
Leptospira/fisiologia , Meios de Cultura , Leptospira/citologia , Movimento , Periplasma/ultraestrutura
16.
Protoplasma ; 251(6): 1521-5, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24802108

RESUMO

Essential trace elements Ni(2+) and Cu(2+) can block pollen germination without causing cell death. Mechanisms of this effect remain unclear. Using TEM, we studied the effects of Ni(2+) or Cu(2+) treatment on the ultrastructure of the aperture regions in tobacco pollen preparing to germinate in vitro, since in these zones, the main fluxes of water, ions, and metabolites cross the plasmalemma. Neither Ni(2+) nor Cu(2+) altered the cytoplasm ultrastructure, but both affected the reorganization of apertural periplasm during pollen activation. Numerous multilamellar membranous structures continuous with the plasma membrane could be seen in hydrated but not yet activated pollen. When the normal activation was completed, the structures disappeared and the plasmalemma became smooth. In the presence of 1 mM Ni(2+) or 100 µM Cu(2+), these structures preserved its original appearance. It is assumed to be the storage form for the membrane material, which is to provide an initial phase of the pollen tube growth. Ni(2+) and Cu(2+) affect the utilization of these membranes, thereby, blocking the pollen germination.


Assuntos
Estruturas da Membrana Celular/ultraestrutura , Cobre/toxicidade , Níquel/toxicidade , Nicotiana/ultraestrutura , Periplasma/ultraestrutura , Pólen/ultraestrutura , Estruturas da Membrana Celular/efeitos dos fármacos , Pólen/efeitos dos fármacos
17.
J Proteome Res ; 13(5): 2420-32, 2014 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-24620993

RESUMO

Porphyromonas gingivalis, a keystone pathogen associated with chronic periodontitis, produces outer membrane vesicles (OMVs) that carry a cargo of virulence factors. In this study, the proteome of OMVs was determined by LC-MS/MS analyses of SDS-PAGE fractions, and a total of 151 OMV proteins were identified, with all but one likely to have originated from either the outer membrane or periplasm. Of these, 30 exhibited a C-terminal secretion signal known as the CTD that localizes them to the cell/vesicle surface, 79 and 27 were localized to the vesicle membrane and lumen respectively while 15 were of uncertain location. All of the CTD proteins along with other virulence factors were found to be considerably enriched in the OMVs, while proteins exhibiting the OmpA peptidoglycan-binding motif and TonB-dependent receptors were preferentially retained on the outer membrane of the cell. Cryo-transmission electron microscopy analysis revealed that an electron dense surface layer known to comprise CTD proteins accounted for a large proportion of the OMVs' volume providing an explanation for the enrichment of CTD proteins. Together the results show that P. gingivalis is able to specifically concentrate and release a large number of its virulence factors into the environment in the form of OMVs.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas Periplásmicas/metabolismo , Porphyromonas gingivalis/metabolismo , Fatores de Virulência/metabolismo , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Cromatografia Líquida , Microscopia Crioeletrônica , Eletroforese em Gel de Poliacrilamida , Microscopia Eletrônica de Transmissão , Periplasma/metabolismo , Periplasma/ultraestrutura , Porphyromonas gingivalis/patogenicidade , Porphyromonas gingivalis/ultraestrutura , Proteoma/metabolismo , Proteômica/métodos , Transdução de Sinais , Espectrometria de Massas em Tandem , Vesículas Transportadoras/metabolismo , Vesículas Transportadoras/ultraestrutura , Virulência
18.
Nature ; 505(7483): 432-5, 2014 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-24336205

RESUMO

Prokaryotic viruses have evolved various mechanisms to transport their genomes across bacterial cell walls. Many bacteriophages use a tail to perform this function, whereas tail-less phages rely on host organelles. However, the tail-less, icosahedral, single-stranded DNA ΦX174-like coliphages do not fall into these well-defined infection processes. For these phages, DNA delivery requires a DNA pilot protein. Here we show that the ΦX174 pilot protein H oligomerizes to form a tube whose function is most probably to deliver the DNA genome across the host's periplasmic space to the cytoplasm. The 2.4 Å resolution crystal structure of the in vitro assembled H protein's central domain consists of a 170 Å-long α-helical barrel. The tube is constructed of ten α-helices with their amino termini arrayed in a right-handed super-helical coiled-coil and their carboxy termini arrayed in a left-handed super-helical coiled-coil. Genetic and biochemical studies demonstrate that the tube is essential for infectivity but does not affect in vivo virus assembly. Cryo-electron tomograms show that tubes span the periplasmic space and are present while the genome is being delivered into the host cell's cytoplasm. Both ends of the H protein contain transmembrane domains, which anchor the assembled tubes into the inner and outer cell membranes. The central channel of the H-protein tube is lined with amide and guanidinium side chains. This may be a general property of viral DNA conduits and is likely to be critical for efficient genome translocation into the host.


Assuntos
Bacteriófago phi X 174/química , Bacteriófago phi X 174/metabolismo , DNA Viral/metabolismo , Escherichia coli/virologia , Montagem de Vírus , Bacteriófago phi X 174/ultraestrutura , Transporte Biológico , Microscopia Crioeletrônica , Cristalografia por Raios X , Citoplasma/metabolismo , Citoplasma/ultraestrutura , Citoplasma/virologia , DNA Viral/ultraestrutura , Escherichia coli/citologia , Escherichia coli/ultraestrutura , Genoma Viral , Modelos Moleculares , Periplasma/metabolismo , Periplasma/ultraestrutura , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Virais/química , Proteínas Virais/metabolismo , Proteínas Virais/ultraestrutura
19.
Folia Biol (Krakow) ; 62(4): 377-85, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25916166

RESUMO

In the cytoplasm of oocytes (ooplasm) located in ovarian follicles with diameters 2000 microm and 2150 microm in Acipenser gueldenstaedtii, and 2000 microm and 2350 microm in A. baerii, periplasm containing a basophilic compartment and endoplasm containing reserve materials was formed. Vesicles involved in polyspermy blocking and in the formation of the embryo were located in the periplasm. These included compact (cCGs), low-electron-dense cortical granules (lCGs), and lamellar bodies. The cCGs were bounded by a membrane, comprised fibrillar material, fibrils and rod-shaped components. The lCGs were membrane-bounded and contained fibrillar material and granular inclusions. Endoplasmic reticulum (ER) and Golgi complexes were involved in the formation of cCG and lCG. The basophilic compartment, ER and Golgi vesicles participated in the formation of lamellar bodies. They comprised numerous membranes and fibrillar material. It is assumed that they transfer membranes and their precursors to the growing furrow during cleavage and release their content to organize the extracellular matrix. The location of compounds in the developing egg envelope of A. gueldenstaedtii was presented and discussed. Ovaries of both investigated species represented the first pubertal stages of development. Such fish should not be used for reproduction.


Assuntos
Peixes/fisiologia , Oócitos/fisiologia , Oócitos/ultraestrutura , Periplasma/fisiologia , Periplasma/ultraestrutura , Animais , Oogênese/fisiologia , Organelas/ultraestrutura
20.
Environ Microbiol ; 15(4): 1204-15, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23227863

RESUMO

Bdellovibrio bacteriovorus HD100 is an obligate predator that invades and grows within the periplasm of Gram-negative bacteria, including mcl-polyhydroxyalkanoate (PHA) producers such as Pseudomonas putida. We investigated the impact of prey PHA content on the predator fitness and the potential advantages for preying on a PHA producer. Using a new procedure to control P. putida KT2442 cell size we demonstrated that the number of Bdellovibrio progeny depends on the prey biomass and not on the viable prey cell number or PHA content. The presence of mcl-PHA hydrolysed products in the culture supernatant after predation on P. putida KT42Z, a PHA producing strain lacking PhaZ depolymerase, confirmed the ability of Bdellovibrio to degrade the prey's PHA. Predator motility was higher when growing on PHA accumulating prey. External addition of PHA polymer (latex suspension) to Bdellovibrio preying on the PHA minus mutant P. putida KT42C1 restored predator movement, suggesting that PHA is a key prey component to sustain predator swimming speed. High velocities observed in Bdellovibrio preying on the PHA producing strain were correlated to high intracellular ATP levels of the predator. These effects brought Bdellovibrio fitness benefits as predation on PHA producers was more efficient than predation on non-producing bacteria.


Assuntos
Fenômenos Fisiológicos Bacterianos , Bdellovibrio/citologia , Bdellovibrio/metabolismo , Interações Microbianas , Poli-Hidroxialcanoatos/biossíntese , Pseudomonas putida/citologia , Pseudomonas putida/metabolismo , Biomassa , Hidrolases de Éster Carboxílico/metabolismo , Periplasma/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...