Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Immunol ; 62(1): 37-45, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24937179

RESUMO

Eosinophils localize to and release their granule proteins in close association with nerves in patients with asthma and rhinitis. These conditions are associated with increased neural function. In this study the effect of the individual granule proteins on cholinergic neurotransmitter expression was investigated. Eosinophil peroxidase (EPO) upregulated choline acetyltransferase (ChAT) and vesicular acetylcholine transporter (VAChT) gene expression. Fluorescently labeled EPO was seen to bind to the IMR-32 cell surface. Both Poly-L-Glutamate (PLG) and Heparinase-1 reversed the up-regulatory effect of EPO on ChAT and VAChT expression and prevented EPO adhesion to the cell surface. Poly-L-arginine (PLA) had no effect on expression of either gene, suggesting that charge is necessary but insufficient to alter gene expression. EPO induced its effects via the activation of NF-κB. MEK inhibition led to reversal of all up-regulatory effects of EPO. These data indicate a preferential role of EPO signaling via a specific surface receptor that leads to neural plasticity.


Assuntos
Acetilcolina/metabolismo , Colina O-Acetiltransferase/genética , Peroxidase de Eosinófilo/fisiologia , Neurônios/metabolismo , Proteínas Vesiculares de Transporte de Acetilcolina/genética , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Colina O-Acetiltransferase/metabolismo , Colinérgicos/metabolismo , Peroxidase de Eosinófilo/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Glicosaminoglicanos/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , NF-kappa B/metabolismo , Plasticidade Neuronal/genética , Neurônios/efeitos dos fármacos , Ligação Proteica , Células Tumorais Cultivadas , Proteínas Vesiculares de Transporte de Acetilcolina/metabolismo
2.
Blood ; 122(5): 621-3, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23908440

RESUMO

In this issue of Blood, Doyle et al provide evidence that knockout of the genes encoding the two most abundant eosinophil secondary granule proteins disrupts the normal differentiation of eosinophils from progenitors in the bone marrow, providing a novel strain of mice with a highly specific deficiency in eosinophilopoiesis and, therefore, eosinophils. This strain is likely to be used by investigators to elaborate the normal vs pathogenic roles of eosinophils in health and disease.


Assuntos
Proteína Básica Maior de Eosinófilos/fisiologia , Peroxidase de Eosinófilo/fisiologia , Eosinófilos/fisiologia , Mielopoese/genética , Animais
3.
Blood ; 122(5): 781-90, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23736699

RESUMO

Eosinophil activities are often linked with allergic diseases such as asthma and the pathologies accompanying helminth infection. These activities have been hypothesized to be mediated, in part, by the release of cationic proteins stored in the secondary granules of these granulocytes. The majority of the proteins stored in these secondary granules (by mass) are major basic protein 1 (MBP-1) and eosinophil peroxidase (EPX). Unpredictably, a knockout approach targeting the genes encoding these proteins demonstrated that, unlike in mice containing a single deficiency of only MBP-1 or EPX, the absence of both granule proteins resulted in the near complete loss of peripheral blood eosinophils with no apparent impact on any other hematopoietic lineage. Moreover, the absence of MBP-1 and EPX promoted a concomitant loss of eosinophil lineage-committed progenitors in the marrow, identifying a specific blockade in eosinophilopoiesis as the causative event. Significantly, this blockade of eosinophilopoiesis is also observed in ex vivo cultures of marrow progenitors and is not rescued in vivo by adoptive bone marrow engraftment, suggesting a cell-autonomous defect in marrow progenitors. These observations implicate a role for granule protein gene expression as a regulator of eosinophilopoiesis and provide another strain of mice congenitally deficient of eosinophils.


Assuntos
Proteína Básica Maior de Eosinófilos/fisiologia , Peroxidase de Eosinófilo/fisiologia , Eosinófilos/fisiologia , Mielopoese/genética , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Células da Medula Óssea/fisiologia , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Proteína Básica Maior de Eosinófilos/genética , Proteína Básica Maior de Eosinófilos/metabolismo , Peroxidase de Eosinófilo/genética , Peroxidase de Eosinófilo/metabolismo , Eosinófilos/efeitos dos fármacos , Eosinófilos/metabolismo , Interleucina-5/farmacologia , Contagem de Leucócitos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mielopoese/efeitos dos fármacos , Mielopoese/fisiologia
4.
J Leukoc Biol ; 94(1): 17-24, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23630390

RESUMO

Eosinophils are generally linked to innate host defense against helminths, as well as the pathologies associated with allergic diseases, such as asthma. Nonetheless, the activities of eosinophils remain poorly understood, which in turn, has prevented detailed definitions of their role(s) in health and disease. Homologous recombination in embryonic stem cells was used to insert a mammalianized Cre recombinase in the ORF encoding Epx. This knock-in strategy overcame previous inefficiencies associated with eosinophil-specific transgenic approaches and led to the development of a knock-in strain of mice (eoCRE), capable of mediating recombination of "floxed" reporter cassettes in >95% of peripheral blood eosinophils. We also showed that this Cre expression was limited exclusively to eosinophil-lineage committed cells with no evidence of Cre-mediated toxicity. The efficiency and specificity of Cre expression in eoCRE mice were demonstrated further in a cross with a knock-in mouse containing a "(flox-stop-flox)" DTA cassette at the ROSA26 locus, generating yet another novel, eosinophil-less strain of mice. The development of eoCRE mice represents a milestone in studies of eosinophil biology, permitting eosinophil-specific gene targeting and overexpression in the mouse as part of next-generation studies attempting to define eosinophil effector functions.


Assuntos
Peroxidase de Eosinófilo/fisiologia , Eosinófilos/enzimologia , Integrases/metabolismo , Animais , Medula Óssea/metabolismo , Diferenciação Celular , Linhagem da Célula , Proliferação de Células , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Citometria de Fluxo , Recombinação Homóloga , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
5.
J Allergy Clin Immunol ; 130(3): 572-84, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22935586

RESUMO

The respective life histories of human subjects and mice are well defined and describe a unique story of evolutionary conservation extending from sequence identity within the genome to the underpinnings of biochemical, cellular, and physiologic pathways. As a consequence, the hematopoietic lineages of both species are invariantly maintained, each with identifiable eosinophils. This canonical presence nonetheless does not preclude disparities between human and mouse eosinophils, their effector functions, or both. Indeed, many books and reviews dogmatically highlight differences, providing a rationale to discount the use of mouse models of human eosinophilic diseases. We suggest that this perspective is parochial and ignores the wealth of available studies and the consensus of the literature that overwhelming similarities (and not differences) exist between human and mouse eosinophils. The goal of this review is to summarize this literature and in some cases provide experimental details comparing and contrasting eosinophils and eosinophil effector functions in human subjects versus mice. In particular, our review will provide a summation and an easy-to-use reference guide to important studies demonstrating that although differences exist, more often than not, their consequences are unknown and do not necessarily reflect inherent disparities in eosinophil function but instead species-specific variations. The conclusion from this overview is that despite nominal differences, the vast similarities between human and mouse eosinophils provide important insights as to their roles in health and disease and, in turn, demonstrate the unique utility of mouse-based studies with an expectation of valid extrapolation to the understanding and treatment of patients.


Assuntos
Eosinófilos/fisiologia , Animais , Degranulação Celular , Proteína Catiônica de Eosinófilo/fisiologia , Peroxidase de Eosinófilo/fisiologia , Evolução Molecular , Glicoproteínas/fisiologia , Hematopoese , Humanos , Lisofosfolipase/fisiologia , Camundongos
6.
Am J Physiol Lung Cell Mol Physiol ; 294(3): L544-52, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18178677

RESUMO

It has been shown that airway exposure to eosinophil-derived cationic proteins stimulated vagal pulmonary C fibers and markedly potentiated their responses to lung inflation in anesthetized rats (Lee LY, Gu Q, Gleich GJ, J Appl Physiol 91: 1318-1326, 2001). However, whether the effects resulted from a direct action of these proteins on the sensory nerves was not known. The present study was therefore carried out to determine the effects of these proteins on isolated rat vagal pulmonary sensory neurons. Our results obtained from perforated whole cell patch-clamp recordings showed that pretreatment with eosinophil major basic protein (MBP; 2 microM, 60 s) significantly increased the capsaicin-evoked inward current in these neurons; this effect peaked approximately 10 min after MBP and lasted for >60 min; in current-clamp mode, MBP substantially increased the number of action potentials evoked by both capsaicin and electrical stimulation. Pretreatment with MBP did not significantly alter the input resistance of these sensory neurons. In addition, the sensitizing effect of MBP was completely abolished when its cationic charge was neutralized by mixing with a polyanion, such as low-molecular-weight heparin or poly-L-glutamic or poly-L-aspartic acid, before its delivery to the neurons. Moreover, a similar sensitizing effect was also generated by other eosinophil granule-derived proteins (e.g., eosinophil peroxidase). These results demonstrate a direct, charge-dependent, and long-lasting sensitizing effect of cationic proteins on pulmonary sensory neurons, which may contribute to the airway hyperresponsiveness associated with airway infiltration of eosinophils under pathophysiological conditions.


Assuntos
Proteína Catiônica de Eosinófilo/fisiologia , Pulmão/inervação , Neurônios Aferentes/fisiologia , Pneumonia/fisiopatologia , Nervo Vago/fisiologia , Potenciais de Ação/efeitos dos fármacos , Animais , Capsaicina/farmacologia , Carbocianinas/farmacologia , Sinergismo Farmacológico , Estimulação Elétrica , Proteína Básica Maior de Eosinófilos/farmacologia , Peroxidase de Eosinófilo/fisiologia , Heparina de Baixo Peso Molecular/farmacologia , Técnicas de Patch-Clamp , Ratos , Ratos Sprague-Dawley
7.
Infect Immun ; 74(9): 5236-43, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16926417

RESUMO

Eosinophils are a hallmark of allergic diseases and helminth infection, yet direct evidence for killing of helminth parasites by their toxic granule products exists only in vitro. We investigated the in vivo roles of the eosinophil granule proteins eosinophil peroxidase (EPO) and major basic protein 1 (MBP) during infection with the rodent filaria Litomosoides sigmodontis. Mice deficient for either EPO or MBP on the 129/SvJ background developed significantly higher worm burdens than wild-type mice. Furthermore, the data indicate that EPO or MBP is involved in modulating the immune response leading to altered cytokine production during infection. Thus, in the absence of MBP, mice showed increased interleukin-10 (IL-10) production after stimulation of macrophages from the thoracic cavity where the worms reside. In addition to elevated IL-10 levels, EPO(-/-) mice displayed strongly increased amounts of the Th2 cytokine IL-5 by CD4 T cells as well as a significantly higher eosinophilia. Interestingly, a reduced ability to produce IL-4 in the knockout strains could even be seen in noninfected mice, arguing for different innate propensities to react with a Th2 response in the absence of either EPO or MBP. In conclusion, both of the eosinophil granule products MBP and EPO are part of the defense mechanism against filarial parasites. These data suggest a hitherto unknown interaction between eosinophil granule proteins, defense against filarial nematodes, and cytokine responses of macrophages and CD4 T cells.


Assuntos
Proteína Básica Maior de Eosinófilos/fisiologia , Peroxidase de Eosinófilo/fisiologia , Eosinófilos/imunologia , Filariose/imunologia , Animais , Linfócitos T CD4-Positivos/imunologia , Movimento Celular , Citocinas/metabolismo , Suscetibilidade a Doenças , Proteína Básica Maior de Eosinófilos/deficiência , Proteína Básica Maior de Eosinófilos/genética , Peroxidase de Eosinófilo/deficiência , Peroxidase de Eosinófilo/genética , Eosinófilos/enzimologia , Filariose/enzimologia , Filariose/genética , Filarioidea , Interleucina-10/metabolismo , Interleucina-4/metabolismo , Interleucina-5/metabolismo , Camundongos , Camundongos Knockout , Células Th2/imunologia , Cavidade Torácica
8.
Infect Immun ; 73(12): 8442-3, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16299347

RESUMO

The attenuation of eosinophilia by the administration of monoclonal antibodies to CCR3 consistently correlates with impairment in worm elimination following primary intraperitoneal Brugia pahangi infections in mice. Host protection was unimpaired in mice deficient in eosinophil peroxidase (EPO) or major basic protein 1 (MBP-1), suggesting that eosinophils are essential in host protection but that neither EPO nor MBP-1 alone is.


Assuntos
Brugia pahangi , Proteína Básica Maior de Eosinófilos/fisiologia , Peroxidase de Eosinófilo/fisiologia , Eosinófilos/imunologia , Filariose/imunologia , Animais , Anticorpos Monoclonais/farmacologia , Proteína Básica Maior de Eosinófilos/genética , Proteína Básica Maior de Eosinófilos/metabolismo , Peroxidase de Eosinófilo/genética , Peroxidase de Eosinófilo/metabolismo , Eosinofilia/imunologia , Eosinófilos/metabolismo , Camundongos , Camundongos Mutantes , Mutação , Receptores CCR3 , Receptores de Quimiocinas/efeitos dos fármacos , Receptores de Quimiocinas/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...