Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 299(12): 105402, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38229400

RESUMO

Eosinophil peroxidase (EPO) is the most abundant granule protein exocytosed by eosinophils, specialized human phagocytes. Released EPO catalyzes the formation of reactive oxidants from bromide, thiocyanate, and nitrite that kill tissue-invading parasites. However, EPO also plays a deleterious role in inflammatory diseases, making it a potential pharmacological target. A major hurdle is the high similarity to the homologous myeloperoxidase (MPO), which requires a detailed understanding of the small structural differences that can be used to increase the specificity of the inhibitors. Here, we present the first crystal structure of mature leukocyte EPO at 1.6 Å resolution together with analyses of its posttranslational modifications and biochemical properties. EPO has an exceptionally high number of positively charged surface patches but only two occupied glycosylation sites. The crystal structure further revealed the existence of a light (L) and heavy (H) chain as a result of proteolytic cleavage. Detailed comparison with the structure of human MPO allows us to identify differences that may contribute to the known divergent enzymatic properties. The crystal structure revealed fully established ester links between the prosthetic group and the protein, the comparably weak imidazolate character of the proximal histidine, and the conserved structure of the catalytic amino acids and Ca2+-binding site. Prediction of the structure of unprocessed proeosinophil peroxidase allows further structural analysis of the three protease cleavage sites and the potential pro-convertase recognition site in the propeptide. Finally, EPO biosynthesis and its biochemical and biophysical properties are discussed with respect to the available data from the well-studied MPO.


Assuntos
Peroxidase de Eosinófilo , Heme , Humanos , Peroxidase de Eosinófilo/química , Eosinófilos/enzimologia , Heme/química , Processamento de Proteína Pós-Traducional
2.
Molecules ; 23(10)2018 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-30297621

RESUMO

The heme in the active center of peroxidases reacts with hydrogen peroxide to form highly reactive intermediates, which then oxidize simple substances called peroxidase substrates. Human peroxidases can be divided into two groups: (1) True peroxidases are enzymes whose main function is to generate free radicals in the peroxidase cycle and (pseudo)hypohalous acids in the halogenation cycle. The major true peroxidases are myeloperoxidase, eosinophil peroxidase and lactoperoxidase. (2) Pseudo-peroxidases perform various important functions in the body, but under the influence of external conditions they can display peroxidase-like activity. As oxidative intermediates, these peroxidases produce not only active heme compounds, but also protein-based tyrosyl radicals. Hemoglobin, myoglobin, cytochrome c/cardiolipin complexes and cytoglobin are considered as pseudo-peroxidases. Рeroxidases play an important role in innate immunity and in a number of physiologically important processes like apoptosis and cell signaling. Unfavorable excessive peroxidase activity is implicated in oxidative damage of cells and tissues, thereby initiating the variety of human diseases. Hence, regulation of peroxidase activity is of considerable importance. Since peroxidases differ in structure, properties and location, the mechanisms controlling peroxidase activity and the biological effects of peroxidase products are specific for each hemoprotein. This review summarizes the knowledge about the properties, activities, regulations and biological effects of true and pseudo-peroxidases in order to better understand the mechanisms underlying beneficial and adverse effects of this class of enzymes.


Assuntos
Heme/química , Oxirredução , Estresse Oxidativo , Peroxidases/química , Domínio Catalítico , Peroxidase de Eosinófilo/química , Radicais Livres/química , Humanos , Peróxido de Hidrogênio/química , Lactoperoxidase/química , Peroxidase/química , Peroxidases/classificação
3.
J Vis Exp ; (113)2016 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-27501318

RESUMO

In this paper a protocol for the quick and standardized enrichment of leukocytes from small whole blood samples is described. This procedure is based on the hypotonic lysis of erythrocytes and can be applied to human samples as well as to blood of non-human origin. The small initial sample volume of about 50 to 100 µl makes this method applicable to recurrent blood sampling from small laboratory animals. Moreover, leukocyte enrichment is achieved within minutes and with low material efforts regarding chemicals and instrumentation, making this method applicable in multiple laboratory environments. Standardized purification of leukocytes is combined with a highly selective staining method to evaluate halogenating peroxidase activity of the heme peroxidases, myeloperoxidase (MPO) and eosinophil peroxidase (EPO), i.e., the formation of hypochlorous and hypobromous acid (HOCl and HOBr). While MPO is strongly expressed in neutrophils, the most abundant immune cell type in human blood as well as in monocytes, the related enzyme EPO is exclusively expressed in eosinophils. The halogenating activity of these enzymes is addressed by using the almost HOCl- and HOBr-specific dye aminophenyl fluorescein (APF) and the primary peroxidase substrate hydrogen peroxide. Upon subsequent flow cytometry analysis all peroxidase-positive cells (neutrophils, monocytes, eosinophils) are distinguishable and their halogenating peroxidase activity can be quantified. Since APF staining may be combined with the application of cell surface markers, this protocol can be extended to specifically address leukocyte sub-fractions. The method is applicable to detect HOCl and HOBr production both in human and in rodent leukocytes. Given the widely and diversely discussed immunological role of these enzymatic products in chronic inflammatory diseases, this protocol may contribute to a better understanding of the immunological relevance of leukocyte-derived heme peroxidases.


Assuntos
Leucócitos/enzimologia , Peroxidases/química , Animais , Peroxidase de Eosinófilo/química , Humanos , Neutrófilos/enzimologia
4.
J Biol Chem ; 285(31): 24195-205, 2010 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-20501663

RESUMO

Eosinophil peroxidase (EPO) is an abundant heme protein in eosinophils that catalyzes the formation of cytotoxic oxidants implicated in asthma, allergic inflammatory disorders, and cancer. It is known that some proteins with peroxidase activity (horseradish peroxidase and prostaglandin hydroperoxidase) can catalyze oxidation of bisulfite (hydrated sulfur dioxide), leading to the formation of sulfur trioxide anion radical ((.)SO(3)(-)). This free radical further reacts with oxygen to form peroxymonosulfate anion radical ((-)O(3)SOO(.)) and the very reactive sulfate anion radical (SO(4)()), which is nearly as strong an oxidant as the hydroxyl radical. However, the ability of EPO to generate reactive sulfur radicals has not yet been reported. Here we demonstrate that eosinophil peroxidase/H(2)O(2) is able to oxidize bisulfite, ultimately forming the sulfate anion radical (SO(4)()), and that these reactive intermediates can oxidize target proteins to protein radicals, thereby initiating protein oxidation. We used immuno-spin trapping and confocal microscopy to study protein oxidation by EPO/H(2)O(2) in the presence of bisulfite in a pure enzymatic system and in human promyelocytic leukemia HL-60 clone 15 cells, maturated to eosinophils. Polyclonal antiserum raised against the spin trap 5,5-dimethyl-1-pyrroline N-oxide (DMPO) detected the presence of DMPO covalently attached to the proteins resulting from the DMPO trapping of protein free radicals. We found that sulfite oxidation mediated by EPO/H(2)O(2) induced the formation of radical-derived DMPO spin-trapped human serum albumin and, to a lesser extent, of DMPO-EPO. These studies suggest that EPO-dependent oxidative damage may play a role in tissue injury in bisulfite-exacerbated eosinophilic inflammatory disorders.


Assuntos
Peroxidase de Eosinófilo/metabolismo , Oxigênio/química , Proteínas/química , Sulfitos/química , Ânions/química , Óxidos N-Cíclicos/química , Peroxidase de Eosinófilo/química , Radicais Livres , Células HL-60 , Humanos , Radical Hidroxila , Cinética , Microscopia Confocal/métodos , Modelos Biológicos , Estresse Oxidativo , Detecção de Spin
5.
J Biol Chem ; 283(42): 28629-40, 2008 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-18694936

RESUMO

Nitration of tyrosine residues has been observed during various acute and chronic inflammatory diseases. However, the mechanism of tyrosine nitration and the nature of the proteins that become tyrosine nitrated during inflammation remain unclear. Here we show that eosinophils but not other cell types including neutrophils contain nitrotyrosine-positive proteins in specific granules. Furthermore, we demonstrate that the human eosinophil toxins, eosinophil peroxidase (EPO), major basic protein, eosinophil-derived neurotoxin (EDN) and eosinophil cationic protein (ECP), and the respective murine toxins, are post-translationally modified by nitration at tyrosine residues during cell maturation. High resolution affinity-mass spectrometry identified specific single nitration sites at Tyr349 in EPO and Tyr33 in both ECP and EDN. ECP and EDN crystal structures revealed and EPO structure modeling suggested that the nitrated tyrosine residues in the toxins are surface exposed. Studies in EPO(-/-), gp91phox(-/-), and NOS(-/-) mice revealed that tyrosine nitration of these toxins is mediated by EPO in the presence of hydrogen peroxide and minute amounts of NOx. Tyrosine nitration of eosinophil granule toxins occurs during maturation of eosinophils, independent of inflammation. These results provide evidence that post-translational tyrosine nitration is unique to eosinophils.


Assuntos
Peroxidase de Eosinófilo/química , Eosinófilos/metabolismo , Processamento de Proteína Pós-Traducional , Animais , Sítios de Ligação , Cristalografia por Raios X/métodos , Humanos , Inflamação , Pulmão/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurotoxinas/química , Nitrogênio/química , Tirosina/química
6.
Biochemistry ; 46(2): 406-15, 2007 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-17209551

RESUMO

Eosinophil recruitment and enhanced nitric oxide (NO) production are characteristic features of asthma and other airway diseases. Eosinophil peroxidase (EPO), a highly cationic hemoprotein secreted by activation of eosinophils, is believed to play a central role in host defense against invading pathogens. The enzyme uses hydrogen peroxide (H2O2) and bromide (Br-), a preferred cosubstrate of EPO, to generate the cytotoxic oxidant hypobromous acid. The aim of this work was to determine whether NO can compete with plasma levels of Br- and steer the enzyme reaction from a 2e- oxidation to a 1e- oxidation pathway. Rapid kinetic measurements were utilized to measure the rate of EPO compounds I and II formation, duration, and decay at 412 and 432 nm, respectively, at 10 degrees C. An EPO-Fe(III) solution supplemented with increasing Br- concentrations was rapidly mixed with fixed amounts of H2O2 in the absence and in the presence of increasing NO concentrations. In the absence of NO, EPO-Fe(III) primarily converted to compound I and, upon H2O2 exhaustion, it decayed rapidly to the ferric form. NO caused a significant increase in the accumulation of EPO compound II, along with a proportional increase in its rate of formation and duration as determined by the time elapsed during catalysis. The time courses for these events have been incorporated into a comprehensive kinetic model. Computer simulations carried out supported the involvement of a conformational intermediate in the EPO compound II complex decay. Collectively, our results demonstrated that NO displays the potential capacity to promote substrate switching by modulating substrate selectivity of EPO.


Assuntos
Peroxidase de Eosinófilo/química , Peroxidase de Eosinófilo/metabolismo , Animais , Brometos/metabolismo , Peroxidase de Eosinófilo/sangue , Eosinófilos/enzimologia , Técnicas In Vitro , Cinética , Modelos Moleculares , Óxido Nítrico/metabolismo , Oxirredução , Conformação Proteica , Espectrofotometria , Especificidade por Substrato , Suínos
7.
Arch Biochem Biophys ; 445(2): 225-34, 2006 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-16111649

RESUMO

The formation of chloro- and bromohydrins from 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine following incubation with myeloperoxidase or eosinophil peroxidase in the presence of hydrogen peroxide, chloride and/or bromide was analysed by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry. These products were only formed below a certain pH threshold value, that increased with increasing halide concentration. Thermodynamic considerations on halide and pH dependencies of reduction potentials of all redox couples showed that the formation of a given reactive halide species in halide oxidation coupled with the reduction of compound I of heme peroxidases is only possible below a certain pH threshold that depends on halide concentration. The comparison of experimentally derived and calculated data revealed that Cl(2), Br(2), or BrCl will primarily be formed by the myeloperoxidase-H(2)O(2)-halide system. However, the eosinophil peroxidase-H(2)O(2)-halide system forms directly HOCl and HOBr.


Assuntos
Álcoois/síntese química , Cloridrinas/síntese química , Peroxidase de Eosinófilo/química , Peróxido de Hidrogênio/química , Modelos Químicos , Peroxidase/química , Fosfatidilcolinas/química , Simulação por Computador , Halogênios/síntese química , Concentração de Íons de Hidrogênio , Oxirredução , Termodinâmica
8.
J Biol Chem ; 280(28): 26129-36, 2005 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-15894800

RESUMO

We investigated the potential role of the co-substrate, thiocyanate (SCN-), in modulating the catalytic activity of myeloperoxidase (MPO) and other members of the mammalian peroxidase superfamily (lactoperoxidase (LPO) and eosinophil peroxidase (EPO)). Pre-incubation of SCN- with MPO generates a more complex biological setting, because SCN- serves as either a substrate or inhibitor, causing diverse impacts on the MPO heme iron microenvironment. Consistent with this hypothesis, the relationship between the association rate constant of nitric oxide binding to MPO-Fe(III) as a function of SCN- concentration is bell-shaped, with a trough comparable with normal SCN- plasma levels. Rapid kinetic measurements indicate that MPO, EPO, and LPO Compound I formation occur at rates slower than complex decay, and its formation serves to simultaneously catalyze SCN- via 1e- and 2e- oxidation pathways. For the three enzymes, Compound II formation is a fundamental feature of catalysis and allows the enzymes to operate at a fraction of their possible maximum activities. MPO and EPO Compound II is relatively stable and decays gradually within minutes to ground state upon H2O2 exhaustion. In contrast, LPO Compound II is unstable and decays within seconds to ground state, suggesting that SCN- may serve as a substrate for Compound II. Compound II formation can be partially or completely prevented by increasing SCN- concentration, depending on the experimental conditions. Collectively, these results illustrate for the first time the potential mechanistic differences of these three enzymes. A modified kinetic model, which incorporates our current findings with the mammalian peroxidases classic cycle, is presented.


Assuntos
Peroxidase de Eosinófilo/química , Lactoperoxidase/química , Peroxidase/química , Tiocianatos/farmacologia , Catálise , Relação Dose-Resposta a Droga , Eletroforese em Gel de Poliacrilamida , Heme/química , Humanos , Peróxido de Hidrogênio/química , Ferro/química , Cinética , Leucócitos/enzimologia , Leucócitos/metabolismo , Modelos Químicos , Modelos Moleculares , Óxido Nítrico/química , Óxido Nítrico/metabolismo , Oxigênio/metabolismo , Ligação Proteica , Espectrofotometria , Fatores de Tempo
9.
Jpn J Infect Dis ; 57(5): S30-1, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15507766

RESUMO

Myeloperoxidase, eosinophil peroxidase and lactoperoxidase are heme-containing oxidoreductases, which undergo a series of redox reactions. Though sharing functional and structural homology, reflecting their phylogenetic origin, differences are observed regarding their spectral features, substrate specificities, redox properties and kinetics of interconversion of the relevant redox intermediates ferric and ferrous peroxidase, compound I, compound II and compound III. Depending on substrate availability, these heme enzymes path through the halogenation cycle and/or the peroxidase cycle and/or act as poor (pseudo-) catalases.


Assuntos
Peroxidase de Eosinófilo/metabolismo , Lactoperoxidase/metabolismo , Peroxidase/metabolismo , Animais , Peroxidase de Eosinófilo/química , Cinética , Lactoperoxidase/química , Oxirredução , Peroxidase/química , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...