Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.753
Filtrar
1.
Nat Commun ; 15(1): 4314, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773129

RESUMO

Peroxisomes are eukaryotic organelles that are essential for multiple metabolic pathways, including fatty acid oxidation, degradation of amino acids, and biosynthesis of ether lipids. Consequently, peroxisome dysfunction leads to pediatric-onset neurodegenerative conditions, including Peroxisome Biogenesis Disorders (PBD). Due to the dynamic, tissue-specific, and context-dependent nature of their biogenesis and function, live cell imaging of peroxisomes is essential for studying peroxisome regulation, as well as for the diagnosis of PBD-linked abnormalities. However, the peroxisomal imaging toolkit is lacking in many respects, with no reporters for substrate import, nor cell-permeable probes that could stain dysfunctional peroxisomes. Here we report that the BODIPY-C12 fluorescent fatty acid probe stains functional and dysfunctional peroxisomes in live mammalian cells. We then go on to improve BODIPY-C12, generating peroxisome-specific reagents, PeroxiSPY650 and PeroxiSPY555. These probes combine high peroxisome specificity, bright fluorescence in the red and far-red spectrum, and fast non-cytotoxic staining, making them ideal tools for live cell, whole organism, or tissue imaging of peroxisomes. Finally, we demonstrate that PeroxiSPY enables diagnosis of peroxisome abnormalities in the PBD CRISPR/Cas9 cell models and patient-derived cell lines.


Assuntos
Compostos de Boro , Ácidos Graxos , Corantes Fluorescentes , Transtornos Peroxissômicos , Peroxissomos , Peroxissomos/metabolismo , Humanos , Ácidos Graxos/metabolismo , Corantes Fluorescentes/química , Compostos de Boro/química , Transtornos Peroxissômicos/metabolismo , Animais
2.
PLoS One ; 19(5): e0298274, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38753762

RESUMO

The membrane peroxisomal proteins PEX11, play a crucial role in peroxisome proliferation by regulating elongation, membrane constriction, and fission of pre-existing peroxisomes. In this study, we evaluated the function of PEX11B gene in neural differentiation of human embryonic stem cell (hESC) by inducing shRNAi-mediated knockdown of PEX11B expression. Our results demonstrate that loss of PEX11B expression led to a significant decrease in the expression of peroxisomal-related genes including ACOX1, PMP70, PEX1, and PEX7, as well as neural tube-like structures and neuronal markers. Inhibition of SIRT1 using pharmacological agents counteracted the effects of PEX11B knockdown, resulting in a relative increase in PEX11B expression and an increase in differentiated neural tube-like structures. However, the neuroprotective effects of SIRT1 were eliminated by PPAR inhibition, indicating that PPARÉ£ may mediate the interaction between PEX11B and SIRT1. Our findings suggest that both SIRT1 and PPARÉ£ have neuroprotective effects, and also this study provides the first indication for a potential interaction between PEX11B, SIRT1, and PPARÉ£ during hESC neural differentiation.


Assuntos
Diferenciação Celular , Células-Tronco Embrionárias Humanas , Proteínas de Membrana , PPAR gama , Sirtuína 1 , Humanos , Sirtuína 1/metabolismo , Sirtuína 1/genética , PPAR gama/metabolismo , PPAR gama/genética , Diferenciação Celular/efeitos dos fármacos , Células-Tronco Embrionárias Humanas/metabolismo , Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Embrionárias Humanas/efeitos dos fármacos , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Neurônios/metabolismo , Neurônios/citologia , Neurônios/efeitos dos fármacos , Linhagem Celular , Peroxissomos/metabolismo
3.
J Cell Sci ; 137(9)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38752931

RESUMO

Peroxisomes are highly plastic organelles that are involved in several metabolic processes, including fatty acid oxidation, ether lipid synthesis and redox homeostasis. Their abundance and activity are dynamically regulated in response to nutrient availability and cellular stress. Damaged or superfluous peroxisomes are removed mainly by pexophagy, the selective autophagy of peroxisomes induced by ubiquitylation of peroxisomal membrane proteins or ubiquitin-independent processes. Dysregulated pexophagy impairs peroxisome homeostasis and has been linked to the development of various human diseases. Despite many recent insights into mammalian pexophagy, our understanding of this process is still limited compared to our understanding of pexophagy in yeast. In this Cell Science at a Glance article and the accompanying poster, we summarize current knowledge on the control of mammalian pexophagy and highlight which aspects require further attention. We also discuss the role of ubiquitylation in pexophagy and describe the ubiquitin machinery involved in regulating signals for the recruitment of phagophores to peroxisomes.


Assuntos
Peroxissomos , Ubiquitinação , Peroxissomos/metabolismo , Humanos , Animais , Autofagia , Macroautofagia , Mamíferos/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética
4.
Nat Commun ; 15(1): 3317, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38632234

RESUMO

Import of proteins into peroxisomes depends on PEX5, PEX13 and PEX14. By combining biochemical methods and structural biology, we show that the C-terminal SH3 domain of PEX13 mediates intramolecular interactions with a proximal FxxxF motif. The SH3 domain also binds WxxxF peptide motifs in the import receptor PEX5, demonstrating evolutionary conservation of such interactions from yeast to human. Strikingly, intramolecular interaction of the PEX13 FxxxF motif regulates binding of PEX5 WxxxF/Y motifs to the PEX13 SH3 domain. Crystal structures reveal how FxxxF and WxxxF/Y motifs are recognized by a non-canonical surface on the SH3 domain. The PEX13 FxxxF motif also mediates binding to PEX14. Surprisingly, the potential PxxP binding surface of the SH3 domain does not recognize PEX14 PxxP motifs, distinct from its yeast ortholog. Our data show that the dynamic network of PEX13 interactions with PEX5 and PEX14, mediated by diaromatic peptide motifs, modulates peroxisomal matrix import.


Assuntos
Proteínas de Membrana , Transporte Proteico , Proteínas de Saccharomyces cerevisiae , Domínios de Homologia de src , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Peptídeos/química , Receptor 1 de Sinal de Orientação para Peroxissomos/metabolismo , Peroxissomos/metabolismo , Ligação Proteica , Transporte Proteico/genética , Transporte Proteico/fisiologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Domínios de Homologia de src/genética , Domínios de Homologia de src/fisiologia
5.
Cell Mol Life Sci ; 81(1): 190, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649521

RESUMO

The high-protein diet (HPD) has emerged as a potent dietary approach to curb obesity. Peroxisome, a highly malleable organelle, adapts to nutritional changes to maintain homeostasis by remodeling its structure, composition, and quantity. However, the impact of HPD on peroxisomes and the underlying mechanism remains elusive. Using Drosophila melanogaster as a model system, we discovered that HPD specifically increases peroxisome levels within the adipose tissues. This HPD-induced peroxisome elevation is attributed to cysteine and methionine by triggering the expression of CG33474, a fly homolog of mammalian PEX11G. Both the overexpression of Drosophila CG33474 and human PEX11G result in increased peroxisome size. In addition, cysteine and methionine diets both reduce lipid contents, a process that depends on the presence of CG33474. Furthermore, CG33474 stimulates the breakdown of neutral lipids in a cell-autonomous manner. Moreover, the expression of CG33474 triggered by cysteine and methionine requires TOR signaling. Finally, we found that CG33474 promotes inter-organelle contacts between peroxisomes and lipid droplets (LDs), which might be a potential mechanism for CG33474-induced fat loss. In summary, our findings demonstrate that CG33474/PEX11G may serve as an essential molecular bridge linking HPD to peroxisome dynamics and lipid metabolism.


Assuntos
Tecido Adiposo , Cisteína , Proteínas de Drosophila , Drosophila melanogaster , Metionina , Peroxissomos , Animais , Metionina/metabolismo , Peroxissomos/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Drosophila melanogaster/genética , Cisteína/metabolismo , Tecido Adiposo/metabolismo , Humanos , Metabolismo dos Lipídeos , Gotículas Lipídicas/metabolismo , Transdução de Sinais , Dieta
6.
Biol Open ; 13(5)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38682287

RESUMO

Pex23 family proteins localize to the endoplasmic reticulum and play a role in peroxisome and lipid body formation. The yeast Hansenula polymorpha contains four members: Pex23, Pex24, Pex29 and Pex32. We previously showed that loss of Pex24 or Pex32 results in severe peroxisomal defects, caused by reduced peroxisome-endoplasmic reticulum contact sites. We now analyzed the effect of the absence of all four Pex23 family proteins on other cell organelles. Vacuoles were normal in all four deletion strains. The number of lipid droplets was reduced in pex23 and pex29, but not in pex24 and pex32 cells, indicating that peroxisome and lipid droplet formation require different Pex23 family proteins in H. polymorpha. In pex23 and pex29 cells mitochondria were fragmented and clustered accompanied by reduced levels of the fusion protein Fzo1. Deletion of DNM1 suppressed the morphological phenotype of pex23 and pex29 cells, suggesting that mitochondrial fusion is affected. pex23 and pex29 cells showed retarded growth and reduced mitochondrial activities. The growth defect was partially suppressed by DNM1 deletion as well as by an artificial mitochondrion-endoplasmic reticulum tether. Hence, the absence of Pex23 family proteins may influence mitochondrion-endoplasmic reticulum contact sites.


Assuntos
Retículo Endoplasmático , Mitocôndrias , Peroxinas , Peroxissomos , Pichia , Mitocôndrias/metabolismo , Retículo Endoplasmático/metabolismo , Pichia/metabolismo , Pichia/genética , Peroxinas/metabolismo , Peroxinas/genética , Peroxissomos/metabolismo , Deleção de Genes , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Vacúolos/metabolismo , Fenótipo
7.
PLoS Biol ; 22(4): e3002602, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38669296

RESUMO

Mitofusins are large GTPases that trigger fusion of mitochondrial outer membranes. Similarly to the human mitofusin Mfn2, which also tethers mitochondria to the endoplasmic reticulum (ER), the yeast mitofusin Fzo1 stimulates contacts between Peroxisomes and Mitochondria when overexpressed. Yet, the physiological significance and function of these "PerMit" contacts remain unknown. Here, we demonstrate that Fzo1 naturally localizes to peroxisomes and promotes PerMit contacts in physiological conditions. These contacts are regulated through co-modulation of Fzo1 levels by the ubiquitin-proteasome system (UPS) and by the desaturation status of fatty acids (FAs). Contacts decrease under low FA desaturation but reach a maximum during high FA desaturation. High-throughput genetic screening combined with high-resolution cellular imaging reveal that Fzo1-mediated PerMit contacts favor the transit of peroxisomal citrate into mitochondria. In turn, citrate enters the TCA cycle to stimulate the mitochondrial membrane potential and maintain efficient mitochondrial fusion upon high FA desaturation. These findings thus unravel a mechanism by which inter-organelle contacts safeguard mitochondrial fusion.


Assuntos
Mitocôndrias , Dinâmica Mitocondrial , Peroxissomos , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Peroxissomos/metabolismo , Dinâmica Mitocondrial/fisiologia , Mitocôndrias/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Ácidos Graxos/metabolismo , GTP Fosfo-Hidrolases/metabolismo , GTP Fosfo-Hidrolases/genética , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Retículo Endoplasmático/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Ciclo do Ácido Cítrico , Potencial da Membrana Mitocondrial/fisiologia , Membranas Mitocondriais/metabolismo , Humanos
8.
Methods Mol Biol ; 2776: 107-134, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38502500

RESUMO

Plastids are organelles delineated by two envelopes playing important roles in different cellular processes such as energy production or lipid biosynthesis. To regulate their biogenesis and their function, plastids have to communicate with other cellular compartments. This communication can be mediated by metabolites, signaling molecules, and by the establishment of direct contacts between the plastid envelope and other organelles such as the endoplasmic reticulum, mitochondria, peroxisomes, plasma membrane, and the nucleus. These interactions are highly dynamic and respond to different biotic and abiotic stresses. However, the mechanisms involved in the formation of plastid-organelle contact sites and their functions are still far from being understood. In this chapter, we summarize our current knowledge about plastid contact sites and their role in the regulation of plastid biogenesis and function.


Assuntos
Retículo Endoplasmático , Plastídeos , Plastídeos/metabolismo , Retículo Endoplasmático/metabolismo , Mitocôndrias/metabolismo , Membrana Celular/metabolismo , Peroxissomos/metabolismo
9.
J Proteomics ; 298: 105144, 2024 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-38431085

RESUMO

Effective therapies of chronic kidney disease (CKD) are lacking due to the unclear molecular pathogenesis. Previous single omics-studies have described potential molecular regulation mechanism of CKD only at the level of transcription or translation. Therefore, this study generated an integrated transcriptomic and proteomic profile to provide deep insights into the continuous transcription-translation process during CKD. The comprehensive datasets identified 14,948 transcripts and 6423 proteins, 233 up-regulated and 364 down-regulated common differentially expressed genes of transcriptome and proteome were selected to further combined bioinformatics analysis. The obtained results revealed reactive oxygen species (ROS) metabolism and antioxidant system due to imbalance of mitochondria and peroxisomes were significantly repressed in CKD. Overall, this study presents a valuable multi-omics analysis that sheds light on the molecular mechanisms underlying CKD. SIGNIFICANCE: Chronic kidney disease (CKD) is a progressive and irreversible condition that results in abnormal kidney function and structure, and is ranked 18th among the leading causes of death globally, leading to a significant societal burden. Hence, there is an urgent need for research to detect new, sensitive, and specific biomarkers. Omics-based studies offer great potential to identify underlying disease mechanisms, aid in clinical diagnosis, and develop novel treatment strategies for CKD. Previous studies have mainly focused on the regulation of gene expression or protein synthesis in CKD, thereby compelling us to conduct a meticulous analysis of transcriptomic and proteomic data from the UUO mouse model. Here, we have performed a unified analysis of CKD model by integrating transcriptomes and protein suites for the first time. Our study contributes to a deeper understanding of the pathogenesis of CKD and provides a basis for subsequent disease management and drug development.


Assuntos
Insuficiência Renal Crônica , Obstrução Ureteral , Camundongos , Animais , Transcriptoma , Fosforilação Oxidativa , Proteômica , Peroxissomos/metabolismo , Peroxissomos/patologia , Perfilação da Expressão Gênica/métodos , Insuficiência Renal Crônica/metabolismo , Fibrose , Obstrução Ureteral/genética , Obstrução Ureteral/metabolismo , Obstrução Ureteral/patologia , Rim/metabolismo
10.
Front Cell Infect Microbiol ; 14: 1274506, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38510966

RESUMO

Trypanosomatid parasites are kinetoplastid protists that compartmentalize glycolytic enzymes in unique peroxisome-related organelles called glycosomes. The heterohexameric AAA-ATPase complex of PEX1-PEX6 is anchored to the peroxisomal membrane and functions in the export of matrix protein import receptor PEX5 from the peroxisomal membrane. Defects in PEX1, PEX6 or their membrane anchor causes dysfunction of peroxisomal matrix protein import cycle. In this study, we functionally characterized a putative Trypanosoma PEX1 orthologue by bioinformatic and experimental approaches and show that it is a true PEX1 orthologue. Using yeast two-hybrid analysis, we demonstrate that TbPEX1 can bind to TbPEX6. Endogenously tagged TbPEX1 localizes to glycosomes in the T. brucei parasites. Depletion of PEX1 gene expression by RNA interference causes lethality to the bloodstream form trypanosomes, due to a partial mislocalization of glycosomal enzymes to the cytosol and ATP depletion. TbPEX1 RNAi leads to a selective proteasomal degradation of both matrix protein import receptors TbPEX5 and TbPEX7. Unlike in yeast, PEX1 depletion did not result in an accumulation of ubiquitinated TbPEX5 in trypanosomes. As PEX1 turned out to be essential for trypanosomatid parasites, it could provide a suitable drug target for parasitic diseases. The results also suggest that these parasites possess a highly efficient quality control mechanism that exports the import receptors from glycosomes to the cytosol in the absence of a functional TbPEX1-TbPEX6 complex.


Assuntos
Parasitos , Proteínas de Saccharomyces cerevisiae , Trypanosoma , Animais , Parasitos/metabolismo , Saccharomyces cerevisiae/metabolismo , Peroxissomos/genética , Peroxissomos/metabolismo , Microcorpos , ATPases Associadas a Diversas Atividades Celulares/genética , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
11.
Proteomics ; 24(9): e2300312, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38446070

RESUMO

The ectoparasitic mite Varroa destructor transmits and triggers viral infections that have deleterious effects on honey bee colonies worldwide. We performed a manipulative experiment in which worker bees collected at emergence were exposed to Varroa for 72 h, and their proteomes were compared with those of untreated control bees. Label-free quantitative proteomics identified 77 differentially expressed A. mellifera proteins (DEPs). In addition, viral proteins were identified by orthogonal analysis, and most importantly, Deformed wing virus (DWV) was found at high levels/intensity in Varroa-exposed bees. Pathway enrichment analysis suggested that the main pathways affected included peroxisomal metabolism, cyto-/exoskeleton reorganization, and cuticular proteins. Detailed examination of individual DEPs revealed that additional changes in DEPs were associated with peroxisomal function. In addition, the proteome data support the importance of TGF-ß signaling in Varroa-DWV interaction and the involvement of the mTORC1 and Hippo pathways. These results suggest that the effect of DWV on bees associated with Varroa feeding results in aberrant autophagy. In particular, autophagy is selectively modulated by peroxisomes, to which the observed proteome changes strongly corresponded. This study complements previous research with different study designs and suggests the importance of the peroxisome, which plays a key role in viral infections.


Assuntos
Peroxissomos , Vírus de RNA , Varroidae , Animais , Abelhas/virologia , Abelhas/parasitologia , Varroidae/virologia , Peroxissomos/metabolismo , Peroxissomos/virologia , Vírus de RNA/fisiologia , Proteômica/métodos , Proteoma/metabolismo , Proteoma/análise , Proteínas de Insetos/metabolismo , Transdução de Sinais , Interações Hospedeiro-Parasita
12.
J Invertebr Pathol ; 204: 108083, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38458350

RESUMO

The abilities to withstand oxidation and assimilate fatty acids are critical for successful infection by many pathogenic fungi. Here, we characterized a Zn(II)2Cys6 transcription factor Bbotf1 in the insect pathogenic fungus Beauveria bassiana, which links oxidative response and fatty acid assimilation via regulating peroxisome proliferation. The null mutant ΔBbotf1 showed impaired resistance to oxidants, accompanied by decreased activities of antioxidant enzymes including CATs, PODs and SODs, and down-regulated expression of many antioxidation-associated genes under oxidative stress condition. Meanwhile, Bbotf1 acts as an activator to regulate fatty acid assimilation, lipid and iron homeostasis as well as peroxisome proliferation and localization, and the expressions of some critical genes related to glyoxylate cycle and peroxins were down-regulated in ΔBbotf1 in presence of oleic acid. In addition, ΔBbotf1 was more sensitive to osmotic stressors, CFW, SDS and LDS. Insect bioassays revealed that insignificant changes in virulence were seen between the null mutant and parent strain when conidia produced on CZP plates were used for topical application. However, propagules recovered from cadavers killed by ΔBbotf1 exhibited impaired virulence as compared with counterparts of the parent strain. These data offer a novel insight into fine-tuned aspects of Bbotf1 concerning multi-stress responses, lipid catabolism and infection cycles.


Assuntos
Beauveria , Ácidos Graxos , Peroxissomos , Fatores de Transcrição , Beauveria/genética , Beauveria/patogenicidade , Animais , Peroxissomos/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ácidos Graxos/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Antioxidantes/metabolismo , Virulência , Estresse Oxidativo
13.
Cell Rep ; 43(4): 113996, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38520690

RESUMO

Physiological dysfunction confers negative valence to coincidental sensory cues to induce the formation of aversive associative memory. How peripheral tissue stress engages neuromodulatory mechanisms to form aversive memory is poorly understood. Here, we show that in the nematode C. elegans, mitochondrial disruption induces aversive memory through peroxisomal ß-oxidation genes in non-neural tissues, including pmp-4/very-long-chain fatty acid transporter, dhs-28/3-hydroxylacyl-CoA dehydrogenase, and daf-22/3-ketoacyl-CoA thiolase. Upregulation of peroxisomal ß-oxidation genes under mitochondrial stress requires the nuclear hormone receptor NHR-49. Importantly, the memory-promoting function of peroxisomal ß-oxidation is independent of its canonical role in pheromone production. Peripheral signals derived from the peroxisomes target NSM, a critical neuron for memory formation under stress, to upregulate serotonin synthesis and remodel evoked responses to sensory cues. Our genetic, transcriptomic, and metabolomic approaches establish peroxisomal lipid signaling as a crucial mechanism that connects peripheral mitochondrial stress to central serotonin neuromodulation in aversive memory formation.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Memória , Oxirredução , Peroxissomos , Serotonina , Transdução de Sinais , Animais , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiologia , Peroxissomos/metabolismo , Serotonina/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Memória/fisiologia , Mitocôndrias/metabolismo , Neurônios/metabolismo , Estresse Fisiológico , Receptores Citoplasmáticos e Nucleares/metabolismo
14.
Cell Mol Biol Lett ; 29(1): 26, 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38368371

RESUMO

BACKGROUND: The peroxisome is a dynamic organelle with variety in number, size, shape, and activity in different cell types and physiological states. Recent studies have implicated peroxisomal homeostasis in ferroptosis susceptibility. Here, we developed a U-2OS cell line with a fluorescent peroxisomal tag and screened a target-selective chemical library through high-content imaging analysis. METHODS: U-2OS cells stably expressing the mOrange2-Peroxisomes2 tag were generated to screen a target-selective inhibitor library. The nuclear DNA was counterstained with Hoechst 33342 for cell cycle analysis. Cellular images were recorded and quantitatively analyzed through a high-content imaging platform. The effect of selected compounds on ferroptosis induction was analyzed in combination with ferroptosis inducers (RSL3 and erastin). Flow cytometry analysis was conducted to assess the level of reactive oxygen species (ROS) and cell death events. RESULTS: Through the quantification of DNA content and peroxisomal signals in single cells, we demonstrated that peroxisomal abundance was closely linked with cell cycle progression and that peroxisomal biogenesis mainly occurred in the G1/S phase. We further identified compounds that positively and negatively regulated peroxisomal abundance without significantly affecting the cell cycle distribution. Some compounds promoted peroxisomal signals by inducing oxidative stress, while others regulated peroxisomal abundance independent of redox status. Importantly, compounds with peroxisome-enhancing activity potentiated ferroptosis induction. CONCLUSIONS: Our findings pinpoint novel cellular targets that might be involved in peroxisome homeostasis and indicate that compounds promoting peroxisomal abundance could be jointly applied with ferroptosis inducers to potentiate anticancer effect.


Assuntos
Ferroptose , Peroxissomos , Peroxissomos/metabolismo , Linhagem Celular , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , DNA/metabolismo
15.
Int J Mol Sci ; 25(4)2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38396949

RESUMO

Fatty acids and their derivatives play a variety of roles in living organisms. Fatty acids not only store energy but also comprise membrane lipids and act as signaling molecules. There are three main proteins involved in the fatty acid ß-oxidation pathway in plant peroxisomes, including acyl-CoA oxidase (ACX), multifunctional protein (MFP), and 3-ketolipoyl-CoA thiolase (KAT). However, genome-scale analysis of KAT and MFP has not been systemically investigated in tomatoes. Here, we conducted a bioinformatics analysis of KAT and MFP genes in tomatoes. Their physicochemical properties, protein secondary structure, subcellular localization, gene structure, phylogeny, and collinearity were also analyzed. In addition, a conserved motif analysis, an evolutionary pressure selection analysis, a cis-acting element analysis, tissue expression profiling, and a qRT-PCR analysis were conducted within tomato KAT and MFP family members. There are five KAT and four MFP family members in tomatoes, which are randomly distributed on four chromosomes. By analyzing the conserved motifs of tomato KAT and MFP family members, we found that both KAT and MFP members are highly conserved. In addition, the results of the evolutionary pressure selection analysis indicate that the KAT and MFP family members have evolved mainly from purifying selection, which makes them more structurally stable. The results of the cis-acting element analysis show that SlKAT and SlMFP with respect may respond to light, hormones, and adversity stresses. The tissue expression analysis showed that KAT and MFP family members have important roles in regulating the development of floral organs as well as fruit ripening. The qRT-PCR analysis revealed that the expressions of SlKAT and SlMFP genes can be regulated by ABA, MeJA, darkness, NaCl, PEG, UV, cold, heat, and H2O2 treatments. These results provide a basis for the involvement of the SlKAT and SlMFP genes in tomato floral organ development and abiotic stress response, which lay a foundation for future functional study of SlKAT and SlMFP in tomatoes.


Assuntos
Solanum lycopersicum , Solanum lycopersicum/genética , Oxirredutases/metabolismo , Ácidos Graxos/metabolismo , Peróxido de Hidrogênio/metabolismo , Peroxissomos/metabolismo , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Filogenia , Regulação da Expressão Gênica de Plantas , Família Multigênica
16.
Cells ; 13(4)2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38391905

RESUMO

Saccharomyces cerevisiae proliferates by budding, which includes the formation of a cytoplasmic protrusion called the 'bud', into which DNA, RNA, proteins, organelles, and other materials are transported. The transport of organelles into the growing bud must be strictly regulated for the proper inheritance of organelles by daughter cells. In yeast, the RING-type E3 ubiquitin ligases, Dma1 and Dma2, are involved in the proper inheritance of mitochondria, vacuoles, and presumably peroxisomes. These organelles are transported along actin filaments toward the tip of the growing bud by the myosin motor protein, Myo2. During organelle transport, organelle-specific adaptor proteins, namely Mmr1, Vac17, and Inp2 for mitochondria, vacuoles, and peroxisomes, respectively, bridge the organelles and myosin. After reaching the bud, the adaptor proteins are ubiquitinated by the E3 ubiquitin ligases and degraded by the proteasome. Targeted degradation of the adaptor proteins is necessary to unload vacuoles, mitochondria, and peroxisomes from the actin-myosin machinery. Impairment of the ubiquitination of adaptor proteins results in the failure of organelle release from myosin, which, in turn, leads to abnormal dynamics, morphology, and function of the inherited organelles, indicating the significance of proper organelle unloading from myosin. Herein, we summarize the role and regulation of E3 ubiquitin ligases during organelle inheritance in yeast.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Peroxissomos/metabolismo , Miosinas/metabolismo , Ubiquitinas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Mitocondriais/metabolismo
17.
Sci Transl Med ; 16(736): eadf9874, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38416843

RESUMO

Targeting aromatase deprives ER+ breast cancers of estrogens and is an effective therapeutic approach for these tumors. However, drug resistance is an unmet clinical need. Lipidomic analysis of long-term estrogen-deprived (LTED) ER+ breast cancer cells, a model of aromatase inhibitor resistance, revealed enhanced intracellular lipid storage. Functional metabolic analysis showed that lipid droplets together with peroxisomes, which we showed to be enriched and active in the LTED cells, controlled redox homeostasis and conferred metabolic adaptability to the resistant tumors. This reprogramming was controlled by acetyl-CoA-carboxylase-1 (ACC1), whose targeting selectively impaired LTED survival. However, the addition of branched- and very long-chain fatty acids reverted ACC1 inhibition, a process that was mediated by peroxisome function and redox homeostasis. The therapeutic relevance of these findings was validated in aromatase inhibitor-treated patient-derived samples. Last, targeting ACC1 reduced tumor growth of resistant patient-derived xenografts, thus identifying a targetable hub to combat the acquisition of estrogen independence in ER+ breast cancers.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/patologia , Inibidores da Aromatase/farmacologia , Inibidores da Aromatase/uso terapêutico , Peroxissomos/metabolismo , Peroxissomos/patologia , Acetil-CoA Carboxilase , Gotículas Lipídicas/metabolismo , Gotículas Lipídicas/patologia , Linhagem Celular Tumoral , Estrogênios/metabolismo , Resistencia a Medicamentos Antineoplásicos
18.
J Exp Bot ; 75(10): 2848-2866, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38412416

RESUMO

The oxidative pentose-phosphate pathway (OPPP) retrieves NADPH from glucose-6-phosphate, which is important in chloroplasts at night and in plastids of heterotrophic tissues. We previously studied how OPPP enzymes may transiently locate to peroxisomes, but how this is achieved for the third enzyme remained unclear. By extending our genetic approach, we demonstrated that Arabidopsis isoform 6-phosphogluconate dehydrogenase 2 (PGD2) is indispensable in peroxisomes during fertilization, and investigated why all PGD-reporter fusions show a mostly cytosolic pattern. A previously published interaction of a plant PGD with thioredoxin m was confirmed using Trxm2 for yeast two-hybrid (Y2H) and bimolecular fluorescent complementation (BiFC) assays, and medial reporter fusions (with both ends accessible) proved to be beneficial for studying peroxisomal targeting of PGD2. Of special importance were phosphomimetic changes at Thr6, resulting in a clear targeting switch to peroxisomes, while a similar change at position Ser7 in PGD1 conferred plastid import. Apparently, efficient subcellular localization can be achieved by activating an unknown kinase, either early after or during translation. N-terminal phosphorylation of PGD2 interfered with dimerization in the cytosol, thus allowing accessibility of the C-terminal peroxisomal targeting signal (PTS1). Notably, we identified amino acid positions that are conserved among plant PGD homologues, with PTS1 motifs first appearing in ferns, suggesting a functional link to fertilization during the evolution of seed plants.


Assuntos
Arabidopsis , Fosfogluconato Desidrogenase , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/enzimologia , Fosfogluconato Desidrogenase/metabolismo , Fosfogluconato Desidrogenase/genética , Fosforilação , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Peroxissomos/metabolismo , Isoenzimas/metabolismo , Isoenzimas/genética
19.
Biol Direct ; 19(1): 14, 2024 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-38365851

RESUMO

Peroxisomes are primarily studied in the brain, kidney, and liver due to the conspicuous tissue-specific pathology of peroxisomal biogenesis disorders. In contrast, little is known about the role of peroxisomes in other tissues such as the heart. In this meta-analysis, we explore mitochondrial and peroxisomal gene expression on RNA and protein levels in the brain, heart, kidney, and liver, focusing on lipid metabolism. Further, we evaluate a potential developmental and heart region-dependent specificity of our gene set. We find marginal expression of the enzymes for peroxisomal fatty acid oxidation in cardiac tissue in comparison to the liver or cardiac mitochondrial ß-oxidation. However, the expression of peroxisome biogenesis proteins in the heart is similar to other tissues despite low levels of peroxisomal fatty acid oxidation. Strikingly, peroxisomal targeting signal type 2-containing factors and plasmalogen biosynthesis appear to play a fundamental role in explaining the essential protective and supporting functions of cardiac peroxisomes.


Assuntos
Transtornos Peroxissômicos , Peroxissomos , Humanos , Peroxissomos/genética , Peroxissomos/metabolismo , Ácidos Graxos/metabolismo , Transtornos Peroxissômicos/genética , Transtornos Peroxissômicos/metabolismo , Mitocôndrias/metabolismo , Oxirredução
20.
Cell Rep ; 43(2): 113744, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38329874

RESUMO

Peroxisome biogenesis disorders (PBDs) represent a group of metabolic conditions that cause severe developmental defects. Peroxisomes are essential metabolic organelles, present in virtually every eukaryotic cell and mediating key processes in immunometabolism. To date, the full spectrum of PBDs remains to be identified, and the impact PBDs have on immune function is unexplored. This study presents a characterization of the hepatic immune compartment of a neonatal PBD mouse model at single-cell resolution to establish the importance and function of peroxisomes in developmental hematopoiesis. We report that hematopoietic defects are a feature in a severe PBD murine model. Finally, we identify a role for peroxisomes in the regulation of the major histocompatibility class II expression and antigen presentation to CD4+ T cells in dendritic cells. This study adds to our understanding of the mechanisms of PBDs and expands our knowledge of the role of peroxisomes in immunometabolism.


Assuntos
Transtornos Peroxissômicos , Síndrome de Zellweger , Animais , Camundongos , Síndrome de Zellweger/metabolismo , Peroxissomos/metabolismo , Apresentação de Antígeno , Transtornos Peroxissômicos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...