Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 121
Filtrar
1.
Sci Adv ; 10(3): eadi5903, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38232165

RESUMO

The extent of the devastation of the Black Death pandemic (1346-1353) on European populations is known from documentary sources and its bacterial source illuminated by studies of ancient pathogen DNA. What has remained less understood is the effect of the pandemic on human mobility and genetic diversity at the local scale. Here, we report 275 ancient genomes, including 109 with coverage >0.1×, from later medieval and postmedieval Cambridgeshire of individuals buried before and after the Black Death. Consistent with the function of the institutions, we found a lack of close relatives among the friars and the inmates of the hospital in contrast to their abundance in general urban and rural parish communities. While we detect long-term shifts in local genetic ancestry in Cambridgeshire, we find no evidence of major changes in genetic ancestry nor higher differentiation of immune loci between cohorts living before and after the Black Death.


Assuntos
Peste , Humanos , Peste/genética , Peste/história , Peste/microbiologia , História Medieval
2.
Immunogenetics ; 75(6): 517-530, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37853246

RESUMO

Yersinia pestis is a historically important vector-borne pathogen causing plague in humans and other mammals. Contemporary zoonotic infections with Y. pestis still occur in sub-Saharan Africa, including Tanzania and Madagascar, but receive relatively little attention. Thus, the role of wildlife reservoirs in maintaining sylvatic plague and spillover risks to humans is largely unknown. The multimammate rodent Mastomys natalensis is the most abundant and widespread rodent in peri-domestic areas in Tanzania, where it plays a major role as a Y. pestis reservoir in endemic foci. Yet, how M. natalensis' immunogenetics contributes to the maintenance of plague has not been investigated to date. Here, we surveyed wild M. natalensis for Y. pestis vectors, i.e., fleas, and tested for the presence of antibodies against Y. pestis using enzyme-linked immunosorbent assays (ELISA) in areas known to be endemic or without previous records of Y. pestis in Tanzania. We characterized the allelic and functional (i.e., supertype) diversity of the major histocompatibility complex (MHC class II) of M. natalensis and investigated links to Y. pestis vectors and infections. We detected antibodies against Y. pestis in rodents inhabiting both endemic areas and areas considered non-endemic. Of the 111 nucleotide MHC alleles, only DRB*016 was associated with an increased infestation with the flea Xenopsylla. Surprisingly, we found no link between MHC alleles or supertypes and antibodies of Y. pestis. Our findings hint, however, at local adaptations towards Y. pestis vectors, an observation that more exhaustive sampling could unwind in the future.


Assuntos
Peste , Sifonápteros , Yersinia pestis , Animais , Humanos , Peste/genética , Peste/epidemiologia , Tanzânia/epidemiologia , Imunogenética , Yersinia pestis/genética , Sifonápteros/genética , Murinae/genética , Anticorpos
3.
EMBO Rep ; 24(10): e57369, 2023 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-37501563

RESUMO

Nutritional immunity includes sequestration of transition metals from invading pathogens. Yersinia pestis overcomes nutritional immunity by secreting yersiniabactin to acquire iron and zinc during infection. While the mechanisms for yersiniabactin synthesis and import are well-defined, those responsible for yersiniabactin secretion are unknown. Identification of this mechanism has been difficult because conventional mutagenesis approaches are unable to inhibit trans-complementation by secreted factors between mutants. To overcome this obstacle, we utilized a technique called droplet Tn-seq (dTn-seq), which uses microfluidics to isolate individual transposon mutants in oil droplets, eliminating trans-complementation between bacteria. Using this approach, we first demonstrated the applicability of dTn-seq to identify genes with secreted functions. We then applied dTn-seq to identify an AcrAB efflux system as required for growth in metal-limited conditions. Finally, we showed this efflux system is the primary yersiniabactin secretion mechanism and required for virulence during bubonic and pneumonic plague. Together, these studies have revealed the yersiniabactin secretion mechanism that has eluded researchers for over 30 years and identified a potential therapeutic target for bacteria that use yersiniabactin for metal acquisition.


Assuntos
Peste , Yersinia pestis , Humanos , Yersinia pestis/genética , Peste/genética , Peste/microbiologia , Fenóis , Tiazóis/farmacologia , Metais , Proteínas de Bactérias/genética
4.
Elife ; 122023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-37010269

RESUMO

Multiple genetic changes in the enteric pathogen Yersinia pseudotuberculosis have driven the emergence of Yesinia pestis, the arthropod-borne, etiological agent of plague. These include developing the capacity for biofilm-dependent blockage of the flea foregut to enable transmission by flea bite. Previously, we showed that pseudogenization of rcsA, encoding a component of the Rcs signalling pathway, is an important evolutionary step facilitating Y. pestis flea-borne transmission. Additionally, rcsD, another important gene in the Rcs system, harbours a frameshift mutation. Here, we demonstrated that this rcsD mutation resulted in production of a small protein composing the C-terminal RcsD histidine-phosphotransferase domain (designated RcsD-Hpt) and full-length RcsD. Genetic analysis revealed that the rcsD frameshift mutation followed the emergence of rcsA pseudogenization. It further altered the canonical Rcs phosphorylation signal cascade, fine-tuning biofilm production to be conducive with retention of the pgm locus in modern lineages of Y. pestis. Taken together, our findings suggest that a frameshift mutation in rcsD is an important evolutionary step that fine-tuned biofilm production to ensure perpetuation of flea-mammal plague transmission cycles.


Yersinia pestis, the agent responsible for the plague, emerged 6,000 to 7,000 years ago from Yersinia pseudotuberculosis, another type of bacteria which still exists today. Although they are highly similar genetically, these two species are strikingly different. While Y. pseudotuberculosis spreads via food and water and causes mild stomach distress, Y. pestis uses fleas to infect new hosts and has killed millions. A small set of genetic changes has contributed to the emergence of Y. pestis by allowing it to thrive inside a flea and maximise its transmission. In particular, some of these mutations have led to the bacteria being able to come together to form a sticky layer that adheres to the gut of the insect, with this 'biofilm' stopping the flea from feeding on blood. The starving flea keeps trying to feed, and with each bite comes another opportunity for Y. pestis to jump host. However, it remains unclear exactly how the mutations have influenced biofilm formation to allow for this new transmission mechanism to take place. To examine this phenomenon, Guo et al. focused on rcsD, a gene that codes for a component of the signalling system that controls biofilm creation. In Y. pestis this sequence has been mutated to become a 'pseudogene', a type of sequence which is often thought to be non-functional. However, the experiments showed that, in Y. pestis, rcsD could produce small amounts of a full-length RcsD protein similar to the one found in Y. pseudotuberculosis. However, the gene mostly produces a short 'RcsD-Hpt' protein that can, in turn, alter the expression of many genes, including those that decrease biofilm formation. This may prove to be beneficial for Y. pestis, for example when the bacteria switches from living in fleas to living in humans, where it does not require a biofilm. Guo et al. further investigated the impact of rcsD becoming a pseudogene inY. pestis, showing that if normal amounts of the full-length RcsD protein are produced, the bacteria quickly lose the gene that allows them to form biofilm in fleas, and cause disease in humans. In fact, additional analyses revealed that all sequenced strains of ancient and modern Y. pestis bacteria can produce RcsD-Hpt, even if they do not carry the same exact rcsD mutation. Overall, these results indicate that rcsD turning into a pseudogene marked an important step in the emergence of Y. pestis strains that can cause lasting plague outbreaks. They also point towards pseudogenes having more important roles in evolution than previously thought.


Assuntos
Peste , Sifonápteros , Yersinia pestis , Animais , Peste/genética , Yersinia pestis/genética , Yersinia pestis/metabolismo , Mutação da Fase de Leitura , Mamíferos
5.
Commun Biol ; 6(1): 23, 2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36658311

RESUMO

Plague has an enigmatic history as a zoonotic pathogen. This infectious disease will unexpectedly appear in human populations and disappear just as suddenly. As a result, a long-standing line of inquiry has been to estimate when and where plague appeared in the past. However, there have been significant disparities between phylogenetic studies of the causative bacterium, Yersinia pestis, regarding the timing and geographic origins of its reemergence. Here, we curate and contextualize an updated phylogeny of Y. pestis using 601 genome sequences sampled globally. Through a detailed Bayesian evaluation of temporal signal in subsets of these data we demonstrate that a Y. pestis-wide molecular clock is unstable. To resolve this, we developed a new approach in which each Y. pestis population was assessed independently, enabling us to recover substantial temporal signal in five populations, including the ancient pandemic lineages which we now estimate may have emerged decades, or even centuries, before a pandemic was historically documented from European sources. Despite this methodological advancement, we only obtain robust divergence dates from populations sampled over a period of at least 90 years, indicating that genetic evidence alone is insufficient for accurately reconstructing the timing and spread of short-term plague epidemics.


Assuntos
Peste , Yersinia pestis , Humanos , Peste/epidemiologia , Peste/genética , Peste/microbiologia , Yersinia pestis/genética , Filogenia , Teorema de Bayes , Genoma Bacteriano
6.
Trends Immunol ; 44(2): 90-92, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36526581

RESUMO

The Black Death, a notorious devastating pandemic caused by Yersinia pestis infection during the 14th century, posed a formidable challenge to human immune defenses. A new article by Klunk et al. reports that a variant in an antigen-processing gene may have favored survival during the plague and may have undergone genomic selection in Europeans at unprecedented speed.


Assuntos
Peste , Yersinia pestis , Humanos , Peste/epidemiologia , Peste/genética , Peste/história , Yersinia pestis/genética , Genômica , Pandemias , Apresentação de Antígeno
7.
Comput Biol Chem ; 101: 107784, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36375370

RESUMO

The magnitude of human affliction brought about by bacterial infections has been on the rise since the mid-5th century. Yersinia pestis is one such notable, gram-negative bacterium that inflicted havoc around the globe three times throughout different millenniums by causing deadly plagues. Despite the unremitting efforts by scientists, different strains of Yersinia pestis are still affecting the populations in various parts of the world by growing resistant to existing antimicrobial agents owing to their overuse. The current scenario, therefore, calls for new therapeutics to further combat the disease. In this study, 3105 core, 387 pathogen-specific unique, 536 choke-point, 796 virulence factors, and 115 antimicrobial resistant proteins were found using a pan-genomic and subtractive genome analysis of nine Yersinia pestis strains that could be instrumental in the development of drugs against Yersinia pestis. Subsequently, 1461 and 1114 essential proteins were identified as non-homologous to human and gut microflora. 535 and 30 proteins were predicted as cytoplasmic and broad-spectrum targets respectively. Finally, four potential targets were selected for their high connectivity in protein-protein interaction network. These selected target proteins are associated with one of the major lipopolysaccharide biosynthesis pathways. Therefore, dismantling their activity might indicate a probable strategy for developing therapeutics to combat bacterial infection caused by Yersinia pestis. However, further experimental validation in the laboratory is needed to consolidate the research findings.


Assuntos
Peste , Yersinia pestis , Humanos , Yersinia pestis/genética , Peste/tratamento farmacológico , Peste/genética , Peste/microbiologia , Genômica , Genoma Bacteriano , Fatores de Virulência
8.
Nature ; 611(7935): 312-319, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36261521

RESUMO

Infectious diseases are among the strongest selective pressures driving human evolution1,2. This includes the single greatest mortality event in recorded history, the first outbreak of the second pandemic of plague, commonly called the Black Death, which was caused by the bacterium Yersinia pestis3. This pandemic devastated Afro-Eurasia, killing up to 30-50% of the population4. To identify loci that may have been under selection during the Black Death, we characterized genetic variation around immune-related genes from 206 ancient DNA extracts, stemming from two different European populations before, during and after the Black Death. Immune loci are strongly enriched for highly differentiated sites relative to a set of non-immune loci, suggesting positive selection. We identify 245 variants that are highly differentiated within the London dataset, four of which were replicated in an independent cohort from Denmark, and represent the strongest candidates for positive selection. The selected allele for one of these variants, rs2549794, is associated with the production of a full-length (versus truncated) ERAP2 transcript, variation in cytokine response to Y. pestis and increased ability to control intracellular Y. pestis in macrophages. Finally, we show that protective variants overlap with alleles that are today associated with increased susceptibility to autoimmune diseases, providing empirical evidence for the role played by past pandemics in shaping present-day susceptibility to disease.


Assuntos
DNA Antigo , Predisposição Genética para Doença , Imunidade , Peste , Seleção Genética , Yersinia pestis , Humanos , Aminopeptidases/genética , Aminopeptidases/imunologia , Peste/genética , Peste/imunologia , Peste/microbiologia , Peste/mortalidade , Yersinia pestis/imunologia , Yersinia pestis/patogenicidade , Seleção Genética/imunologia , Europa (Continente)/epidemiologia , Europa (Continente)/etnologia , Imunidade/genética , Conjuntos de Dados como Assunto , Londres/epidemiologia , Dinamarca/epidemiologia
9.
Science ; 378(6617): 237-238, 2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-36264804

RESUMO

Study of DNA from medieval victims and survivors finds gene that helped protect people from deadly pathogen.


Assuntos
Imunidade , Pandemias , Peste , Seleção Genética , Humanos , Sistema Imunitário , Peste/genética , Peste/história , Peste/imunologia , Imunidade/genética , Pandemias/história , DNA Antigo
10.
Curr Biol ; 32(21): 4743-4751.e6, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36182700

RESUMO

Human populations have been shaped by catastrophes that may have left long-lasting signatures in their genomes. One notable example is the second plague pandemic that entered Europe in ca. 1,347 CE and repeatedly returned for over 300 years, with typical village and town mortality estimated at 10%-40%.1 It is assumed that this high mortality affected the gene pools of these populations. First, local population crashes reduced genetic diversity. Second, a change in frequency is expected for sequence variants that may have affected survival or susceptibility to the etiologic agent (Yersinia pestis).2 Third, mass mortality might alter the local gene pools through its impact on subsequent migration patterns. We explored these factors using the Norwegian city of Trondheim as a model, by sequencing 54 genomes spanning three time periods: (1) prior to the plague striking Trondheim in 1,349 CE, (2) the 17th-19th century, and (3) the present. We find that the pandemic period shaped the gene pool by reducing long distance immigration, in particular from the British Isles, and inducing a bottleneck that reduced genetic diversity. Although we also observe an excess of large FST values at multiple loci in the genome, these are shaped by reference biases introduced by mapping our relatively low genome coverage degraded DNA to the reference genome. This implies that attempts to detect selection using ancient DNA (aDNA) datasets that vary by read length and depth of sequencing coverage may be particularly challenging until methods have been developed to account for the impact of differential reference bias on test statistics.


Assuntos
Peste , Humanos , Peste/epidemiologia , Peste/genética , Pandemias/história , Metagenômica , Genoma Bacteriano , Filogenia
12.
Mol Biol Evol ; 39(4)2022 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-35383854

RESUMO

In a recent article, Immel et al. (Immel A, Key FM, Szolek A, Barquera R, Robinson MK, Harrison GF, Palmer WH, Spyrou MA, Susat J, Krause-Kyora B, et al. 2021. Analysis of genomic DNA from medieval plague victims suggests long-term effect of Yersinia pestis on human immunity genes. Mol Biol Evol. 38:4059-4076) extracted DNA from 36 individuals dead from plague in Ellwangen, Southern Germany, during the 16th century. By comparing their human leukocyte antigen (HLA) genotypes with those of 50 present-day Ellwangen inhabitants, the authors reported a significant decrease of HLA-B*51:01 and HLA-C*06:02 and a significant increase of HLA-DRB1*13:01/13:02 frequencies from ancient to modern populations. After comparing these frequencies with a larger sample of 8,862 modern Germans and performing simulations of natural selection, they concluded that these changes had been driven by natural selection. In an attempt to provide more evidence on such stimulating results, we explored the HLA frequency patterns over all of Europe, we predicted binding affinities of HLA-B/C/DRB1 alleles to 106,515 Yersinia pestis-derived peptides, and we performed forward simulations of HLA genetic profiles under neutrality. Our analyses do not sustain the conclusions of HLA protection or susceptibility to plague based on ancient DNA.


Assuntos
Predisposição Genética para Doença , Antígenos HLA , Peste , DNA , DNA Antigo , Europa (Continente) , Antígenos HLA/genética , Antígenos de Histocompatibilidade Classe II , Humanos , Peste/genética , Yersinia pestis
13.
Int J Mol Sci ; 22(18)2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34575967

RESUMO

The bacterial pathogen, Yersinia pestis, has caused three historic pandemics and continues to cause small outbreaks worldwide. During infection, Y. pestis assembles a capsule-like protective coat of thin fibres of Caf1 subunits. This F1 capsular antigen has attracted much attention due to its clinical value in plague diagnostics and anti-plague vaccine development. Expression of F1 is tightly regulated by a transcriptional activator, Caf1R, of the AraC/XylS family, proteins notoriously prone to aggregation. Here, we have optimised the recombinant expression of soluble Caf1R. Expression from the native and synthetic codon-optimised caf1R cloned in three different expression plasmids was examined in a library of E. coli host strains. The functionality of His-tagged Caf1R was demonstrated in vivo, but insolubility was a problem with overproduction. High levels of soluble MBP-Caf1R were produced from codon optimised caf1R. Transcriptional-lacZ reporter fusions defined the PM promoter and Caf1R binding site responsible for transcription of the cafMA1 operon. Use of the identified Caf1R binding caf DNA sequence in an electrophoretic mobility shift assay (EMSA) confirmed correct folding and functionality of the Caf1R DNA-binding domain in recombinant MBP-Caf1R. Availability of functional recombinant Caf1R will be a valuable tool to elucidate control of expression of F1 and Caf1R-regulated pathophysiology of Y. pestis.


Assuntos
Antígenos de Bactérias/genética , Proteínas de Bactérias/genética , Peste/genética , Yersinia pestis/genética , Proteínas de Ligação a DNA/genética , Genes araC/genética , Humanos , Óperon/genética , Peste/microbiologia , Peste/prevenção & controle , Plasmídeos/genética , Fatores de Transcrição/genética , Vacinas/genética , Yersinia pestis/patogenicidade
14.
Proc Natl Acad Sci U S A ; 118(36)2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34465619

RESUMO

The second plague pandemic started in Europe with the Black Death in 1346 and lasted until the 19th century. Based on ancient DNA studies, there is a scientific disagreement over whether the bacterium, Yersinia pestis, came into Europe once (Hypothesis 1) or repeatedly over the following four centuries (Hypothesis 2). Here, we synthesize the most updated phylogeny together with historical, archeological, evolutionary, and ecological information. On the basis of this holistic view, we conclude that Hypothesis 2 is the most plausible. We also suggest that Y. pestis lineages might have developed attenuated virulence during transmission, which can explain the convergent evolutionary signals, including pla decay, that appeared at the end of the pandemics.


Assuntos
Peste/epidemiologia , Peste/etiologia , Peste/genética , DNA Bacteriano/genética , Europa (Continente) , Genoma Bacteriano/genética , Genômica/métodos , História do Século XIX , História do Século XX , História do Século XXI , Humanos , Pandemias/história , Filogenia , Virulência/genética , Yersinia pestis/genética , Yersinia pestis/patogenicidade
15.
Mol Biol Evol ; 38(10): 4059-4076, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34002224

RESUMO

Pathogens and associated outbreaks of infectious disease exert selective pressure on human populations, and any changes in allele frequencies that result may be especially evident for genes involved in immunity. In this regard, the 1346-1353 Yersinia pestis-caused Black Death pandemic, with continued plague outbreaks spanning several hundred years, is one of the most devastating recorded in human history. To investigate the potential impact of Y. pestis on human immunity genes, we extracted DNA from 36 plague victims buried in a mass grave in Ellwangen, Germany in the 16th century. We targeted 488 immune-related genes, including HLA, using a novel in-solution hybridization capture approach. In comparison with 50 modern native inhabitants of Ellwangen, we find differences in allele frequencies for variants of the innate immunity proteins Ficolin-2 and NLRP14 at sites involved in determining specificity. We also observed that HLA-DRB1*13 is more than twice as frequent in the modern population, whereas HLA-B alleles encoding an isoleucine at position 80 (I-80+), HLA C*06:02 and HLA-DPB1 alleles encoding histidine at position 9 are half as frequent in the modern population. Simulations show that natural selection has likely driven these allele frequency changes. Thus, our data suggest that allele frequencies of HLA genes involved in innate and adaptive immunity responsible for extracellular and intracellular responses to pathogenic bacteria, such as Y. pestis, could have been affected by the historical epidemics that occurred in Europe.


Assuntos
Peste , Yersinia pestis , DNA , Genômica , Humanos , Pandemias/história , Peste/genética , Yersinia pestis/genética
16.
Genomics ; 113(4): 1952-1961, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33862185

RESUMO

BACKGROUND: Plague is a highly dangerous vector-borne infectious disease that has left a significant mark on history of humankind. There are 13 natural plague foci in the Caucasus, located on the territory of the Russian Federation, Azerbaijan, Armenia and Georgia. We performed whole-genome sequencing of Y. pestis strains, isolated in the natural foci of the Caucasus and Transcaucasia. Using the data of whole-genome SNP analysis and Bayesian phylogeny methods, we carried out an evolutionary-phylogeographic analysis of modern population of the plague pathogen in order to determine the phylogenetic relationships of Y. pestis strains from the Caucasus with the strains from other countries. RESULTS: We used 345 Y. pestis genomes to construct a global evolutionary phylogenetic reconstruction of species based on whole-genome SNP analysis. The genomes of 16 isolates were sequenced in this study, the remaining 329 genomes were obtained from the GenBank database. Analysis of the core genome revealed 3315 SNPs that allow differentiation of strains. The evolutionary phylogeographic analysis showed that the studied Y. pestis strains belong to the genetic lineages 0.PE2, 2.MED0, and 2.MED1. It was shown that the Y. pestis strains isolated on the territory of the East Caucasian high-mountain, the Transcaucasian high-mountain and the Priaraksinsky low-mountain plague foci belong to the most ancient of all existing genetic lineages - 0.PE2. CONCLUSIONS: On the basis of the whole-genome SNP analysis of 345 Y. pestis strains, we describe the modern population structure of the plague pathogen and specify the place of the strains isolated in the natural foci of the Caucasus and Transcaucasia in the structure of the global population of Y. pestis. As a result of the retrospective evolutionary-phylogeographic analysis of the current population of the pathogen, we determined the probable time frame of the divergence of the genetic lineages of Y. pestis, as well as suggested the possible paths of the historical spread of the plague pathogen.


Assuntos
Peste , Yersinia pestis , Teorema de Bayes , Genoma Bacteriano , Humanos , Filogenia , Peste/epidemiologia , Peste/genética , Estudos Retrospectivos , Yersinia pestis/genética
17.
Infect Immun ; 89(3)2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33257532

RESUMO

Pneumonic plague, caused by Yersinia pestis, is a rapidly progressing bronchopneumonia involving focal bacterial growth, neutrophilic congestion, and alveolar necrosis. Within a short time after inhalation of Y. pestis, inflammatory cytokines are expressed via the Toll/interleukin-1 (IL-1) adaptor myeloid differentiation primary response 88 (MyD88), which facilitates the primary lung infection. We previously showed that Y. pestis lacking the 102-kb chromosomal pigmentation locus (pgm) is unable to cause inflammatory damage in the lungs, whereas the wild-type (WT) strain induces the toxic MyD88 pulmonary inflammatory response. In this work, we investigated the involvement of the pgm in skewing the inflammatory response during pneumonic plague. We show that the early MyD88-dependent and -independent cytokine responses to pgm- Y. pestis infection of the lungs are similar yet distinct from those that occur during pgm+ infection. Furthermore, we found that MyD88 was necessary to prevent growth of the iron-starved pgm- Y. pestis despite the presence of iron chelators lactoferrin and transferrin. However, while this induced neutrophil recruitment, there was no hyperinflammatory response, and pulmonary disease was mild without MyD88. In contrast, growth in blood and tissues progressed rapidly in the absence of MyD88, due to an almost total loss of serum interferon gamma (IFN-γ). We further show that the expression of MyD88 by myeloid cells is important to control bacteremia but not the primary lung infection. The combined data indicate distinct roles for myeloid and nonmyeloid MyD88 and suggest that expression of the pgm is necessary to skew the inflammatory response in the lungs to cause pneumonic plague.


Assuntos
Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Pigmentação/genética , Pigmentação/fisiologia , Peste/genética , Peste/metabolismo , Yersinia pestis/genética , Yersinia pestis/metabolismo , Animais , Modelos Animais de Doenças , Regulação Bacteriana da Expressão Gênica , Humanos , Peste/microbiologia
18.
Oncoimmunology ; 9(1): 1857112, 2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33344044

RESUMO

Formyl peptide receptor 1 (FPR1) is a pattern-recognition receptor that detects bacterial as well as endogenous danger-associated molecular patterns to trigger innate immune responses by myeloid cells. A single nucleotide polymorphism, rs867228 (allelic frequency 19-20%), in the gene coding for FPR1 accelerates the manifestation of multiple carcinomas, likely due to reduced anticancer immunosurveillance secondary to a defect in antigen presentation by dendritic cells. Another polymorphism in FPR1, rs5030880 (allelic frequency 12-13%), has been involved in the resistance to plague, correlating with the fact that FPR1 is the receptor for Yersinia pestis. Driven by the reported preclinical effects of FPR1 on lung inflammation and fibrosis, we investigated whether rs867228 or rs5030880 would affect the severity of coronavirus disease-19 (COVID-19). Data obtained on patients from two different hospitals in Paris refute the hypothesis that rs867228 or rs5030880 would affect the severity of COVID-19.


Assuntos
COVID-19/genética , COVID-19/virologia , Neoplasias/genética , Peste/genética , Receptores de Formil Peptídeo/genética , SARS-CoV-2/isolamento & purificação , COVID-19/epidemiologia , COVID-19/patologia , Feminino , Humanos , Imunidade Inata , Masculino , Pessoa de Meia-Idade , Neoplasias/epidemiologia , Neoplasias/patologia , Neoplasias/virologia , Pandemias , Paris/epidemiologia , Peste/microbiologia , Peste/patologia , Polimorfismo de Nucleotídeo Único , SARS-CoV-2/genética
19.
Biomolecules ; 10(11)2020 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-33202679

RESUMO

The Gram-negative bacterium Yersinia pestis causes plague, a fatal flea-borne anthropozoonosis, which can progress to aerosol-transmitted pneumonia. Y. pestis overcomes the innate immunity of its host thanks to many pathogenicity factors, including plasminogen activator, Pla. This factor is a broad-spectrum outer membrane protease also acting as adhesin and invasin. Y. pestis uses Pla adhesion and proteolytic capacity to manipulate the fibrinolytic cascade and immune system to produce bacteremia necessary for pathogen transmission via fleabite or aerosols. Because of microevolution, Y. pestis invasiveness has increased significantly after a single amino-acid substitution (I259T) in Pla of one of the oldest Y. pestis phylogenetic groups. This mutation caused a better ability to activate plasminogen. In paradox with its fibrinolytic activity, Pla cleaves and inactivates the tissue factor pathway inhibitor (TFPI), a key inhibitor of the coagulation cascade. This function in the plague remains enigmatic. Pla (or pla) had been used as a specific marker of Y. pestis, but its solitary detection is no longer valid as this gene is present in other species of Enterobacteriaceae. Though recovering hosts generate anti-Pla antibodies, Pla is not a good subunit vaccine. However, its deletion increases the safety of attenuated Y. pestis strains, providing a means to generate a safe live plague vaccine.


Assuntos
Ativadores de Plasminogênio/metabolismo , Mapas de Interação de Proteínas/fisiologia , Yersinia pestis/metabolismo , Animais , Antígenos de Bactérias/química , Antígenos de Bactérias/genética , Antígenos de Bactérias/metabolismo , Humanos , Peste/genética , Peste/metabolismo , Peste/prevenção & controle , Vacina contra a Peste/administração & dosagem , Vacina contra a Peste/genética , Vacina contra a Peste/metabolismo , Ativadores de Plasminogênio/química , Ativadores de Plasminogênio/genética , Mutação Puntual/fisiologia , Estrutura Secundária de Proteína , Yersinia pestis/classificação , Yersinia pestis/genética
20.
Proc Natl Acad Sci U S A ; 117(45): 28328-28335, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33106412

RESUMO

Plague continued to afflict Europe for more than five centuries after the Black Death. Yet, by the 17th century, the dynamics of plague had changed, leading to its slow decline in Western Europe over the subsequent 200 y, a period for which only one genome was previously available. Using a multidisciplinary approach, combining genomic and historical data, we assembled Y. pestis genomes from nine individuals covering four Eurasian sites and placed them into an historical context within the established phylogeny. CHE1 (Chechnya, Russia, 18th century) is now the latest Second Plague Pandemic genome and the first non-European sample in the post-Black Death lineage. Its placement in the phylogeny and our synthesis point toward the existence of an extra-European reservoir feeding plague into Western Europe in multiple waves. By considering socioeconomic, ecological, and climatic factors we highlight the importance of a noneurocentric approach for the discussion on Second Plague Pandemic dynamics in Europe.


Assuntos
Genoma Bacteriano , Peste/história , Peste/microbiologia , Yersinia pestis/genética , DNA Bacteriano , Europa (Continente) , História do Século XVIII , História Medieval , Humanos , Pandemias/história , Filogenia , Peste/genética , Federação Russa , Yersinia pestis/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...