Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.670
Filtrar
1.
J Hazard Mater ; 471: 134437, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38691934

RESUMO

Crude oil is a hazardous pollutant that poses significant and lasting harm to human health and ecosystems. In this study, Moesziomyces aphidis XM01, a biosurfactant mannosylerythritol lipids (MELs)-producing yeast, was utilized for crude oil degradation. Unlike most microorganisms relying on cytochrome P450, XM01 employed two extracellular unspecific peroxygenases, MaUPO.1 and MaUPO.2, with preference for polycyclic aromatic hydrocarbons (PAHs) and n-alkanes respectively, thus facilitating efficient crude oil degradation. The MELs produced by XM01 exhibited a significant emulsification activity of 65.9% for crude oil and were consequently supplemented in an "exogenous MELs addition" strategy to boost crude oil degradation, resulting in an optimal degradation ratio of 72.3%. Furthermore, a new and simple "pre-MELs production" strategy was implemented, achieving a maximum degradation ratio of 95.9%. During this process, the synergistic up-regulation of MaUPO.1, MaUPO.1 and the key MELs synthesis genes contributed to the efficient degradation of crude oil. Additionally, the phylogenetic and geographic distribution analysis of MaUPO.1 and MaUPO.1 revealed their wide occurrence among fungi in Basidiomycota and Ascomycota, with high transcription levels across global ocean, highlighting their important role in biodegradation of crude oil. In conclusion, M. aphidis XM01 emerges as a novel yeast for efficient and eco-friendly crude oil degradation.


Assuntos
Biodegradação Ambiental , Glicolipídeos , Oxigenases de Função Mista , Petróleo , Tensoativos , Petróleo/metabolismo , Tensoativos/metabolismo , Tensoativos/química , Glicolipídeos/metabolismo , Oxigenases de Função Mista/metabolismo , Oxigenases de Função Mista/genética , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/química , Alcanos/metabolismo
2.
Sci Rep ; 14(1): 10270, 2024 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-38704438

RESUMO

Biosurfactants, as microbial bioproducts, have significant potential in the field of microbial enhanced oil recovery (MEOR). Biosurfactants are microbial bioproducts with the potential to reduce the interfacial tension (IFT) between crude oil and water, thus enhancing oil recovery. This study aims to investigate the production and characterization of biosurfactants and evaluate their effectiveness in increasing oil recovery. Pseudoxanthomonas taiwanensis was cultured on SMSS medium to produce biosurfactants. Crude oil was found to be the most effective carbon source for biosurfactant production. The biosurfactants exhibited comparable activity to sodium dodecyl sulfate (SDS) at a concentration of 400 ppm in reducing IFT. It was characterized as glycolipids, showing stability in emulsions at high temperatures (up to 120 °C), pH levels ranging from 3 to 9, and NaCl concentrations up to 10% (w/v). Response surface methodology revealed the optimized conditions for the most stable biosurfactants (pH 7, temperature of 40 °C, and salinity of 2%), resulting in an EI24 value of 64.45%. Experimental evaluations included sand pack column and core flooding studies, which demonstrated additional oil recovery of 36.04% and 12.92%, respectively. These results indicate the potential application of P. taiwanensis biosurfactants as sustainable and environmentally friendly approaches to enhance oil recovery in MEOR processes.


Assuntos
Petróleo , Tensoativos , Tensoativos/metabolismo , Tensoativos/química , Petróleo/metabolismo , Xanthomonadaceae/metabolismo , Concentração de Íons de Hidrogênio , Tensão Superficial , Temperatura , Química Verde/métodos , Dodecilsulfato de Sódio/química , Emulsões
3.
Environ Microbiol Rep ; 16(3): e13264, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38692840

RESUMO

This study assessed the bacterioplankton community and its relationship with environmental variables, including total petroleum hydrocarbon (TPH) concentration, in the Yucatan shelf area of the Southern Gulf of Mexico. Beta diversity analyses based on 16S rRNA sequences indicated variations in the bacterioplankton community structure among sampling sites. PERMANOVA indicated that these variations could be mainly related to changes in depth (5 to 180 m), dissolved oxygen concentration (2.06 to 5.93 mg L-1), and chlorophyll-a concentration (0.184 to 7.65 mg m3). Moreover, SIMPER and one-way ANOVA analyses showed that the shifts in the relative abundances of Synechococcus and Prochlorococcus were related to changes in microbial community composition and chlorophyll-a values. Despite the low TPH content measured in the studied sites (0.01 to 0.86 µL L-1), putative hydrocarbon-degrading bacteria such as Alteromonas, Acinetobacter, Balneola, Erythrobacter, Oleibacter, Roseibacillus, and the MWH-UniP1 aquatic group were detected. The relatively high copy number of the alkB gene detected in the water column by qPCR and the enrichment of hydrocarbon-degrading bacteria obtained during lab crude oil tests exhibited the potential of bacterioplankton communities from the Yucatan shelf to respond to potential hydrocarbon impacts in this important area of the Gulf Mexico.


Assuntos
Bactérias , Hidrocarbonetos , RNA Ribossômico 16S , Água do Mar , Golfo do México , Hidrocarbonetos/metabolismo , Bactérias/genética , Bactérias/classificação , Bactérias/metabolismo , Bactérias/isolamento & purificação , Água do Mar/microbiologia , RNA Ribossômico 16S/genética , Microbiota , Filogenia , Petróleo/metabolismo , Petróleo/microbiologia , Biodegradação Ambiental , Biodiversidade
4.
J Hazard Mater ; 471: 134407, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38677122

RESUMO

Bioelectrochemical technologies based on electroactive biofilms (EAB) are promising for petroleum hydrocarbons (PHs) remediation as anode can serve as inexhaustible electron acceptor. However, the toxicity of PHs might inhibit the formation and function of EABs. Quorum sensing (QS) is ideal for boosting the performance of EABs, but its potential effects on reshaping microbial composition of EABs in treating PHs are poorly understood. Herein, two AHL signals, C4-HSL and C12-HSL, were employed to promote EABs for PHs degradation. The start-times of AHL-mediated EABs decreased by 18-26%, and maximum current densities increased by 28-63%. Meanwhile, the removal of total PHs increased to over 90%. AHLs facilitate thicker and more compact biofilm as well as higher viability. AHLs enhanced the electroactivity and direct electron transfer capability. The total abundance of PH-degrading bacteria increased from 52.05% to 75.33% and 72.02%, and the proportion of electroactive bacteria increased from 26.14% to 62.72% and 63.30% for MFC-C4 and MFC-C12. Microbial networks became more complex, aggregated, and stable with addition of AHLs. Furthermore, AHL-stimulated EABs showed higher abundance of genes related to PHs degradation. This work advanced our understanding of AHL-mediated QS in maintaining the stable function of microbial communities in the biodegradation process of petroleum hydrocarbons.


Assuntos
Biodegradação Ambiental , Biofilmes , Hidrocarbonetos , Petróleo , Percepção de Quorum , Biofilmes/efeitos dos fármacos , Petróleo/metabolismo , Hidrocarbonetos/metabolismo , Bactérias/metabolismo , Bactérias/genética , Técnicas Eletroquímicas , Fontes de Energia Bioelétrica
5.
J Hazard Mater ; 470: 134125, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38565016

RESUMO

The study addressed the challenge of treating petroleum industry wastewater with high concentrations of 1,2-dichloroethane (1,2-DCA) ranging from 384 to 1654 mg/L, which poses a challenge for bacterial biodegradation and algal photodegradation. To overcome this, a collaborative approach using membrane bioreactors (MBRs) that combine algae and bacteria was employed. This synergistic method effectively mitigated the toxicity of 1,2-DCA and curbed MBR fouling. Two types of MBRs were tested: one (B-MBR) used bacterial cultures and the other (AB-MBR) incorporated a mix of algal and bacterial cultures. The AB-MBR significantly contributed to 1,2-DCA removal, with algae accounting for over 20% and bacteria for approximately 49.5% of the dechlorination process. 1,2-DCA metabolites, including 2-chloroethanol, 2-chloro-acetaldehyde, 2-chloroacetic acid, and acetic acid, were partially consumed as carbon sources by algae. Operational efficiency peaked at a 12-hour hydraulic retention time (HRT) in AB-MBR, enhancing enzyme activities crucial for 1,2-DCA degradation such as dehydrogenase (DH), alcohol dehydrogenase (ADH), and acetaldehyde dehydrogenase (ALDH). The microbial diversity in AB-MBR surpassed that in B-MBR, with a notable increase in Proteobacteria, Bacteroidota, Planctomycetota, and Verrucomicrobiota. Furthermore, AB-MBR showed a significant rise in the dominance of 1,2-DCA-degrading genus such as Pseudomonas and Acinetobacter. Additionally, algal-degrading phyla (e.g., Nematoda, Rotifera, and Streptophyta) were more prevalent in AB-MBR, substantially reducing the issue of membrane fouling.


Assuntos
Reatores Biológicos , Dicloretos de Etileno , Membranas Artificiais , Águas Residuárias , Poluentes Químicos da Água , Águas Residuárias/química , Poluentes Químicos da Água/metabolismo , Dicloretos de Etileno/metabolismo , Petróleo/metabolismo , Bactérias/metabolismo , Biodegradação Ambiental , Eliminação de Resíduos Líquidos/métodos
6.
FEMS Microbiol Ecol ; 100(5)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38650065

RESUMO

The overall impact of a crude oil spill into a pristine freshwater environment in Canada is largely unknown. To evaluate the impact on the native microbial community, a large-scale in situ model experimental spill was conducted to assess the potential role of the natural community to attenuate hydrocarbons. A small volume of conventional heavy crude oil (CHV) was introduced within contained mesocosm enclosures deployed on the shoreline of a freshwater lake. The oil was left to interact with the shoreline for 72 h and then free-floating oil was recovered using common oil spill response methods (i.e. freshwater flushing and capture on oleophilic absorptive media). Residual polycyclic aromatic hydrocarbon (PAH) concentrations returned to near preoiling concentrations within 2 months, while the microbial community composition across the water, soil, and sediment matrices of the enclosed oligotrophic freshwater ecosystems did not shift significantly over this period. Metagenomic analysis revealed key polycyclic aromatic and alkane degradation mechanisms also did not change in their relative abundance over the monitoring period. These trends suggest that for small spills (<2 l of oil per 15 m2 of surface freshwater), physical oil recovery reduces polycyclic aromatic hydrocarbon concentrations to levels tolerated by the native microbial community. Additionally, the native microbial community present in the monitored pristine freshwater ecosystem possesses the appropriate hydrocarbon degradation mechanisms without prior challenge by hydrocarbon substrates. This study corroborated trends found previously (Kharey et al. 2024) toward freshwater hydrocarbon degradation in an environmentally relevant scale and conditions on the tolerance of residual hydrocarbons in situ.


Assuntos
Ecossistema , Lagos , Poluição por Petróleo , Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Petróleo/metabolismo , Lagos/microbiologia , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Canadá , Poluentes Químicos da Água/metabolismo , Biodegradação Ambiental , Sedimentos Geológicos/microbiologia , Microbiota/efeitos dos fármacos , Bactérias/genética , Bactérias/efeitos dos fármacos , Bactérias/metabolismo , Bactérias/classificação , Água Doce/microbiologia
7.
Bioresour Technol ; 400: 130690, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38614150

RESUMO

Microbial enhanced oil recovery (EOR) has become the focus of oilfield research due to its low cost, environmental friendliness and sustainability. The degradation and EOR capacity of A. borkumensis through the production of bio-enzyme and bio-surfactant were first investigated in this study. The total protein concentration, acetylcholinesterase, esterase, lipase, alkane hydroxylase activity, surface tension, and emulsification index (EI) were determined at different culture times. The bio-surfactant was identified as glycolipid compound, and the yield was 2.6 ± 0.2 g/L. The nC12 and nC13 of crude oil were completely degraded, and more than 40.0 % of nC14-nC24 was degraded by by A. borkumensis. The results of the microscopic etching model displacement and core flooding experiments showed that emulsification was the main mechanism of EOR. A. borkumensis enhanced the recovery rate by 20.2 %. This study offers novel insights for the development of environmentally friendly and efficient oil fields.


Assuntos
Alcanivoraceae , Biodegradação Ambiental , Petróleo , Tensoativos , Tensoativos/farmacologia , Tensoativos/química , Alcanivoraceae/metabolismo , Petróleo/metabolismo , Acetilcolinesterase/metabolismo , Lipase/metabolismo , Tensão Superficial , Emulsões
8.
Environ Sci Pollut Res Int ; 31(20): 29902-29915, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38594561

RESUMO

Bioremediation is an economically viable and sustainable clean-up strategy. Hydrodynamic, as well as transport characteristics of the porous medium, can evolve over the period as a result of biological clean-up activities. The present study proposes a 2-D numerical framework to simulate the effect of bioclogging on multiple electron acceptor-mediated petroleum hydrocarbon bioremediation in the vadose zone. For modelling, a spill of BTEX (benzene, toluene, ethylbenzene and xylene) is assumed near source zone. The developed model results are validated using three previously published datasets on flow, transport and biodegradation in the vadose zone. Simulations are performed for three types of soil, including clay, sand and loam. The analysis shows that sand has a maximum infiltration rate and clay has a minimum. Hydraulic conductivity and saturation profile peaks reach their minimal value at a shallower depth (around four times) when bioclogging is present compared to when it is absent. The migration depth and concentration of BTEX are observed to be restricted to a shallower depth in aquifers with the presence of microbial clogging. The outcome shows that electron acceptor consumption is more (around sevenfold for oxygen, fourfold for nitrate and threefold for sulphate) in the presence of bioclogging at the shallower zone. Zeroth order spatial moment and sensitivity analyses show that biological clogging, number of electron acceptors and inhibition constant substantially affect BTEX bioremediation in the vadose zone.


Assuntos
Biodegradação Ambiental , Hidrocarbonetos , Petróleo , Petróleo/metabolismo , Hidrocarbonetos/metabolismo , Poluentes do Solo/metabolismo , Solo/química , Modelos Teóricos , Elétrons
9.
J Hazard Mater ; 471: 134322, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38636238

RESUMO

This study focused on the effects of urea humate-based porous materials (UHPM) on soil aggregates, plant physiological characteristics, and microbial diversity to explore the effects of UHPM on the phytoremediation of petroleum-contaminated soil. The compositions of soil aggregates, ryegrass (Lolium perenne) biomass, plant petroleum enrichment capacity, and bacterial communities in soils with and without UHPM were investigated. The results showed that UHPM significantly increased soil aggregate content by 0.25 mm-5 mm, resulting in higher fertilizer holding capacity, erosion resistance capacity, and plant biomass and microbial number than the soil without UHPM mixed. In addition, UHPM decreased the absorption of petroleum by plants in the soil while increasing the abundance of degrading bacteria and petroleum-degrading-related genes in the soil, thereby promoting the removal of hard-to-degrade petroleum components. RDA showed that, compared with the unimproved soil, each soil indicator was positively correlated with a high abundance of degrading bacteria in the improved soil and was significant. UHPM can be regarded as a petroleum-contaminated soil remediation agent that combines slow nutrient release with soil improvement effects.


Assuntos
Bactérias , Biodegradação Ambiental , Lolium , Petróleo , Microbiologia do Solo , Poluentes do Solo , Poluentes do Solo/metabolismo , Petróleo/metabolismo , Bactérias/metabolismo , Bactérias/genética , Bactérias/classificação , Lolium/metabolismo , Ureia/metabolismo , Porosidade , Biomassa , Solo/química
10.
J Hazard Mater ; 470: 134137, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38555671

RESUMO

Petroleum hydrocarbons pose a significant threat to human health and the environment. Biochar has increasingly been utilized for soil remediation. This study investigated the potential of biochar immobilization using Serratia sp. F4 OR414381 for the remediation of petroleum-contaminated soil through a pot experiment conducted over 90 days. The treatments in this study, denoted as IMs (maize straw biochar-immobilized Serratia sp. F4), degraded 82.5% of the total petroleum hydrocarbons (TPH), 59.23% of the aromatic, and 90.1% of the saturated hydrocarbon fractions in the loess soils. During remediation, the soil pH values decreased from 8.76 to 7.33, and the oxidation-reduction potential (ORP) increased from 156 to 229 mV. The treatment-maintained soil nutrients of the IMs were 138.94 mg/kg of NO3- -N and 92.47 mg/kg of available phosphorus (AP), as well as 11.29% of moisture content. The activities of soil dehydrogenase (SDHA) and catalase (CAT) respectively increased by 14% and 15 times compared to the CK treatment. Three key petroleum hydrocarbon degradation genes, including CYP450, AJ025, and xylX were upregulated following IMs treatment. Microbial community analysis revealed that a substantial microbial population of 1.01E+ 09 cells/g soil and oil-degrading bacteria such as Salinimicrobium, Saccharibacteria_genera_incertae_sedis, and Brevundimonas were the dominant genera in IMs treatment. This suggests that the biochar immobilized on Serratia sp. F4 OR414381 improves soil physicochemical properties and enhances interactions among microbial populations, presenting a promising and environmentally friendly approach for the stable and efficient remediation of petroleum-contaminated loess soil.


Assuntos
Biodegradação Ambiental , Carvão Vegetal , Hidrocarbonetos , Petróleo , Serratia , Microbiologia do Solo , Poluentes do Solo , Serratia/metabolismo , Serratia/genética , Poluentes do Solo/metabolismo , Carvão Vegetal/química , Petróleo/metabolismo , Hidrocarbonetos/metabolismo , Poluição por Petróleo , Solo/química
11.
Arch Microbiol ; 206(4): 183, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38502272

RESUMO

This study aimed to reveal that the effect of biosurfactant on the dispersion and degradation of crude oil. Whole genome analysis showed that Pseudomonas aeruginosa GB-3 contained abundant genes involved in biosurfactant synthesis and metabolic processes and had the potential to degrade oil. The biosurfactant produced by strain GB-3 was screened by various methods. The results showed that the surface tension reduction activity was 28.6 mN·m-1 and emulsification stability was exhibited at different pH, salinity and temperature. The biosurfactant was identified as rhamnolipid by LC-MS and FTIR. The fermentation conditions of strain GB-3 were optimized by response surface methodology, finally the optimal system (carbon source: glucose, nitrogen source: ammonium sulfate, C/N ratio:16:1, pH: 7, temperature: 30-35 °C) was determined. Compared with the initial fermentation, the yield of biosurfactant increased by 4.4 times after optimization. In addition, rhamnolipid biosurfactant as a dispersant could make the dispersion of crude oil reach 38% within seven days, which enhanced the bioavailability of crude oil. As a biostimulant, it could also improve the activity of indigenous microorganism and increase the degradation rate of crude oil by 10-15%. This study suggested that rhamnolipid biosurfactant had application prospect in bioremediation of marine oil-spill.


Assuntos
Petróleo , Pseudomonas aeruginosa , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Tensoativos/química , Glicolipídeos/química , Petróleo/metabolismo
12.
Sci Total Environ ; 926: 171746, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38521276

RESUMO

Understanding the diversity and functions of hydrocarbon-degrading microorganisms in marine environments is crucial for both advancing knowledge of biogeochemical processes and improving bioremediation methods. In this study, we leveraged nearly 20,000 metagenome-assembled genomes (MAGs), recovered from a wide array of marine samples across the global oceans, to map the diversity of aerobic hydrocarbon-degrading microorganisms. A broad bacterial diversity was uncovered, with a notable preference for degrading aliphatic hydrocarbons over aromatic ones, primarily within Proteobacteria and Actinobacteriota. Three types of broad-spectrum hydrocarbon-degrading bacteria were identified for their ability to degrade various hydrocarbons and possession of multiple copies of hydrocarbon biodegradation genes. These bacteria demonstrate extensive metabolic versatility, aiding their survival and adaptability in diverse environmental conditions. Evidence of gene duplication and horizontal gene transfer in these microbes suggested a potential enhancement in the diversity of hydrocarbon-degrading bacteria. Positive correlations were observed between the abundances of hydrocarbon-degrading genes and environmental parameters such as temperature (-5 to 35 °C) and salinity (20 to 42 PSU). Overall, our findings offer valuable insights into marine hydrocarbon-degrading microorganisms and suggest considerations for selecting microbial strains for oil pollution remediation.


Assuntos
Metagenoma , Petróleo , Hidrocarbonetos/metabolismo , Bactérias/genética , Bactérias/metabolismo , Biodegradação Ambiental , Oceanos e Mares , Petróleo/metabolismo
13.
Sheng Wu Gong Cheng Xue Bao ; 40(3): 739-757, 2024 Mar 25.
Artigo em Chinês | MEDLINE | ID: mdl-38545974

RESUMO

Owing to human activities and industrial production, petroleum pollution has become a serious environmental issue. Microbial remediation technology, characterized by its eco-friendly characteristics, has drawn significant attention in petroleum pollution remediation. The application of molecular biology technology has led to a drastic revolution in microbial remediation technology, providing resources for the development of highly efficient degrading agents. However, limitations such as the lack of precision in species annotation and the limited detection sensitivity still exist. Other microbial remediation technologies also have substantial potential in enhancing the degradation efficiency of petroleum pollutants and reducing their environmental harm, especially biosurfactants and bio-stimulants, which offer relatively shorter remediation periods and lower costs, promising large-scale application in the future. Moreover, the combination of molecular biology and other microbial remediation technologies may become an effective tool for petroleum pollutant degradation. This review summarized the application of molecular biology methods in petroleum polluted environments, reviewed the recent research progress on microbial remediation techniques for petroleum-contaminated sites, discussed the remediation effects of these microbial remediation techniques, and proposed the future development direction of microbial remediation technology.


Assuntos
Poluentes Ambientais , Recuperação e Remediação Ambiental , Poluição por Petróleo , Petróleo , Poluentes do Solo , Humanos , Biodegradação Ambiental , Petróleo/metabolismo , Poluentes do Solo/metabolismo , Microbiologia do Solo
14.
Mycologia ; 116(3): 370-380, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38551373

RESUMO

This research investigated the antioxidant responses of Pleurotus florida at different concentrations of gas oil [0% (control), 2.5%, 5%, and 10% (v:v)] for 30 days. The activities of superoxide dismutase and catalase enzymes decreased in responses to the gas oil presence by an average of 83% and 49%, respectively. In contrast, the activities of the ascorbate peroxidase and glutathione peroxidase enzymes displayed an upward trend in the groups cultured in oil-contaminated media. The gas oil contaminant increased total phenol and flavonoid accumulation, reflecting the variation in secondary metabolism. According to the 1,2-diphenyl-2-picrylhydrazyl radical scavenging, the 2.5% gas oil treatment resulted in the highest antioxidant activity (48 µg mL-1). The highest scavenging activity of nitric oxide radicals (IC50 = 272 µg mL-1) was observed in the treatment with the highest gas oil concentration (10%). Also, this treatment showed an excellent ability to chelate Fe+2 ions (IC50 = 205 µg mL-1). The IC50 values of methanolic extract for nitric oxide scavenging activity and metal chelating ability were significantly reduced by increasing gas oil concentration in the treatments. With increasing the gas oil concentration, malondialdehyde content as a criterion measure of lipid peroxidation level showed significant reduction. These results show that P. florida is resistant to and a compatible mushroom with oil pollutants. Also, the activity of glutathione peroxidase and the ascorbate-glutathione cycle detoxify nitric oxide radicals and products of reactive oxygen species-induced lipid peroxidation in the gas oil treatments.


Assuntos
Antioxidantes , Pleurotus , Pleurotus/química , Pleurotus/metabolismo , Antioxidantes/farmacologia , Antioxidantes/química , Superóxido Dismutase/metabolismo , Óxido Nítrico/metabolismo , Glutationa Peroxidase/metabolismo , Catalase/metabolismo , Petróleo/metabolismo , Flavonoides/farmacologia
15.
Environ Sci Pollut Res Int ; 31(13): 20637-20650, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38383925

RESUMO

Intertidal mudflats are susceptible to oil pollution due to their proximity to discharges from industries, accidental spills from marine shipping activities, oil drilling, pipeline seepages, and river outflows. The experimental study was divided into two periods. In the first period, microcosm trials were carried out to examine the effect of chemically modified biochar on biological hydrocarbon removal from sediments. The modified biochar's surface area increased from 2.544 to 25.378 m2/g, followed by a corresponding increase in the hydrogen-carbon and oxygen-carbon ratio, indicating improved stability and polarity. In the second period, the effect of exogenous fungus - Scedoporium sp. ZYY on the bacterial community structure was examined in relation to total petroleum hydrocarbon (TPH) removal. The maximum TPH removal efficiency of 82.4% was achieved in treatments with the modified biochar, followed by a corresponding increase in Fluorescein diacetate hydrolysis activity. Furthermore, high-throughput 16S RNA gene sequencing employed to identify changes in the bacterial community of the original sediment and treatments before and after fungal inoculation revealed Proteobacteria as the dominant phylum. In addition, it was observed that Scedoporium sp. ZYY promoted the proliferation of specific TPH-degraders, particularly, Hyphomonas adhaerens which accounted for 77% of the total degrading populations in treatments where TPH removal was highest. Findings in this study provide valuable insights into the effect of modified biochar and the fundamental role of exogenous fungus towards the effective degradation of oil-contaminated intertidal mudflat sediments.


Assuntos
Carvão Vegetal , Petróleo , Scedosporium , Scedosporium/genética , Scedosporium/metabolismo , Biodegradação Ambiental , RNA Ribossômico 16S/genética , Hidrocarbonetos/metabolismo , Petróleo/metabolismo , Fungos/metabolismo , Carbono
16.
Arch Microbiol ; 206(3): 98, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38351169

RESUMO

Hydrocarbons are considered as one of the most common and harmful environmental pollutants affecting human health and the environment. Bioremediation as an environmentally friendly, highly efficient, and cost-effective method in remediating oil-contaminated environments has been interesting in recent decades. In this study, hydrocarbon degrader bacterial strains were isolated from the highly petroleum-contaminated soils in the Dehloran oil field in the west of Iran. Out of 37 isolates, 15 can grow on M9 agar medium that contains 1.5 g L-1 of crude oil as the sole carbon source. The morphological, biochemical, and 16SrRNA sequencing analyses were performed for the isolates. The choosing of the isolates as the hydrocarbon degrader was examined by evaluating the efficacy of their crude oil removal at a concentration of 10 g L-1 in an aqueous medium. The results showed that five isolates belonging to Pseudomonas sp., Pseudomonas oryzihabitans, Roseomonas aestuarii, Pantoea agglomerans, and Arthrobacter sp. had a hyper hydrocarbon-degrading activity and they could remove more than 85% of the total petroleum hydrocarbon (TPH) after 96 h. The highest TPH removal of about 95.75% and biodegradation rate of 0.0997 g L-1 h-1 was observed for P. agglomerans. The gas chromatography-mass spectroscopy (GC-MS) analysis was performed during the biodegradation process by P. agglomerans to detect the degradation intermediates and final products. The results confirmed the presence of intermediates such as alcohols and fatty acids in the terminal oxidation pathway of alkanes in this biodegradation process. A promising P. agglomerans NB391 strain can remove aliphatic and aromatic hydrocarbons simultaneously.


Assuntos
Hidrocarbonetos Aromáticos , Pantoea , Petróleo , Poluentes do Solo , Humanos , Pantoea/genética , Pantoea/metabolismo , Petróleo/metabolismo , Irã (Geográfico) , Poluentes do Solo/metabolismo , Hidrocarbonetos/metabolismo , Biodegradação Ambiental , Solo/química , Microbiologia do Solo
17.
Mar Pollut Bull ; 200: 116157, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38364643

RESUMO

The Blue Growth strategy promises a sustainable use of marine resources for the benefit of the society. However, oil pollution in the marine environment is still a serious issue for human, animal, and environmental health; in addition, it deprives citizens of the potential economic and recreational advantages in the affected areas. Bioremediation, that is the use of bio-resources for the degradation of pollutants, is one of the focal themes on which the Blue Growth aims to. A repertoire of marine-derived bio-products, biomaterials, processes, and services useful for efficient, economic, low impact, treatments for the recovery of oil-polluted areas has been demonstrated in many years of research around the world. Nonetheless, although bioremediation technology is routinely applied in soil, this is not still standardized in the marine environment and the potential market is almost underexploited. This review provides a summary of opportunities for the exploiting and addition of value to research products already validated. Moreover, the review discusses challenges that limit bioremediation in marine environment and actions that can facilitate the conveying of valuable products/processes towards the market.


Assuntos
Poluentes Ambientais , Poluição por Petróleo , Petróleo , Poluentes Químicos da Água , Animais , Humanos , Biodegradação Ambiental , Petróleo/metabolismo , Poluentes Químicos da Água/análise
18.
J Basic Microbiol ; 64(4): e2300585, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38346247

RESUMO

This study aimed to isolate biosurfactant-producing and hydrocarbon-degrading actinomycetes from different soils using glycerol-asparagine and starch-casein media with an antifungal agent. The glycerol-asparagine agar exhibited the highest number of actinomycetes, with a white, low-opacity medium supporting pigment production and high growth. Biosurfactant analyses, such as drop collapse, oil displacement, emulsification, tributyrin agar test, and surface tension measurement, were conducted. Out of 25 positive isolates, seven could utilize both olive oil and black oil for biosurfactant production, and only isolate RP1 could produce biosurfactant when grown in constrained conditions with black oil as the sole carbon source and inducer, demonstrating in situ bioremediation potential. Isolate RP1 from oil-spilled garden soil is Gram-staining-positive with a distinct earthy odor, melanin formation, and white filamentous colonies. It has a molecular size of ~621 bp and 100% sequence similarity to many Streptomyces spp. Morphological, biochemical, and 16 S rRNA analysis confirmed it as Streptomyces sp. RP1, showing positive results in all screenings, including high emulsification activity against kerosene (27.2%) and engine oil (95.8%), oil displacement efficiency against crude oil (7.45 cm), and a significant reduction in surface tension (56.7 dynes/cm). Streptomyces sp. RP1 can utilize citrate as a carbon source, tolerate sodium chloride, resist lysozyme, degrade petroleum hydrocarbons, and produce biosurfactant at 37°C in a 15 mL medium culture, indicating great potential for bioremediation and various downstream industrial applications with optimization.


Assuntos
Actinobacteria , Petróleo , Streptomyces , Actinobacteria/genética , Actinobacteria/metabolismo , Streptomyces/genética , Streptomyces/metabolismo , Actinomyces/metabolismo , Biodegradação Ambiental , Ágar , Glicerol , Asparagina , Hidrocarbonetos/metabolismo , Petróleo/metabolismo , Carbono , Tensoativos/química
19.
Sci Total Environ ; 919: 170756, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38340816

RESUMO

A plausible approach to remediating petroleum contaminated soil is the integration of chemical and biological treatments. Using appropriate chemical oxidation, the integrated remediation can be effectively achieved to stimulate the biodegradation process, consequently bolstering the overall remediation effect. In this study, an integrated biological-chemical-biological strategy was proposed. Both conventional microbial degradation techniques and a modified Fenton method were employed, and the efficacy of this strategy on crude oil contaminated soil, as well as its impact on pollutant composition, soil environment, and soil microorganism, was assessed. The results showed that this integrated remediation realized an overall 68.3 % removal rate, a performance 1.7 times superior to bioremediation alone and 2.1 times more effective than chemical oxidation alone, elucidating that the biodegradation which had become sluggish was invigorated by the judicious application of chemical oxidation. By optimizing the positioning of chemical treatment, the oxidization was allowed to act predominantly on refractory substances like resins, thus effectively enhancing pollutant biodegradability. Concurrently, this oxidating maneuver contributed to a significant increase in concentrations of dissolvable nutrients while maintaining appropriate soil pH levels, thereby generating favorable growth conditions for microorganism. Moreover, attributed to the proliferation and accumulation of degrading bacteria during the initial bioremediation phase, the microbial growth subsequent to oxidation showed rapid resurgence and the relative abundance of typical petroleum-degrading bacteria, particularly Proteobacteria, was substantially increased, which played a significant role in enhancing overall remediation effect. Our research validated the feasibility of biological-chemical-biological strategy and elucidated its correlating mechanisms, presenting a salient reference for the further studies concerning the integrated remediation of petroleum contaminated soil.


Assuntos
Poluentes Ambientais , Petróleo , Poluentes do Solo , Petróleo/metabolismo , Solo/química , Poluentes do Solo/análise , Microbiologia do Solo , Biodegradação Ambiental , Hidrocarbonetos/metabolismo
20.
Sci Rep ; 14(1): 3866, 2024 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-38365802

RESUMO

Hydrocarbon pollution is a major ecological problem facing oil-producing countries, especially in the Niger Delta region of Nigeria. In this study, a site that had been previously polluted by artisanal refining activity was investigated using 16S rRNA Illumina high-throughput sequencing technology and bioinformatics tools. These were used to investigate the bacterial diversity in soil with varying degrees of contamination, determined with a gas chromatography-flame ionization detector (GC-FID). Soil samples were collected from a heavily polluted (HP), mildly polluted (MP), and unpolluted (control sample, CS) portion of the study site. DNA was extracted using the Zymo Research (ZR) Fungi/Bacteria DNA MiniPrep kit, followed by PCR amplification and agarose gel electrophoresis. The microbiome was characterized based on the V3 and V4 hypervariable regions of the 16S rRNA gene. QIIME (Quantitative Insights Into Microbial Ecology) 2 software was used to analyse the sequence data. The final data set covered 20,640 demultiplexed high-quality reads and a total of 160 filtered bacterial OTUs. Proteobacteria dominated samples HP and CS, while Actinobacteria dominated sample MP. Denitratisoma, Pseudorhodoplanes, and Spirilospora were the leading genera in samples HP, CS, and MP respectively. Diversity analysis indicated that CS [with 25.98 ppm of total petroleum hydrocarbon (TPH)] is more diverse than HP (with 490,630 ppm of TPH) and MP (with 5398 ppm of TPH). A functional prediction study revealed that six functional modules dominated the dataset, with metabolism covering up to 70%, and 11 metabolic pathways. This study demonstrates that a higher hydrocarbon concentration in soil adversely impacts microbial diversity, creating a narrow bacterial diversity dominated by hydrocarbon-degrading species, in addition to the obvious land and ecosystem degradation caused by artisanal refining activities. Overall, the artisanal refining business is significantly driving ecosystem services losses in the Niger Delta, which calls for urgent intervention, with focus on bioremediation.


Assuntos
Microbiota , Petróleo , Poluentes do Solo , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Níger , Poluentes do Solo/metabolismo , Microbiologia do Solo , Bactérias/genética , Bactérias/metabolismo , Biodegradação Ambiental , Microbiota/genética , Petróleo/metabolismo , Hidrocarbonetos/metabolismo , Solo/química , DNA/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...