Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Virus Genes ; 57(3): 293-301, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33881682

RESUMO

Parsley severe stunt-associated virus (PSSaV) is a recently identified nanovirus first reported in Germany. During a survey for identification of nanoviruses infecting apiaceous plants in south-eastern Iran, PSSaV was identified and characterized using a combination of rolling circle amplification (RCA) and high-throughput sequencing. Parsley plant samples were collected from vegetable production farms in Kerman province. From two symptomatic samples (39Ba and 40Ba), seven PSSaV components (DNA-C, -S, -M, -R, -N, -U1 and -U2) with two phylogenetically distinct variants of DNA-R (R1 and R2) were identified. In common with the German isolate of PSSaV, no DNA-U4 component was identified. In addition, associated alphasatellite molecules were identified in samples 39Ba [n = 6] and 40Ba [n = 5]. Sequence analyses showed that concatenated component sequences of the two Iranian PSSaVs share 97.2% nucleotide identity with each other and 82% to the German isolate. The coat proteins (CPs) of the PSSaV Iranian sequences share 97.2% amino acid identity and ~ 84% identity with that of the German isolate. Sequence and phylogenetic analyses of a total of 11 recovered alphasatellites from the two samples can be classified into the genera Fabenesatellite [n = 2], Milvetsatellite [n = 1], Mivedwarsatellite [n = 2], Subclovsatellite [n = 2], Sophoyesatellite [n = 4] in the family Alphasatellitidae. Identification of PSSaV and other nanoviruses in wild and cultivated plants in Iran reveals that nanoviruses could be causing yield reduction in crops plants in this country.


Assuntos
Genoma Viral/genética , Petroselinum/virologia , Doenças das Plantas/genética , Vírus de Plantas/genética , DNA Viral/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Irã (Geográfico) , Filogenia , Doenças das Plantas/virologia , Vírus de Plantas/patogenicidade , Vírus Satélites/genética
2.
Virus Res ; 286: 198056, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32593914

RESUMO

Fresh leaf vegetables are a significant part of the Persian food. Following a survey for identification of nanoviruses and geminivirus infecting leaf vegetables, a novel geminivirus was identified in a diseased parsley sample showing upward marginal leaf curling, marginal leaf yellowing, dwarfing and reduced leaf size in south-eastern Iran. The genome was identified through combination of rolling circle amplification (RCA) and high throughput sequencing (HTS) approaches. The full-length genome (2779 nts) of the cloned geminivirus, parsley yellow leaf curl virus (PYLCV), shares <66 % genome-wide pairwise identity with all other known geminiviruses. The PYLCV genome has six open reading frames (ORFs) and appears to be a hybrid with the virion sense encoded proteins being most similar to those of becurtoviruses and curtoviruses, whereas the complementary sense encoded proteins are most similar to those of begomoviruses. In comparison with other geminivirus encoded capsid proteins (CPs) and replication associated proteins (Reps), the CP of PYLCV shares <56 % amino acid pairwise identity whereas the Rep shares <73 % amino acid pairwise identity. To demonstrate the pathogenicity of the geminivirus, a partial dimer infectious clone was constructed and used to agro-infect parsley as well as Nicotiana benthamiana, turnip, radish and tomato. The agro-inoculation resulted in infection with symptoms in 83.7 % (82/98) of the tested plant. Based on the similarity of the CP encoded by PYLCV to those of becurtoviruses and curtoviruses, it is likely that leafhoppers may be the primary transmission vector.


Assuntos
Geminiviridae/classificação , Genoma Viral , Petroselinum/virologia , Filogenia , DNA Viral/genética , Geminiviridae/isolamento & purificação , Sequenciamento de Nucleotídeos em Larga Escala , Irã (Geográfico) , Fases de Leitura Aberta , Doenças das Plantas/virologia , Análise de Sequência de DNA , Nicotiana/virologia
3.
Arch Virol ; 164(7): 1883-1887, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31079213

RESUMO

Using next-generation sequencing to characterize agents associated with a severe stunting disease of parsley from Germany, we identified a hitherto undescribed virus. We sequenced total RNA and rolling-circle-amplified DNA from diseased plants. The genome sequence of the virus shows that it is a member of the genus Nanovirus, but it lacks DNA-U4. In addition to the seven genomic DNAs of the virus, we identified a second DNA-R and seven distinct alphasatellites associated with the disease. We propose the name "parsley severe stunt associated virus" (PSSaV) for this novel nanovirus.


Assuntos
DNA Viral/genética , Nanovirus/genética , Nanovirus/isolamento & purificação , Petroselinum/virologia , Doenças das Plantas/virologia , Sequência de Bases , DNA Circular/genética , DNA Satélite/genética , DNA de Cadeia Simples/genética , Genoma Viral/genética , Alemanha , Sequenciamento de Nucleotídeos em Larga Escala , Nanovirus/classificação
4.
Int J Food Microbiol ; 257: 80-90, 2017 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-28646670

RESUMO

Microbial food-borne diseases are still frequently reported despite the implementation of microbial quality legislation to improve food safety. Among all the microbial agents, viruses are the most important causative agents of food-borne outbreaks. The development and application of a new generation of sequencing techniques to test for viral contaminants in fresh produce is an unexplored field that allows for the study of the viral populations that might be transmitted by the fecal-oral route through the consumption of contaminated food. To advance this promising field, parsley was planted and grown under controlled conditions and irrigated using contaminated river water. Viruses polluting the irrigation water and the parsley leaves were studied by using metagenomics. To address possible contamination due to sample manipulation, library preparation, and other sources, parsley plants irrigated with nutritive solution were used as a negative control. In parallel, viruses present in the river water used for plant irrigation were analyzed using the same methodology. It was possible to assign viral taxons from 2.4 to 74.88% of the total reads sequenced depending on the sample. Most of the viral reads detected in the river water were related to the plant viral families Tymoviridae (66.13%) and Virgaviridae (14.45%) and the phage viral families Myoviridae (5.70%), Siphoviridae (5.06%), and Microviridae (2.89%). Less than 1% of the viral reads were related to viral families that infect humans, including members of the Adenoviridae, Reoviridae, Picornaviridae and Astroviridae families. On the surface of the parsley plants, most of the viral reads that were detected were assigned to the Dicistroviridae family (41.52%). Sequences related to important viral pathogens, such as the hepatitis E virus, several picornaviruses from species A and B as well as human sapoviruses and GIV noroviruses were detected. The high diversity of viral sequences found in the parsley plants suggests that irrigation on fecally-tainted food may have a role in the transmission of a wide diversity of viral families. This finding reinforces the idea that the best way to avoid food-borne viral diseases is to introduce good field irrigation and production practices. New strains have been identified that are related to the Picornaviridae and distantly related to the Hepeviridae family. However, the detection of a viral genome alone does not necessarily indicate there is a risk of infection or disease development. Thus, further investigation is crucial for correlating the detection of viral metagenomes in samples with the risk of infection. There is also an urgent need to develop new methods to improve the sensitivity of current Next Generation Sequencing (NGS) techniques in the food safety area.


Assuntos
Vírus de DNA/classificação , Vírus de DNA/isolamento & purificação , Contaminação de Alimentos/análise , Doenças Transmitidas por Alimentos/virologia , Petroselinum/virologia , Vírus de RNA/classificação , Vírus de RNA/isolamento & purificação , Poluição da Água/análise , Surtos de Doenças , Fezes/virologia , Alimentos/virologia , Inocuidade dos Alimentos , Genoma Viral/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Metagenoma/genética , Metagenômica , Vírus de RNA/genética , Rios/virologia
5.
Food Environ Virol ; 7(4): 381-9, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26264153

RESUMO

The objective of this study was to identify sources of fecal contamination in leek and parsley, by using four different F(+)RNA coliphage genogroups (IV, I indicate animal fecal contamination and II, III indicate human fecal contamination). Three different concentrations (10(2), 10(4), 10(6) pfu/ml) of MS2 coliphage were inoculated on the surface of parsley and leek samples for detection of phage recovery efficiency among two methods of elution concentration (PEG-precipitation and Ultracentrifugation) by performing double agar layer (DAL) assay in three replications. Highest recovery of MS2 was observed in PEG method and in 10(6) inoculation concentration. Accordingly, the PEG method was used for washing and isolation of potentially contaminated phages of 30 collected samples (15 samples from the market and 15 samples from the farm). The final solutions of PEG method were tested for the enumeration of plaques by DAL assay. Total RNA was then extracted from recovered phages, and RT-PCR was performed by using four primer sets I, II, III, and IV. Incidence of F(+)RNA coliphages was observed in 12/15 (80 %) and 10/15 (66/6 %) of samples were obtained from farm and market, respectively, using both DAL and RT-PCR test methods. Different genotypes (I, II, and IV) of F(+)RNA coliphages were found in farm samples, while only genotype I was detected in market samples by using the primer sets. Due to the higher frequency of genotype I and IV, the absence of genotype III, and also the low frequency of genotype II, it is concluded that the contamination of vegetable (parsley and leek) in Neyshabour, Iran is most likely originated from animal sources.


Assuntos
Contaminação de Alimentos/prevenção & controle , Inspeção de Alimentos/métodos , Gastroenterite/virologia , Levivirus/isolamento & purificação , Cebolas/virologia , Petroselinum/virologia , RNA Viral/isolamento & purificação , Biomarcadores/análise , Precipitação Química , Humanos , Indicadores e Reagentes , Irã (Geográfico) , Levivirus/classificação , Tipagem Molecular , Cebolas/economia , Componentes Aéreos da Planta/virologia , Polietilenoglicóis/química , RNA Viral/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ultracentrifugação , Carga Viral
6.
Virus Genes ; 38(1): 187-8, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19020967

RESUMO

Carrot motley dwarf (CMD) is known to result from a mixed infection by two viruses, the polerovirus Carrot red leaf virus and one of the umbraviruses Carrot mottle mimic virus or Carrot mottle virus. Some umbraviruses have been shown to be associated with small satellite (sat) RNAs, but none have been reported for the latter two. A CMD-affected parsley plant was used for sap transmission to test plants, that were used for dsRNA isolation. The presence of a 0.8-kbp dsRNA indicated the occurrence of a hitherto unrecognized satRNA associated with CMD. The satRNAs of the CMD isolate from parsley and an isolate from carrot have been sequenced and showed 94% sequence identity. Nucleotide sequences and putative translation products had no significant similarities to GenBank entries. To our knowledge, this is the first report of satRNAs associated with CMD.


Assuntos
RNA Satélite/química , RNA Satélite/genética , Sequência de Bases , Daucus carota/virologia , Dados de Sequência Molecular , Petroselinum/virologia , Doenças das Plantas/virologia , Vírus de Plantas/genética , Homologia de Sequência do Ácido Nucleico
7.
J Food Prot ; 66(8): 1506-9, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12929848

RESUMO

A protocol has been developed to process cilantro and parsley samples for male-specific coliphages. Coliphage recovery depended on the duration of peptone rinsing, and whether the products were intact or cut. After 60 min of rinsing with 0.1% peptone, 78% of spiked coliphages were recovered from intact cilantro samples, and 60% of the spiked coliphages were recovered from cut cilantro samples. The protocol was field tested on a limited scale using cilantro and parsley samples from six retail outlets using enrichment-based and quantitative coliphage assays. Of the 18 retail cilantro and parsley samples that were analyzed, 50% (9 of 18) of the cilantro samples were positive for male-specific coliphages using the enrichment-based assay compared to 39% (7 of 18) of the parsley samples. Using the quantitative coliphage assay, only 28% (5 of 18) of the cilantro samples were positive, and none of the parsley samples were positive. The number of male-specific coliphages ranged between 1 and 11 plaque-forming units per 10 g of cilantro samples. None of the samples was positive for Escherichia coli. The results suggest that simplified male-specific coliphage screening of herb samples is possible and that male-specific coliphages be used along with conventional bacteriological indicators to screen produce for presence of fecal contamination.


Assuntos
Colífagos/isolamento & purificação , Coriandrum/virologia , Fezes/virologia , Petroselinum/virologia , Contagem de Colônia Microbiana , Qualidade de Produtos para o Consumidor , Escherichia coli/virologia , Contaminação de Alimentos , Microbiologia de Alimentos , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA