Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Science ; 383(6684): 732-739, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38359129

RESUMO

Polygalacturonase-inhibiting proteins (PGIPs) interact with pathogen-derived polygalacturonases to inhibit their virulence-associated plant cell wall-degrading activity but stimulate immunity-inducing oligogalacturonide production. Here we show that interaction between Phaseolus vulgaris PGIP2 (PvPGIP2) and Fusarium phyllophilum polygalacturonase (FpPG) enhances substrate binding, resulting in inhibition of the enzyme activity of FpPG. This interaction promotes FpPG-catalyzed production of long-chain immunoactive oligogalacturonides, while diminishing immunosuppressive short oligogalacturonides. PvPGIP2 binding creates a substrate binding site on PvPGIP2-FpPG, forming a new polygalacturonase with boosted substrate binding activity and altered substrate preference. Structure-based engineering converts a putative PGIP that initially lacks FpPG-binding activity into an effective FpPG-interacting protein. These findings unveil a mechanism for plants to transform pathogen virulence activity into a defense trigger and provide proof of principle for engineering PGIPs with broader specificity.


Assuntos
Fusarium , Phaseolus , Imunidade Vegetal , Proteínas de Plantas , Poligalacturonase , Fatores de Virulência , Imunidade Inata , Proteínas de Plantas/metabolismo , Poligalacturonase/metabolismo , Fatores de Virulência/metabolismo , Fusarium/imunologia , Fusarium/patogenicidade , Phaseolus/imunologia , Phaseolus/microbiologia
3.
Plant Sci ; 312: 111036, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34620440

RESUMO

Like in mammals, the plant immune system has evolved to perceive damage. Damaged-associated molecular patterns (DAMPs) are endogenous signals generated in wounded or infected tissue after pathogen or insect attack. Although extracellular DNA (eDNA) is a DAMP signal that induces immune responses, plant responses after eDNA perception remain largely unknown. Here, we report that signaling defenses but not direct defense responses are induced after eDNA applications enhancing broad-range plant protection. A screening of defense signaling and hormone biosynthesis marker genes revealed that OXI1, CML37 and MPK3 are relevant eDNA-Induced Resistance markers (eDNA-IR). Additionally, we observed that eDNA from several Arabidopsis ecotypes and other phylogenetically distant plants such as citrus, bean and, more surprisingly, a monocotyledonous plant such as maize upregulates eDNA-IR marker genes. Using 3,3'-Diaminobenzidine (DAB) and aniline blue staining methods, we observed that H2O2 but not callose was strongly accumulated following self-eDNA treatments. Finally, eDNA resulted in effective induced resistance in Arabidopsis against the pathogens Hyaloperonospora arabidopsidis, Pseudomonas syringae, and Botrytis cinerea and against aphid infestation, reducing the number of nymphs and moving forms. Hence, the unspecificity of DNA origin and the wide range of insects to which eDNA can protect opens many questions about the mechanisms behind eDNA-IR.


Assuntos
Arabidopsis/genética , DNA/farmacologia , Resistência à Doença/genética , Resistência à Doença/imunologia , Imunidade Vegetal/genética , Transdução de Sinais/genética , Zea mays/genética , Arabidopsis/imunologia , Arabidopsis/microbiologia , Brassica/genética , Brassica/imunologia , Brassica/microbiologia , Citrus/genética , Citrus/imunologia , Citrus/microbiologia , Produtos Agrícolas/genética , Produtos Agrícolas/imunologia , Produtos Agrícolas/microbiologia , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética , Genótipo , Phaseolus/genética , Phaseolus/imunologia , Phaseolus/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Solanum/genética , Solanum/imunologia , Solanum/microbiologia , Spinacia oleracea/genética , Spinacia oleracea/imunologia , Spinacia oleracea/microbiologia , Zea mays/imunologia , Zea mays/microbiologia
4.
Theor Appl Genet ; 134(8): 2379-2398, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34128089

RESUMO

KEY MESSAGE: Methyl esterase (MES), PvMES1, contributes to the defense response toward Fusarium wilt in common beans by regulating the salicylic acid (SA) mediated signaling pathway from phenylpropanoid synthesis and sugar metabolism as well as others. Common bean (Phaseolus vulgaris L.) is an important food legume. Fusarium wilt caused by Fusarium oxysporum f. sp. phaseoli is one of the most serious soil-borne diseases of common bean found throughout the world and affects the yield and quality of the crop. Few sources of Fusarium wilt resistance exist in legumes and most are of quantitative inheritance. In this study, we have identified a methyl esterase (MES), PvMES1, that contributes to plant defense response by regulating the salicylic acid (SA) mediated signaling pathway in response to Fusarium wilt in common beans. The result showed the role of PvMES1 in regulating SA levels in common bean and thus the SA signaling pathway and defense response mechanism in the plant. Overexpression of the PvMES1 gene enhanced Fusarium wilt resistance; while silencing of the gene caused susceptibility to the diseases. RNA-seq analysis with these transiently modified plants showed that genes related to SA level changes included the following gene ontologies: (a) phenylpropanoid synthesis; (b) sugar metabolism; and (c) interaction between host and pathogen as well as others. These key signal elements activated the defense response pathway in common bean to Fusarium wilt. Collectively, our findings indicate that PvMES1 plays a pivotal role in regulating SA biosynthesis and signaling, and increasing Fusarium wilt resistance in common bean, thus providing novel insight into the practical applications of both SA and MES genes and pathways they contribute to for developing elite crop varieties with enhanced broad-spectrum resistance to this critical disease.


Assuntos
Resistência à Doença/imunologia , Fusarium/fisiologia , Oxirredutases O-Desmetilantes/metabolismo , Phaseolus/imunologia , Doenças das Plantas/imunologia , Proteínas de Plantas/metabolismo , Ácido Salicílico/metabolismo , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Oxirredutases O-Desmetilantes/genética , Phaseolus/genética , Phaseolus/crescimento & desenvolvimento , Phaseolus/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Transdução de Sinais
5.
Plant Sci ; 305: 110834, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33691968

RESUMO

Priming is a mechanism of defense that prepares the plant's immune system for a faster and/or stronger activation of cellular defenses against future exposure to different types of stress. This enhanced resistance can be achieved by using inorganic and organic compounds which imitate the biological induction of systemic acquired resistance. INA (2,6 dichloro-isonicotinic acid) was the first synthetic compound created as a resistance inducer for plant-pathogen interactions. However, the use of INA to activate primed resistance in common bean, at the seed stage and during germination, remains experimentally unexplored. Here, we test the hypothesis that INA-seed treatment would induce resistance in common bean plants to Pseudomonas syringae pv. phaseolicola, and that the increased resistance is not accompanied by a tradeoff between plant defense and growth. Additionally, it was hypothesized that treating seeds with INA has a transgenerational priming effect. We provide evidence that seed treatment activates a primed state for disease resistance, in which low nucleosome enrichment and reduced histone activation marks during the priming phase, are associated with a defense-resistant phenotype, characterized by symptom appearance, pathogen accumulation, yield, and changes in gene expression. In addition, the priming status for induced resistance can be inherited to its offspring.


Assuntos
Resistência à Doença/imunologia , Germinação/imunologia , Ácidos Isonicotínicos/metabolismo , Phaseolus/imunologia , Phaseolus/metabolismo , Sementes/crescimento & desenvolvimento , Sementes/imunologia , Produtos Agrícolas/imunologia , Produtos Agrícolas/metabolismo , Doenças das Plantas/microbiologia , Pseudomonas syringae/patogenicidade
6.
J Agric Food Chem ; 69(4): 1379-1390, 2021 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-33464885

RESUMO

A high content of potentially allergenic lectin in Phaseolus vulgaris L. beans is of increasing health concerns; however, understanding of the protein allergenicity mechanism on the molecular basis is scarce. In the present study, low-pH treatments were applied to modify black turtle bean lectin allergen, and a sensitization procedure was performed using the BALB/c mice for the allergenicity evaluation, while the conformational changes were monitored by the spectral analyses and the details were explored by the molecular dynamics simulation. Much milder anaphylactic responses were observed in BALB/c mice experiments. At the molecular level, the protein was unfolded in low acidic environments because of protonation, and α-helix was reduced with the exposure of trypsin cleavage sites, especially the improvement of protease accessibility for Lys121, 134, and 157 in the B cell epitope structural alterations. These results indicate that a low-pH treatment might be an efficient method to improve the safety of legume protein consumption.


Assuntos
Alérgenos/química , Lectinas/química , Phaseolus/imunologia , Alérgenos/imunologia , Animais , Linfócitos B/imunologia , Feminino , Manipulação de Alimentos , Hipersensibilidade Alimentar/imunologia , Humanos , Concentração de Íons de Hidrogênio , Lectinas/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Phaseolus/genética , Sementes/química , Sementes/imunologia
7.
Genes (Basel) ; 13(1)2021 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-35052407

RESUMO

RNA silencing serves key roles in a multitude of cellular processes, including development, stress responses, metabolism, and maintenance of genome integrity. Dicer, Argonaute (AGO), double-stranded RNA binding (DRB) proteins, RNA-dependent RNA polymerase (RDR), and DNA-dependent RNA polymerases known as Pol IV and Pol V form core components to trigger RNA silencing. Common bean (Phaseolus vulgaris) is an important staple crop worldwide. In this study, we aimed to unravel the components of the RNA-guided silencing pathway in this non-model plant, taking advantage of the availability of two genome assemblies of Andean and Meso-American origin. We identified six PvDCLs, thirteen PvAGOs, 10 PvDRBs, 5 PvRDRs, in both genotypes, suggesting no recent gene amplification or deletion after the gene pool separation. In addition, we identified one PvNRPD1 and one PvNRPE1 encoding the largest subunits of Pol IV and Pol V, respectively. These genes were categorized into subgroups based on phylogenetic analyses. Comprehensive analyses of gene structure, genomic localization, and similarity among these genes were performed. Their expression patterns were investigated by means of expression models in different organs using online data and quantitative RT-PCR after pathogen infection. Several of the candidate genes were up-regulated after infection with the fungus Colletotrichum lindemuthianum.


Assuntos
Colletotrichum/fisiologia , Regulação da Expressão Gênica de Plantas , Estudo de Associação Genômica Ampla , Phaseolus/genética , Doenças das Plantas/genética , Proteínas de Plantas/metabolismo , Interferência de RNA , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Phaseolus/crescimento & desenvolvimento , Phaseolus/imunologia , Phaseolus/microbiologia , Filogenia , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo , Transcriptoma
8.
Immunol Invest ; 50(4): 389-398, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-32506984

RESUMO

Background: The cross-reactive allergen between mugwort (Artemisia vulgaris) and kidney bean (Phaseolus vulgaris) has not yet been identified.Methods: A total of 24 patients were included in this study. The sera of patients were analyzed for the concentrations of specific IgE antibodies. The allergenicity and cross-reactivity were investigated by Western blotting and immunoblot inhibitory experiments.Results: The immunoblotting indicated the binding of patients' IgE to crude mugwort extract at ~26 kDa protein (15 cases), ~60 kDa (15 cases), and 10-15 kDa proteins (12 cases). The results of the immunoblot-inhibition assay showed that kidney bean seed extract inhibited specific IgE binding to mugwort at 10-15 kDa, ~26 kDa, and ~60 kDa in 4 (16.7%), 1 (4.2%) and 2 (8.3%) cases, respectively. On the other hand, mugwort extract was demonstrated to inhibit specific IgE binding to kidney bean seed at 10-15 kDa, 15-20 kDa, ~30 kDa, and 60 kDa in 1 (4.2%), 3 (12.5%), 4 (16.7%), and 3 (12.5%) cases, respectively.Conclusion: The 26-30 kDa, 10-15 kDa, and 60 kDa proteins are potential causative agents of the cross-reactivity between mugwort and kidney beans. The findings of this study improved the current understanding on the allergenicity of kidney beans and would provide insights into the refinement of treatment strategy for anaphylaxis.


Assuntos
Alérgenos/imunologia , Anafilaxia/imunologia , Antígenos de Plantas/imunologia , Artemisia/imunologia , Exercício Físico , Phaseolus/imunologia , Pólen/imunologia , Rinite Alérgica Sazonal/imunologia , Anafilaxia/sangue , Reações Cruzadas , Humanos , Imunoglobulina E/sangue , Extratos Vegetais/imunologia , Rinite Alérgica Sazonal/sangue , Sementes/imunologia
9.
J Clin Invest ; 130(10): 5477-5492, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32634131

RESUMO

Transcription infidelity (TI) is a mechanism that increases RNA and protein diversity. We found that single-base omissions (i.e., gaps) occurred at significantly higher rates in the RNA of highly allergenic legumes. Transcripts from peanut, soybean, sesame, and mite allergens contained a higher density of gaps than those of nonallergens. Allergen transcripts translate into proteins with a cationic carboxy terminus depleted in hydrophobic residues. In mice, recombinant TI variants of the peanut allergen Ara h 2, but not the canonical allergen itself, induced, without adjuvant, the production of anaphylactogenic specific IgE (sIgE), binding to linear epitopes on both canonical and TI segments of the TI variants. The removal of cationic proteins from bovine lactoserum markedly reduced its capacity to induce sIgE. In peanut-allergic children, the sIgE reactivity was directed toward both canonical and TI segments of Ara h 2 variants. We discovered 2 peanut allergens, which we believe to be previously unreported, because of their RNA-DNA divergence gap patterns and TI peptide amino acid composition. Finally, we showed that the sIgE of children with IgE-negative milk allergy targeted cationic proteins in lactoserum. We propose that it is not the canonical allergens, but their TI variants, that initiate sIgE isotype switching, while both canonical and TI variants elicit clinical allergic reactions.


Assuntos
Alérgenos/genética , Alérgenos/imunologia , Fabaceae/genética , Fabaceae/imunologia , Mudança da Fase de Leitura do Gene Ribossômico , Proteínas de Plantas/genética , Proteínas de Plantas/imunologia , Albuminas 2S de Plantas/genética , Albuminas 2S de Plantas/imunologia , Adolescente , Anafilaxia/etiologia , Anafilaxia/imunologia , Animais , Antígenos de Plantas/genética , Antígenos de Plantas/imunologia , Arachis/genética , Arachis/imunologia , Bovinos , Criança , Pré-Escolar , Feminino , Variação Genética , Humanos , Soros Imunes/genética , Soros Imunes/imunologia , Imunoglobulina E/biossíntese , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Hipersensibilidade a Leite/imunologia , Hipersensibilidade a Amendoim/etiologia , Hipersensibilidade a Amendoim/imunologia , Phaseolus/genética , Phaseolus/imunologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Glycine max/genética , Glycine max/imunologia , Transcrição Gênica
10.
PLoS One ; 15(2): e0228680, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32017794

RESUMO

Common bean (Phaseolus vulgaris L.) is a major source of proteins and one of the most important edible foods for more than three hundred million people in the world. The common bean plants are frequently attacked by spider mite (Tetranychus urticae Koch), leading to a significant decrease in plant growth and economic performance. The use of resistant cultivars and the identification of the genes involved in plant-mite resistance are practical solutions to this problem. Hence, a comprehensive study of the molecular interactions between resistant and susceptible common bean cultivars and spider mite can shed light into the understanding of mechanisms and biological pathways of resistance. In this study, one resistant (Naz) and one susceptible (Akhtar) cultivars were selected for a transcriptome comparison at different time points (0, 1 and 5 days) after spider mite feeding. The comparison of cultivars in different time points revealed several key genes, which showed a change increase in transcript abundance via spider mite infestation. These included genes involved in flavonoid biosynthesis process; a conserved MYB-bHLH-WD40 (MBW) regulatory complex; transcription factors (TFs) TT2, TT8, TCP, Cys2/His2-type and C2H2-type zinc finger proteins; the ethylene response factors (ERFs) ERF1 and ERF9; genes related to metabolism of auxin and jasmonic acid (JA); pathogenesis-related (PR) proteins and heat shock proteins.


Assuntos
Ácaros/patogenicidade , Phaseolus/imunologia , Transcriptoma , Animais , Perfilação da Expressão Gênica , Genes de Plantas , Interações Hospedeiro-Patógeno , Infestações por Ácaros , Phaseolus/genética , Phaseolus/parasitologia , Fatores de Tempo
11.
Genes (Basel) ; 11(2)2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-32046085

RESUMO

Common bean (Phaseolus vulgaris L.) is a major legume and is frequently attacked by fungal pathogens, including Fusarium solani f. sp. phaseoli (FSP), which cause Fusarium root rot. FSP substantially reduces common bean yields across the world, including China, but little is known about how common bean plants defend themselves against this fungal pathogen. In the current study, we combined next-generation RNA sequencing and metabolomics techniques to investigate the changes in gene expression and metabolomic processes in common bean infected with FSP. There were 29,722 differentially regulated genes and 300 differentially regulated metabolites between control and infected plants. The combined omics approach revealed that FSP is perceived by PAMP-triggered immunity and effector-triggered immunity. Infected seedlings showed that common bean responded by cell wall modification, ROS generation, and a synergistic hormone-driven defense response. Further analysis showed that FSP induced energy metabolism, nitrogen mobilization, accumulation of sugars, and arginine and proline metabolism. Importantly, metabolic pathways were most significantly enriched, which resulted in increased levels of metabolites that were involved in the plant defense response. A correspondence between the transcript pattern and metabolite profile was observed in the discussed pathways. The combined omics approach enhances our understanding of the less explored pathosystem and will provide clues for the development of common bean cultivars' resistant to FSP.


Assuntos
Fusarium/patogenicidade , Interações entre Hospedeiro e Microrganismos/genética , Phaseolus/microbiologia , Doenças das Plantas/imunologia , Plântula/microbiologia , Transcriptoma/genética , Arginina/metabolismo , Parede Celular/genética , Parede Celular/metabolismo , Parede Celular/microbiologia , Cromatografia Líquida de Alta Pressão , Metabolismo Energético , Regulação da Expressão Gênica de Plantas/genética , Ontologia Genética , Espectrometria de Massas , Metabolômica , Nitrogênio/metabolismo , Phaseolus/genética , Phaseolus/imunologia , Phaseolus/metabolismo , Doenças das Plantas/microbiologia , Raízes de Plantas/genética , Raízes de Plantas/imunologia , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Prolina/metabolismo , RNA-Seq , Espécies Reativas de Oxigênio/metabolismo , Plântula/genética , Plântula/imunologia , Plântula/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Açúcares/metabolismo
12.
Sci Rep ; 9(1): 11719, 2019 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-31406222

RESUMO

Zombi pea (Vigna vexillata) is a legume crop that is resistant to several biotic and abiotic stresses. Callosobruchus maculatus and Callosobruchus chinensis are serious stored-insect pests of legume crops. We constructed a high-density linkage map and performed quantitative trait loci (QTLs) mapping for resistance to these insect species in zombi pea. An F2 population of 198 individuals from a cross between 'TVNu 240' (resistant) and 'TVNu 1623' (susceptible) varieties was used to construct a linkage map of 6,529 single nucleotide polymorphism markers generated from sequencing amplified fragments of specific loci. The map comprised 11 linkage groups, spanning 1,740.9 cM, with an average of 593.5 markers per linkage group and an average distance of 0.27 cM between markers. High levels of micro-synteny between V. vexillata and cowpea (Vigna unguiculata), mungbean (Vigna radiata), azuki bean (Vigna angularis) and common bean (Phaseolus vulgaris) were found. One major and three minor QTLs for C. chinensis resistance and one major and one minor QTLs for C. maculatus resistance were identified. The major QTLs for resistance to C. chinensis and C. maculatus appeared to be the same locus. The linkage map developed in this study will facilitate the identification of useful genes/QTLs in zombi pea.


Assuntos
Ligação Genética , Genoma de Planta , Locos de Características Quantitativas , Vigna/genética , Vigna/imunologia , Gorgulhos/patogenicidade , Animais , Mapeamento Cromossômico , Produtos Agrícolas , Cruzamentos Genéticos , Feminino , Herbivoria/fisiologia , Masculino , Phaseolus/genética , Phaseolus/imunologia , Phaseolus/parasitologia , Polimorfismo de Nucleotídeo Único , Sintenia , Vigna/parasitologia , Gorgulhos/fisiologia
13.
Planta ; 250(4): 1281-1292, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31240396

RESUMO

MAIN CONCLUSION: Cyanogenic glycosides present in the seeds of wild lima bean plants are associated with seedling defense but do not affect seed germination and seedling growth. Wild lima bean plants contain cyanogenic glycosides (CNGs) that are known to defend the plant against leaf herbivores. However, seed feeders appear to be unaffected despite the high levels of CNGs in the seeds. We investigated a possible role of CNGs in seeds as nitrogen storage compounds that influence plant growth, as well as seedling resistance to herbivores. Using seeds from four different wild lima bean natural populations that are known to vary in CNG levels, we tested two non-mutually exclusive hypotheses: (1) seeds with higher levels of CNGs produce seedlings that are more resistant against generalist herbivores and, (2) seeds with higher levels of CNGs germinate faster and produce plants that exhibit better growth. Levels of CNGs in the seeds were negatively correlated with germination rates and not correlated with seedling growth. However, levels of CNGs increased significantly soon after germination and seeds with the highest CNG levels produced seedlings with higher CNG levels in cotyledons. Moreover, the growth rate of the generalist herbivore Spodoptera littoralis was lower in cotyledons with high-CNG levels. We conclude that CNGs in lima bean seeds do not play a role in seed germination and seedling growth, but are associated with seedling defense. Our results provide insight into the potential dual function of plant secondary metabolites as defense compounds and storage molecules for growth and development.


Assuntos
Glicosídeos/metabolismo , Phaseolus/química , Imunidade Vegetal , Spodoptera/fisiologia , Animais , Germinação , Herbivoria , Nitrogênio/metabolismo , Phaseolus/crescimento & desenvolvimento , Phaseolus/imunologia , Phaseolus/parasitologia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/imunologia , Folhas de Planta/parasitologia , Metabolismo Secundário , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/imunologia , Plântula/fisiologia , Sementes/química , Sementes/crescimento & desenvolvimento , Sementes/imunologia , Sementes/parasitologia
14.
New Phytol ; 224(2): 875-885, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30903698

RESUMO

The two-spotted spider mite (Tetranychus urticae) is a plant-sucking arthropod herbivore that feeds on a wide array of cultivated plants. In contrast to the well-characterized classical chewing herbivore salivary elicitors that promote plant defense responses, little is known about sucking herbivores' elicitors. To characterize the sucking herbivore elicitors, we explored putative salivary gland proteins of spider mites by using an Agrobacterium-mediated transient expression system or protein infiltration in damaged bean leaves. Two candidate elicitors (designated as tetranin1 (Tet1) and tetranin2 (Tet2)) triggered early leaf responses (cytosolic calcium influx and membrane depolarization) and increased the transcript abundances of defense genes in the leaves, eventually resulting in reduced survivability of T. urticae on the host leaves as well as induction of indirect plant defenses by attracting predatory mites. Tet1 and/or Tet2 also induced jasmonate, salicylate and abscisic acid biosynthesis. Notably, Tet2-induced signaling cascades were also activated via the generation of reactive oxygen species. The signaling cascades of these two structurally dissimilar elicitors are mostly overlapping but partially distinct and thus they would coordinate the direct and indirect defense responses in host plants under spider mite attack in both shared and distinct manners.


Assuntos
Phaseolus/parasitologia , Doenças das Plantas/parasitologia , Solanum melongena/parasitologia , Tetranychidae/fisiologia , Agrobacterium tumefaciens , Animais , Cálcio , Bases de Dados Genéticas , Feminino , Regulação da Expressão Gênica , Phaseolus/imunologia , Doenças das Plantas/imunologia , Folhas de Planta/imunologia , Folhas de Planta/parasitologia , Espécies Reativas de Oxigênio , Solanum melongena/imunologia
15.
PLoS One ; 14(2): e0212140, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30730982

RESUMO

Common bean (Phaseolus vulgaris L.) is an important high protein crop grown worldwide. North Dakota and Minnesota are the largest producers of common beans in the USA, but crop production is threatened by soybean cyst nematode (SCN; Heterodera glycines Ichinohe) because most current cultivars are susceptible. Greenhouse screening data using SCN HG type 0 from 317 plant introductions (PI's) from the USDA core collection was used to conduct a genome wide association study (GWAS). These lines were divided into two subpopulations based on principal component analysis (Middle American vs. Andean). Phenotypic results based on the female index showed that accessions could be classified as highly resistant (21% and 27%), moderately resistant (51% and 48%), moderately susceptible (27% and 22%) and highly susceptible (1% and 3%) for Middle American and Andean gene pools, respectively. Mixed models with two principal components (PCs) and kinship matrix for Middle American genotypes and Andean genotypes were used in the GWAS analysis using 3,985 and 4,811 single nucleotide polymorphic (SNP) markers, respectively which were evenly distributed across all 11 chromosomes. Significant peaks on Pv07, and Pv11 in Middle American and on Pv07, Pv08, Pv09 and Pv11 in Andean group were found to be associated with SCN resistance. Homologs of soybean rhg1, a locus which confers resistance to SCN in soybean, were identified on chromosomes Pv01 and Pv08 in the Middle American and Andean gene pools, respectively. These genomic regions may be the key to develop SCN-resistant common bean cultivars.


Assuntos
Resistência à Doença/genética , Genoma de Planta/genética , Estudo de Associação Genômica Ampla , Phaseolus/genética , Phaseolus/imunologia , Doenças das Plantas/imunologia , Tylenchoidea/fisiologia , Animais , Fenótipo , Polimorfismo de Nucleotídeo Único
16.
ISME J ; 12(12): 3038-3042, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30018368

RESUMO

Over the past century, plant breeding programs have substantially improved plant growth and health, but have not yet considered the potential effects on the plant microbiome. Here, we conducted metatranscriptome analysis to determine if and how breeding for resistance of common bean against the root pathogen Fusarium oxysporum (Fox) affected gene expression in the rhizobacterial community. Our data revealed that the microbiome of the Fox-resistant cultivar presented a significantly higher expression of genes associated with nutrient metabolism, motility, chemotaxis, and the biosynthesis of the antifungal compounds phenazine and colicin V. Network analysis further revealed a more complex community for Fox-resistant cultivar and indicated Paenibacillus as a keystone genus in the rhizosphere microbiome. We suggest that resistance breeding in common bean has unintentionally co-selected for plant traits that strengthen the rhizosphere microbiome network structure and enrich for specific beneficial bacterial genera that express antifungal traits involved in plant protection against infections by root pathogens.


Assuntos
Bactérias/crescimento & desenvolvimento , Resistência à Doença/genética , Fusarium/imunologia , Microbiota , Phaseolus/imunologia , Microbiologia do Solo , Phaseolus/genética , Phaseolus/microbiologia , Melhoramento Vegetal , Raízes de Plantas/genética , Raízes de Plantas/imunologia , Raízes de Plantas/microbiologia , Rizosfera , Solo/química
17.
PLoS One ; 13(2): e0191700, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29389971

RESUMO

Common bean (Phaseolus vulgaris L.) is one of the most important grain legume crops in the world. The beans grown in north-western Himalayas possess huge diversity for seed color, shape and size but are mostly susceptible to Anthracnose disease caused by seed born fungus Colletotrichum lindemuthianum. Dozens of QTLs/genes have been already identified for this disease in common bean world-wide. However, this is the first report of gene/QTL discovery for Anthracnose using bean germplasm from north-western Himalayas of state Jammu & Kashmir, India. A core set of 96 bean lines comprising 54 indigenous local landraces from 11 hot-spots and 42 exotic lines from 10 different countries were phenotyped at two locations (SKUAST-Jammu and Bhaderwah, Jammu) for Anthracnose resistance. The core set was also genotyped with genome-wide (91) random and trait linked SSR markers. The study of marker-trait associations (MTAs) led to the identification of 10 QTLs/genes for Anthracnose resistance. Among the 10 QTLs/genes identified, two MTAs are stable (BM45 & BM211), two MTAs (PVctt1 & BM211) are major explaining more than 20% phenotypic variation for Anthracnose and one MTA (BM211) is both stable and major. Six (06) genomic regions are reported for the first time, while as four (04) genomic regions validated the already known QTL/gene regions/clusters for Anthracnose. The major, stable and validated markers reported during the present study associated with Anthracnose resistance will prove useful in common bean molecular breeding programs aimed at enhancing Anthracnose resistance of local bean landraces grown in north-western Himalayas of state Jammu and Kashmir.


Assuntos
Colletotrichum/genética , Genes Fúngicos , Phaseolus/microbiologia , Locos de Características Quantitativas , Mapeamento Cromossômico , Cromossomos Fúngicos , Marcadores Genéticos , Genótipo , Índia , Phaseolus/imunologia
18.
Mol Plant Pathol ; 19(7): 1765-1778, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29352746

RESUMO

Receptor-like kinases are membrane proteins that can be shared by diverse signalling pathways. Among them, the Arabidopsis thaliana FERONIA (FER) plays a role in the balance between distinct signals to control growth and defence. We have found that COK-4, a putative kinase encoded in the common bean anthracnose resistance locus Co-4, which is transcriptionally regulated during the immune response, is highly similar to the kinase domain of FER. To assess whether COK-4 is a functional orthologue of FER, we expressed COK-4 in the wild-type Col-0 and the fer-5 mutant of Arabidopsis and evaluated FER-associated traits. We observed that fer-5 plants show an enhanced apoplastic and stomatal defence against Pseudomonas syringae. In addition, the fer-5 mutant shows reduced biomass, smaller guard cell size, greater number of stomata per leaf area, fewer leaves, faster transition to reproductive stage and lower seed weight per plant than the wild-type Col-0. Except for the stomatal complex length and number of stomata, COK-4 expression in fer-5 lines partially or completely rescued both defence and developmental defects of fer-5 to the wild-type level. Notably, COK-4 may have an additive effect to FER, as the expression of COK-4 in Col-0 resulted in enhanced defence and growth phenotypes in comparison with wild-type Col-0 plants. Altogether, these findings indicate that the common bean COK-4 shares at least some of the multiple functions of the Arabidopsis FER kinase domain, acting in both the induction of plant growth and regulation of plant defence.


Assuntos
Arabidopsis/imunologia , Arabidopsis/metabolismo , Phaseolus/imunologia , Phaseolus/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Phaseolus/genética , Imunidade Vegetal/genética , Imunidade Vegetal/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
19.
Brain Behav Immun ; 72: 78-88, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29042243

RESUMO

Mammals sense self or non-self extracellular or extranuclear DNA fragments (hereinafter collectively termed eDNA) as indicators of injury or infection and respond with immunity. We hypothesised that eDNA acts as a damage-associated molecular pattern (DAMP) also in plants and that it contributes to self versus non-self discrimination. Treating plants and suspension-cultured cells of common bean (Phaseolus vulgaris) with fragmented self eDNA (obtained from other plants of the same species) induced early, immunity-related signalling responses such as H2O2 generation and MAPK activation, decreased the infection by a bacterial pathogen (Pseudomonas syringae) and increased an indirect defence to herbivores (extrafloral nectar secretion). By contrast, non-self DNA (obtained from lima bean, Phaseolus lunatus, and Acacia farnesiana) had significantly lower or no detectable effects. Only fragments below a size of 700 bp were active, and treating the eDNA preparation DNAse abolished its inducing effects, whereas treatment with RNAse or proteinase had no detectable effect. These findings indicate that DNA fragments, rather than small RNAs, single nucleotides or proteins, accounted for the observed effects. We suggest that eDNA functions a DAMP in plants and that plants discriminate self from non-self at a species-specific level. The immune systems of plants and mammals share multiple central elements, but further work will be required to understand the mechanisms and the selective benefits of an immunity response that is triggered by eDNA in a species-specific manner.


Assuntos
Alarminas/genética , Ácidos Nucleicos Livres/fisiologia , Plantas/imunologia , Alarminas/metabolismo , Alarminas/fisiologia , Ácidos Nucleicos Livres/genética , Ácidos Nucleicos Livres/imunologia , DNA/imunologia , DNA/metabolismo , Imunidade Inata/genética , Sistema de Sinalização das MAP Quinases/imunologia , Phaseolus/genética , Phaseolus/imunologia , Plantas/genética , Espécies Reativas de Oxigênio/metabolismo , Tolerância a Antígenos Próprios/imunologia
20.
Phytopathology ; 107(12): 1515-1521, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28742459

RESUMO

The correct identification of the anthracnose resistance systems present in the common bean cultivars AB136 and MDRK is important because both are included in the set of 12 differential cultivars proposed for use in classifying the races of the anthracnose causal agent, Colletrotrichum lindemuthianum. In this work, the responses against seven C. lindemuthianum races were analyzed in a recombinant inbred line population derived from the cross AB136 × MDRK. A genetic linkage map of 100 molecular markers distributed across the 11 bean chromosomes was developed in this population to locate the gene or genes conferring resistance against each race, based on linkage analyses and χ2 tests of independence. The identified anthracnose resistance genes were organized in clusters. Two clusters were found in AB136: one located on linkage group Pv07, which corresponds to the anthracnose resistance cluster Co-5, and the other located at the end of linkage group Pv11, which corresponds to the Co-2 cluster. The presence of resistance genes at the Co-5 cluster in AB136 was validated through an allelism test conducted in the F2 population TU × AB136. The presence of resistance genes at the Co-2 cluster in AB136 was validated through genetic dissection using the F2:3 population ABM3 × MDRK, in which it was directly mapped to a genomic position between 46.01 and 47.77 Mb of chromosome Pv11. In MDRK, two independent clusters were identified: one located on linkage group Pv01, corresponding to the Co-1 cluster, and the second located on LG Pv04, corresponding to the Co-3 cluster. This report enhances the understanding of the race-specific Phaseolus vulgaris-C. lindemuthianum interactions and will be useful in breeding programs.


Assuntos
Colletotrichum/fisiologia , Resistência à Doença/genética , Phaseolus/imunologia , Doenças das Plantas/imunologia , Cruzamento , Cruzamentos Genéticos , Ligação Genética , Marcadores Genéticos/genética , Phaseolus/microbiologia , Doenças das Plantas/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...