Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(7): e0306136, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38954690

RESUMO

In Europe, two fastidious phloem-limited pathogens, 'Candidatus Phytoplasma solani' (16SrXII-A) and 'Candidatus Arsenophonus phytopathogenicus', are associated with rubbery taproot disease (RTD) and syndrome basses richesses (SBR) of sugar beet, respectively. Both diseases can significantly reduce yield, especially when accompanied by root rot fungi. This study investigates the presence, geographic distribution and genetic traits of fastidious pathogens and the accompanying fungus, Macrophomina phaseolina, found on sugar beet across four geographically separated plains spanning seven countries in Central Europe. The survey revealed variable incidences of symptoms linked to these fastidious pathogens in the Pannonian and Wallachian Plains, sporadic occurrence in the North European Plain, and no symptomatic sugar beet in the Bohemian Plain. Molecular analyses unveiled the occurrence of both 'Ca. P. solani' and 'Ca. A. phytopathogenicus' throughout Central Europe, with a predominance of the phytoplasma. These fastidious pathogens were detected in all six countries surveyed within the Pannonian and Wallachian Plains, with only a limited presence of various phytoplasmas was found in the North European Plain, while no fastidious pathogens were detected in Bohemia, aligning with observed symptoms. While 16S rDNA sequences of 'Ca. P. solani' remained highly conserved, multi-locus characterization of two more variable loci (tuf and stamp) unveiled distinct variability patterns across the plains. Notably, the surprising lack of variability of tuf and stamp loci within Central Europe, particularly the Pannonian Plain, contrasted their high variability in Eastern and Western Europe, corresponding to epidemic and sporadic occurrence, respectively. The current study provides valuable insights into the genetic dynamics of 'Ca. P. solani' in Central Europe, and novel findings of the presence of 'Ca. A. phytopathogenicus' in five countries (Slovakia, Czech Republic, Austria, Serbia, and Romania) and M. phaseolina in sugar beet in Slovakia. These findings emphasize the need for further investigation of vector-pathogen(s)-plant host interactions and ecological drivers of disease outbreaks.


Assuntos
Beta vulgaris , Floema , Phytoplasma , Doenças das Plantas , Beta vulgaris/microbiologia , Europa (Continente)/epidemiologia , Doenças das Plantas/microbiologia , Phytoplasma/genética , Phytoplasma/patogenicidade , Phytoplasma/isolamento & purificação , Floema/microbiologia , Filogenia , Ascomicetos/genética , Geografia , Prevalência
2.
Sci Rep ; 14(1): 11542, 2024 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773154

RESUMO

Evidence for seed transmission of phytoplasmas has grown in several pathosystems including coconut (Cocos nucifera). Bogia coconut syndrome (BCS) is a disease associated with the lethal yellowing syndrome associated with the presence of 'Candidatus Phytoplasma noviguineense' that affects coconut, betel nut (Areca catechu) and bananas (Musa spp.) in Papua New Guinea. Coconut and betel nut drupes were sampled from BCS-infected areas in Papua New Guinea, dissected, the extracted nucleic acid was used in polymerase chain reaction (PCR), and loop mediated isothermal amplification (LAMP) used to check for presence of phytoplasma DNA. In a second study, drupes of both plant species were collected from multiple field sites and grown in insect-proof cages. Leaf samples taken at 6 months were also tested with PCR and LAMP. The studies of dissected coconut drupes detected phytoplasma DNA in several tissues including the embryo. Drupes from betel nut tested negative. Among the seedlings, evidence of possible seed transmission was found in both plant species. The results demonstrate the presence of 'Ca. P. noviguineense' in coconut drupes and seedlings, and in seedlings of betel nut; factors that need to be considered in ongoing management and containment efforts.


Assuntos
Areca , Cocos , Phytoplasma , Doenças das Plantas , Plântula , Sementes , Cocos/microbiologia , Phytoplasma/genética , Phytoplasma/isolamento & purificação , Sementes/microbiologia , Doenças das Plantas/microbiologia , Plântula/microbiologia , Técnicas de Amplificação de Ácido Nucleico/métodos , DNA Bacteriano/genética , Papua Nova Guiné , Reação em Cadeia da Polimerase , Técnicas de Diagnóstico Molecular
3.
Microb Genom ; 10(3)2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38446015

RESUMO

In this study, metagenomic sequence data was used to investigate the phytoplasma taxonomic diversity in vegetable-growing regions across Australia. Metagenomic sequencing was performed on 195 phytoplasma-positive samples, originating either from historic collections (n=46) or during collection efforts between January 2015 and June 2022 (n=149). The sampled hosts were classified as crop (n=155), weed (n=24), ornamental (n=7), native plant (n=6), and insect (n=3) species. Most samples came from Queensland (n=78), followed by Western Australia (n=46), the Northern Territory (n=32), New South Wales (n=17), and Victoria (n=10). Of the 195 draft phytoplasma genomes, 178 met our genome criteria for comparison using an average nucleotide identity approach. Ten distinct phytoplasma species were identified and could be classified within the 16SrII, 16SrXII (PCR only), 16SrXXV, and 16SrXXXVIII phytoplasma groups, which have all previously been recorded in Australia. The most commonly detected phytoplasma taxa in this study were species and subspecies classified within the 16SrII group (n=153), followed by strains within the 16SrXXXVIII group ('Ca. Phytoplasma stylosanthis'; n=6). Several geographic- and host-range expansions were reported, as well as mixed phytoplasma infections of 16SrII taxa and 'Ca. Phytoplasma stylosanthis'. Additionally, six previously unrecorded 16SrII taxa were identified, including five putative subspecies of 'Ca. Phytoplasma australasiaticum' and a new putative 16SrII species. PCR and sequencing of the 16S rRNA gene was a suitable triage tool for preliminary phytoplasma detection. Metagenomic sequencing, however, allowed for higher-resolution identification of the phytoplasmas, including mixed infections, than was afforded by only direct Sanger sequencing of the 16S rRNA gene. Since the metagenomic approach theoretically obtains sequences of all organisms in a sample, this approach was useful to confirm the host family, genus, and/or species. In addition to improving our understanding of the phytoplasma species that affect crop production in Australia, the study also significantly expands the genomic sequence data available in public sequence repositories to contribute to phytoplasma molecular epidemiology studies, revision of taxonomy, and improved diagnostics.


Assuntos
Coinfecção , Phytoplasma , Verduras , Phytoplasma/genética , RNA Ribossômico 16S/genética , Metagenoma , Vitória
4.
Microbiol Spectr ; 12(5): e0010624, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38534170

RESUMO

Plant-pathogenic bacteria cause numerous diseases in host plants and can result in serious damage. Timely and accurate diagnostic techniques are, therefore, crucial. While advances in molecular techniques have led to diagnostic systems able to distinguish known plant pathogens at the species or strain level, systems covering larger categories are mostly lacking. In this study, a specific and universal LAMP-based diagnostic system was developed for phytoplasmas, a large group of insect-borne plant-pathogenic bacteria that cause significant agricultural losses worldwide. Targeting the 23S rRNA gene of phytoplasma, the newly designed primer set CaPU23S-4 detected 31 'Candidatus Phytoplasma' tested within 30 min. This primer set also showed high specificity, without false-positive results for other bacteria (including close relatives of phytoplasmas) or healthy plants. The detection sensitivity was ~10,000 times higher than that of PCR methods for phytoplasma detection. A simple, rapid method of DNA extraction, by boiling phytoplasma-infected tissues, was developed as well. When used together with the universal LAMP assay, it enabled the prompt and accurate detection of phytoplasmas from plants and insects. The results demonstrate the potential of the 23S rRNA gene as a versatile target for the LAMP-based universal detection of bacteria at the genus level and provide a novel avenue for exploring this gene as molecular marker for phytoplasma presence detection.IMPORTANCEPhytoplasmas are associated with economically important diseases in crops worldwide, including lethal yellowing of coconut palm, "flavescence dorée" and "bois noir" of grapevine, X-disease in stone fruits, and white leaf and grassy shoot in sugarcane. Numerous LAMP-based diagnostic assays, mostly targeting the 16S rRNA gene, have been reported for phytoplasmas. However, these assays can only detect a limited number of 'Candidatus Phytoplasma' species, whereas the genus includes at least 50 of these species. In this study, a universal, specific, and rapid diagnostic system was developed that can detect all provisionally classified phytoplasmas within 1 h by combining the LAMP technique targeting the 23S rRNA gene with a simple method for DNA extraction. This diagnostic system will facilitate the on-site detection of phytoplasmas and may aid in the discovery of new phytoplasma-associated diseases and putative insect vectors, irrespective of the availability of infrastructure and experimental resources.


Assuntos
DNA Bacteriano , Técnicas de Diagnóstico Molecular , Técnicas de Amplificação de Ácido Nucleico , Phytoplasma , Doenças das Plantas , RNA Ribossômico 23S , Phytoplasma/genética , Phytoplasma/classificação , Phytoplasma/isolamento & purificação , Técnicas de Amplificação de Ácido Nucleico/métodos , RNA Ribossômico 23S/genética , Doenças das Plantas/microbiologia , DNA Bacteriano/genética , Técnicas de Diagnóstico Molecular/métodos , Sensibilidade e Especificidade , Primers do DNA/genética , Animais , Plantas/microbiologia
5.
Int J Mol Sci ; 25(4)2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38396939

RESUMO

The typical symptom of Paulownia witches' broom (PaWB), caused by phytoplasma infection, is excessive branching, which is mainly triggered by auxin metabolism disorder. Aux/IAA is the early auxin-responsive gene that participates in regulating plant morphogenesis such as apical dominance, stem elongation, lateral branch development, and lateral root formation. However, no studies have investigated the response of the Aux/IAA gene family to phytoplasma infection in Paulownia fortunei. In this study, a total of 62 Aux/IAA genes were found in the genome. Phylogenetic analysis showed that PfAux/IAA genes could be divided into eight subgroups, which were formed by tandem duplication and fragment replication. Most of them had a simple gene structure, and several members lacked one or two conserved domains. By combining the expression of PfAux/IAA genes under phytoplasma stress and SA-treated phytoplasma-infected seedlings, we found that PfAux/IAA13/33/45 may play a vital role in the occurrence of PaWB. Functional analysis based on homologous relationships showed a strong correlation between PfAux/IAA45 and branching. Protein-protein interaction prediction showed that PfARF might be the binding partner of PfAux/IAA, and the yeast two-hybrid assay and bimolecular fluorescent complementary assay confirmed the interaction of PfAux/IAA45 and PfARF13. This study provides a theoretical basis for further understanding the function of the PfAux/IAA gene family and exploring the regulatory mechanism of branching symptoms caused by PaWB.


Assuntos
Cytisus , Lamiales , Phytoplasma , Phytoplasma/genética , Filogenia , Lamiales/genética , Ácidos Indolacéticos
6.
Int J Mol Sci ; 25(4)2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38397102

RESUMO

The GRAS (GAI\RGA\SCL) gene family encodes plant-specific transcription factors that play crucial roles in plant growth and development, stress tolerance, and hormone network regulation. Plant dwarfing symptom is mainly regulated by DELLA proteins of the GRAS gene subfamily. In this study, the association between the GRAS gene family and Paulownia witches' broom (PaWB) was investigated. A total of 79 PfGRAS genes were identified using bioinformatics methods and categorized into 11 groups based on amino acid sequences. Tandem duplication and fragment duplication were found to be the main modes of amplification of the PfGRAS gene family. Gene structure analysis showed that more than 72.1% of the PfGRASs had no introns. The genes PfGRAS12/18/58 also contained unique DELLA structural domains; only PfGRAS12, which showed significant response to PaWB phytoplasma infection in stems, showed significant tissue specificity and responded to gibberellin (GA3) in PaWB-infected plants. We found that the internodes were significantly elongated under 100 µmol·L-1 GA3 treatment for 30 days. The subcellular localization analysis indicated that PfGRAS12 is located in the nucleus and cell membrane. Yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) assays confirmed that PfGRAS12 interacted with PfJAZ3 in the nucleus. Our results will lay a foundation for further research on the functions of the PfGRAS gene family and for genetic improvement and breeding of PaWB-resistant trees.


Assuntos
Cytisus , Lamiales , Magnoliopsida , Phytoplasma , Magnoliopsida/genética , Doenças das Plantas/genética , Phytoplasma/genética , Melhoramento Vegetal , Lamiales/genética
7.
Mol Plant Pathol ; 25(2): e13437, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38393681

RESUMO

Phytoplasmas are phloem-restricted plant-pathogenic bacteria transmitted by insects. They cause diseases in a wide range of host plants, resulting in significant economic and ecological losses worldwide. Research on phytoplasmas has a long history, with significant progress being made in the past 30 years. Notably, with the rapid development of phytoplasma research, scientists have identified the primary agents involved in phytoplasma transmission, established classification and detection systems for phytoplasmas, and 243 genomes have been sequenced and assembled completely or to draft quality. Multiple possible phytoplasma effectors have been investigated, elucidating the molecular mechanisms by which phytoplasmas manipulate their hosts. This review summarizes recent advances in phytoplasma research, including identification techniques, host range studies, whole- or draft-genome sequencing, effector pathogenesis and disease control methods. Additionally, future research directions in the field of phytoplasma research are discussed.


Assuntos
Phytoplasma , Animais , Phytoplasma/genética , Sequência de Bases , Insetos/microbiologia , Doenças das Plantas/microbiologia
8.
Plant Dis ; 108(6): 1703-1718, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38175658

RESUMO

Phytoplasmas are a group of plant prokaryotic pathogens distributed worldwide. To comprehensively reveal the diversity of the pathogens and the diseases they cause on Hainan, a tropical island with abundant biodiversity in China, a survey of phytoplasmal diseases was performed from 2009 to 2022. Herein, molecular identification and genetic analysis were conducted based on the conserved genes of phytoplasmas. The results indicated that phytoplasmas could be detected in 138 samples from 18 host plants among 215 samples suspected to be infected by the pathogens. The phytoplasma strains from 27 diseased samples of 4 host plants belonged to the 16SrI group and the strains from 111 samples of 14 hosts belonged to the 16SrII group. Among them, 12 plants, including important tropical cash crops such as Phoenix dactylifera, cassava, sugarcane, and Piper nigrum, were first identified as hosts of phytoplasmas on Hainan Island. Based on BLAST and iPhyClassifier analyses, seven novel 16Sr subgroups were proposed to describe the relevant phytoplasma strains, comprising the 16SrI-AP, 16SrI-AQ, and 16SrI-AR subgroups within the 16SrI group and the 16SrII-Y, 16SrII-Z, 16SrII-AB, and 16SrII-AC subgroups within the 16SrII group. Genetic variation and phylogenetic analysis indicated that the phytoplasma strains identified in this study and those reported previously on Hainan Island mainly belong to four 16Sr groups (including I, II, V, and XXXII) and could infect 44 host plants, among which the 16SrI and 16SrII groups were the prevalent 16Sr groups associated with 43 host plant species. The diversity of host plants infected by the phytoplasmas made it difficult to monitor and control their related diseases. Therefore, strengthening inspection and quarantine during the introduction and transit of the related phytoplasmal host crops would effectively curb the spread and prevalence of the phytoplasmas and their related lethal diseases.


Assuntos
Filogenia , Phytoplasma , Doenças das Plantas , RNA Ribossômico 16S , Phytoplasma/genética , Phytoplasma/classificação , Phytoplasma/isolamento & purificação , China , RNA Ribossômico 16S/genética , Doenças das Plantas/microbiologia , Ilhas , Variação Genética , Plantas/microbiologia , Biodiversidade
9.
J Agric Food Chem ; 72(1): 189-199, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38113060

RESUMO

Flavescence dorée phytoplasma (FDp) is a phytopathogenic bacterium associated with Grapevine yellowS disease, which causes heavy damage to viticultural production. Epidemiological data revealed that some FDp strains appear to be more widespread and aggressive. However, there is no data on mechanisms underlying the variable pathogenicity among strains. In this research, we employed chromatographic and spectrophotometric techniques to assess how two strains of FDp influence the levels of grapevine phenolic compounds, which are frequently utilized as indicative markers of stress conditions. The results pointed to the upregulation of all branches of phenolic metabolism through the development of infection, correlating with the increase in antioxidative capacity. The more aggressive strain M54 induced stronger downregulation of phenolics' accumulation at the beginning and higher upregulation by the end of the season than the less aggressive M38 strain. These findings reveal potential targets of FDp effectors and provide the first functional demonstration of variable pathogenicity between FDp strains, suggesting the need for future comparative genomic analyses of FDp strains as an important factor in exploring the management possibilities of FDp.


Assuntos
Hemípteros , Phytoplasma , Vitis , Animais , Doenças por Fitoplasmas , Doenças das Plantas/microbiologia , Vitis/metabolismo , Hemípteros/fisiologia , Phytoplasma/genética , Fenóis/metabolismo
10.
Mol Plant Pathol ; 25(1): e13410, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38105442

RESUMO

Phytoplasmas infect a wide variety of plants and can cause distinctive symptoms including the conversion of floral organs into leaf-like organs, known as phyllody. Phyllody is induced by an effector protein family called phyllogens, which interact with floral MADS-box transcription factors (MTFs) responsible for determining the identity of floral organs. The MTF/phyllogen complex then interacts with the proteasomal shuttle protein RADIATION SENSITIVE23 (RAD23), which facilitates delivery of the MTF/phyllogen complex to the host proteasome for MTF degradation. Previous studies have indicated that the MTF degradation specificity of phyllogens is determined by their ability to bind to MTFs. However, in the present study, we discovered a novel mechanism determining the degradation specificity through detailed functional analyses of a phyllogen homologue of rice yellow dwarf phytoplasma (PHYLRYD ). PHYLRYD degraded a narrower range of floral MTFs than other phyllody-inducing phyllogens, resulting in compromised phyllody phenotypes in plants. Interestingly, PHYLRYD was able to bind to some floral MTFs that PHYLRYD was unable to efficiently degrade. However, the complex of PHYLRYD and the non-degradable MTF could not interact with RAD23. These results indicate that the MTF degradation specificity of PHYLRYD is correlated with the ability to form the MTF/PHYLRYD /RAD23 ternary complex, rather than the ability to bind to MTF. This study elucidated that phyllogen target specificity is regulated by both the MTF-binding ability and RAD23 recruitment ability of the MTF/phyllogen complex.


Assuntos
Phytoplasma , Complexo de Endopeptidases do Proteassoma , Complexo de Endopeptidases do Proteassoma/metabolismo , Phytoplasma/genética , Proteínas de Bactérias/metabolismo , Fatores de Transcrição/metabolismo , Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA