Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 8308, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38097583

RESUMO

Minor changes to complex structures can exert major influences on synthesis strategy and functional properties. Here we explore two parallel series of picrotoxinin (PXN, 1) analogs and identify leads with selectivity between mammalian and insect ion channels. These are the first SAR studies of PXN despite its >100-year history and are made possible by advances in total synthesis. We observe a remarkable stabilizing effect of a C5 methyl, which completely blocks C15 alcoholysis via destabilization of an intermediate twist-boat conformer; suppression of this secondary hydrolysis pathway increases half-life in plasma. C5 methylation also decreases potency against vertebrate ion channels (γ-Aminobutyric acid type A (GABAA) receptors) but maintains or increases antagonism of homologous invertebrate GABA-gated chloride channels (resistance to dieldrin (RDL) receptors). Optimal 5MePXN analogs appear to change the PXN binding pose within GABAARs by disruption of a hydrogen bond network. These discoveries were made possible by the lower synthetic burden of 5MePXN (2) and were illuminated by the parallel analog series, which allowed characterization of the role of the synthetically simplifying C5 methyl in channel selectivity. These are the first SAR studies to identify changes to PXN that increase the GABAA-RDL selectivity index.


Assuntos
Canais de Cloreto , Receptores de GABA-A , Animais , Picrotoxina/farmacologia , Picrotoxina/química , Canais de Cloreto/metabolismo , Receptores de GABA-A/metabolismo , Ácido gama-Aminobutírico/metabolismo , Dieldrin/química , Metilação , Mamíferos/metabolismo
2.
Nature ; 599(7885): 513-517, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34555840

RESUMO

Glycine receptors (GlyRs) are pentameric, 'Cys-loop' receptors that form chloride-permeable channels and mediate fast inhibitory signalling throughout the central nervous system1,2. In the spinal cord and brainstem, GlyRs regulate locomotion and cause movement disorders when mutated2,3. However, the stoichiometry of native GlyRs and the mechanism by which they are assembled remain unclear, despite extensive investigation4-8. Here we report cryo-electron microscopy structures of native GlyRs from pig spinal cord and brainstem, revealing structural insights into heteromeric receptors and their predominant subunit stoichiometry of 4α:1ß. Within the heteromeric pentamer, the ß(+)-α(-) interface adopts a structure that is distinct from the α(+)-α(-) and α(+)-ß(-) interfaces. Furthermore, the ß-subunit contains a unique phenylalanine residue that resides within the pore and disrupts the canonical picrotoxin site. These results explain why inclusion of the ß-subunit breaks receptor symmetry and alters ion channel pharmacology. We also find incomplete receptor complexes and, by elucidating their structures, reveal the architectures of partially assembled α-trimers and α-tetramers.


Assuntos
Microscopia Crioeletrônica , Receptores de Glicina/química , Receptores de Glicina/metabolismo , Animais , Tronco Encefálico , Modelos Moleculares , Fenilalanina/química , Fenilalanina/metabolismo , Picrotoxina/química , Picrotoxina/metabolismo , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Receptores de Glicina/ultraestrutura , Medula Espinal , Suínos
3.
Angew Chem Int Ed Engl ; 60(35): 19113-19116, 2021 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-34236745

RESUMO

The plant metabolite picrotoxinin (PXN) is a widely used tool in neuroscience for the identification of GABAergic signaling. Its hydrolysis in weakly alkaline media has been observed for over a century and the structure of the unstable hydrolysis intermediate was assigned by analogy to the degradation product picrotoxic acid. Here we show this assignment to be in error and we revise the structure of the hydrolysis product by spectroscopic characterization in situ. Counterintuitively, hydrolysis occurs at a lactone that remains closed in the major isolable degradation product, which accounts for the longstanding mistake in the literature.


Assuntos
Ácidos Carboxílicos/química , Picrotoxina/análogos & derivados , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Ácidos Carboxílicos/síntese química , Concentração de Íons de Hidrogênio , Hidrólise , Picrotoxina/química , Espectroscopia de Prótons por Ressonância Magnética , Sesterterpenos , Hidróxido de Sódio/química
4.
Nature ; 585(7824): 303-308, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32879488

RESUMO

Most general anaesthetics and classical benzodiazepine drugs act through positive modulation of γ-aminobutyric acid type A (GABAA) receptors to dampen neuronal activity in the brain1-5. However, direct structural information on the mechanisms of general anaesthetics at their physiological receptor sites is lacking. Here we present cryo-electron microscopy structures of GABAA receptors bound to intravenous anaesthetics, benzodiazepines and inhibitory modulators. These structures were solved in a lipidic environment and are complemented by electrophysiology and molecular dynamics simulations. Structures of GABAA receptors in complex with the anaesthetics phenobarbital, etomidate and propofol reveal both distinct and common transmembrane binding sites, which are shared in part by the benzodiazepine drug diazepam. Structures in which GABAA receptors are bound by benzodiazepine-site ligands identify an additional membrane binding site for diazepam and suggest an allosteric mechanism for anaesthetic reversal by flumazenil. This study provides a foundation for understanding how pharmacologically diverse and clinically essential drugs act through overlapping and distinct mechanisms to potentiate inhibitory signalling in the brain.


Assuntos
Anestésicos Gerais/química , Anestésicos Gerais/farmacologia , Barbitúricos/química , Barbitúricos/farmacologia , Benzodiazepinas/química , Benzodiazepinas/farmacologia , Microscopia Crioeletrônica , Receptores de GABA-A/química , Regulação Alostérica/efeitos dos fármacos , Anestésicos Gerais/metabolismo , Barbitúricos/metabolismo , Benzodiazepinas/metabolismo , Bicuculina/química , Bicuculina/metabolismo , Bicuculina/farmacologia , Sítios de Ligação , Ligação Competitiva/efeitos dos fármacos , Diazepam/química , Diazepam/metabolismo , Diazepam/farmacologia , Eletrofisiologia , Etomidato/química , Etomidato/metabolismo , Etomidato/farmacologia , Flumazenil/farmacologia , Antagonistas de Receptores de GABA-A/química , Antagonistas de Receptores de GABA-A/metabolismo , Antagonistas de Receptores de GABA-A/farmacologia , Humanos , Ligantes , Modelos Moleculares , Conformação Molecular , Simulação de Dinâmica Molecular , Fenobarbital/química , Fenobarbital/metabolismo , Fenobarbital/farmacologia , Picrotoxina/química , Picrotoxina/metabolismo , Picrotoxina/farmacologia , Propofol/química , Propofol/metabolismo , Propofol/farmacologia , Receptores de GABA-A/metabolismo , Receptores de GABA-A/ultraestrutura , Ácido gama-Aminobutírico/química , Ácido gama-Aminobutírico/metabolismo , Ácido gama-Aminobutírico/farmacologia
5.
J Am Chem Soc ; 142(26): 11376-11381, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32573211

RESUMO

We report a concise, stereocontrolled synthesis of the neurotoxic sesquiterpenoid (-)-picrotoxinin (1, PXN). The brevity of the route is due to regio- and stereoselective formation of the [4.3.0] bicyclic core by incorporation of a symmetrizing geminal dimethyl group at C5. Dimethylation then enables selective C-O bond formation in multiple intermediates. A series of strong bond (C-C and C-H) cleavages convert the C5 gem-dimethyl group to the C15 lactone of PXN.


Assuntos
Picrotoxina/análogos & derivados , Conformação Molecular , Picrotoxina/síntese química , Picrotoxina/química , Sesterterpenos , Estereoisomerismo
6.
Nature ; 565(7740): 454-459, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30602790

RESUMO

Type-A γ-aminobutyric (GABAA) receptors are ligand-gated chloride channels with a very rich pharmacology. Some of their modulators, including benzodiazepines and general anaesthetics, are among the most successful drugs in clinical use and are common substances of abuse. Without reliable structural data, the mechanistic basis for the pharmacological modulation of GABAA receptors remains largely unknown. Here we report several high-resolution cryo-electron microscopy structures in which the full-length human α1ß3γ2L GABAA receptor in lipid nanodiscs is bound to the channel-blocker picrotoxin, the competitive antagonist bicuculline, the agonist GABA (γ-aminobutyric acid), and the classical benzodiazepines alprazolam and diazepam. We describe the binding modes and mechanistic effects of these ligands, the closed and desensitized states of the GABAA receptor gating cycle, and the basis for allosteric coupling between the extracellular, agonist-binding region and the transmembrane, pore-forming region. This work provides a structural framework in which to integrate previous physiology and pharmacology research and a rational basis for the development of GABAA receptor modulators.


Assuntos
Alprazolam/química , Bicuculina/química , Microscopia Crioeletrônica , Diazepam/química , Picrotoxina/química , Receptores de GABA-A/química , Receptores de GABA-A/metabolismo , Transdução de Sinais/efeitos dos fármacos , Regulação Alostérica/efeitos dos fármacos , Alprazolam/farmacologia , Benzodiazepinas/química , Benzodiazepinas/farmacologia , Bicuculina/farmacologia , Ligação Competitiva/efeitos dos fármacos , Diazepam/farmacologia , Moduladores GABAérgicos/química , Moduladores GABAérgicos/farmacologia , Humanos , Ligantes , Modelos Moleculares , Nanoestruturas/química , Picrotoxina/farmacologia
7.
Magn Reson Med ; 81(2): 1280-1295, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30194797

RESUMO

PURPOSE: fMRI is widely used to study brain activity. Unfortunately, conventional fMRI methods assess neuronal activity only indirectly, through hemodynamic coupling. Here, we show that active, steady-state transmembrane water cycling (AWC) could serve as a basis for a potential fMRI mechanism for direct neuronal activity detection. METHODS: AWC and neuronal actitivity in rat organotypic cortical cultures were simultaneously measured with a hybrid MR-fluorescence system. Perfusion with a paramagnetic MRI contrast agent, Gadoteridol, allows NMR determination of the kinetics of transcytolemmal water exchange. Changes in intracellular calcium concentration, [Cai2+ ] were used as a proxy of neuronal activity and were monitored by fluorescence imaging. RESULTS: When we alter neuronal activity by titrating with extracellular [K+ ] near the normal value, we see an AWC response resembling Na+ -K+ -ATPase (NKA) Michaelis-Menten behavior. When we treat with the voltage-gated sodium channel inhibitor, or with an excitatory postsynaptic inhibitor cocktail, we see AWC decrease by up to 71%. AWC was found also to be positively correlated with the basal level of spontaneous activity, which varies in different cultures. CONCLUSIONS: These results suggest that AWC is associated with neuronal activity and NKA activity is a major contributor in coupling AWC to neuronal activity. Although AWC comprises steady-state, homeostatic transmembrane water exchange, our analysis also yields a simultaneous measure of the average cell volume, which reports any slower net transmembrane water transport.


Assuntos
Mapeamento Encefálico , Encéfalo/diagnóstico por imagem , Compostos Heterocíclicos/química , Neurônios/química , Compostos Organometálicos/química , Água/química , Animais , Cálcio/química , Células Cultivadas , Meios de Contraste , Gadolínio/química , Humanos , Ácido Caínico/química , Cinética , Imageamento por Ressonância Magnética , Picrotoxina/química , Ratos , Ratos Sprague-Dawley , Processamento de Sinais Assistido por Computador , ATPase Trocadora de Sódio-Potássio/química , Córtex Somatossensorial/diagnóstico por imagem
8.
Biochim Biophys Acta Gen Subj ; 1862(10): 2162-2173, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30009876

RESUMO

BACKGROUND: In humans, bitterness perception is mediated by ~25 bitter taste receptors present in the oral cavity. Among these receptors three, TAS2R10, TAS2R14 and TAS2R46, exhibit extraordinary wide agonist profiles and hence contribute disproportionally high to the perception of bitterness. Perhaps the most broadly tuned receptor is the TAS2R14, which may represent, because of its prominent expression in extraoral tissues, a receptor of particular importance for the physiological actions of bitter compounds beyond taste. METHODS: To investigate how the architecture and composition of the TAS2R14 binding pocket enables specific interactions with a complex array of chemically diverse bitter agonists, we carried out homology modeling and ligand docking experiments, subjected the receptor to point-mutagenesis of binding site residues and performed functional calcium mobilization assays. RESULTS: In total, 40 point-mutated receptor constructs were generated to investigate the contribution of 19 positions presumably located in the receptor's binding pocket to activation by 7 different TAS2R14 agonists. All investigated positions exhibited moderate to pronounced agonist selectivity. CONCLUSIONS: Since numerous modifications of the TAS2R14 binding pocket resulted in improved responses to individual agonists, we conclude that this bitter taste receptor might represent a suitable template for the engineering of the agonist profile of a chemoreceptive receptor. GENERAL SIGNIFICANCE: The detailed structure-function analysis of the highly promiscuous and widely expressed TAS2R14 suggests that this receptor must be considered as potentially frequent target for known and novel drugs including undesired off-effects.


Assuntos
Ácidos Aristolóquicos/metabolismo , Monoterpenos/metabolismo , Picrotoxina/análogos & derivados , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Paladar/fisiologia , Sequência de Aminoácidos , Ácidos Aristolóquicos/química , Monoterpenos Bicíclicos , Sítios de Ligação , Humanos , Ligantes , Modelos Moleculares , Simulação de Acoplamento Molecular , Monoterpenos/química , Mutagênese Sítio-Dirigida , Mutação , Picrotoxina/química , Picrotoxina/metabolismo , Ligação Proteica , Conformação Proteica , Engenharia de Proteínas , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/genética , Sesterterpenos
9.
J Nat Prod ; 81(4): 1116-1120, 2018 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-29504746

RESUMO

Some honeys contain the neurotoxin tutin (1) plus hyenanchin (2), 2-(ß-d-glucopyranosyl)tutin (3), and 2-[6'-(α-d-glucopyranosyl)-ß-d-glucopyranosyl]tutin (4). These honeys are made by bees collecting honeydew from passionvine hoppers feeding on the sap of tutu plants ( Coriaria spp.). We report a LC-MS study showing that all these picrotoxanes are of plant, not insect, origin. Hyenanchin was barely detectable and the diglucoside was not detectable in C. arborea leaves, but tutu phloem sap contained all four compounds at concentrations up to the highest found in honeydew. It is proposed that the diglucoside may function as a transport form of tutin, analogous to sucrose transport in phloem.


Assuntos
Glicosídeos/química , Insetos/química , Magnoliopsida/química , Neurotoxinas/química , Floema/química , Picrotoxina/análogos & derivados , Sesquiterpenos/química , Animais , Cromatografia Líquida/métodos , Mel , Picrotoxina/química , Folhas de Planta/química , Espectrometria de Massas em Tandem/métodos
10.
Br J Pharmacol ; 174(4): 314-327, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27987210

RESUMO

BACKGROUND AND PURPOSE: Prefrontal dopamine release by the combined activation of 5-HT1A and sigma-1 (σ1 ) receptors is enhanced by the GABAA receptor antagonist picrotoxin in mice. Here, we examined whether this neurochemical event was accompanied by behavioural changes. EXPERIMENTAL APPROACH: Male mice were treated with picrotoxin to decrease GABAA receptor function. Their anhedonic behaviour was measured using the female encounter test. The expression of c-Fos was determined immunohistochemically. KEY RESULTS: Picrotoxin caused an anxiogenic effect on three behavioural tests, but it did not affect the immobility time in the forced swim test. Picrotoxin decreased female preference in the female encounter test and attenuated the female encounter-induced increase in c-Fos expression in the nucleus accumbens. Picrotoxin-induced anhedonia was ameliorated by fluvoxamine and S-(+)-fluoxetine, selective serotonin reuptake inhibitors with high affinity for the σ1 receptor. The effect of fluvoxamine was blocked by a 5-HT1A or a σ1 receptor antagonist, and co-administration of the σ1 receptor agonist (+)-SKF-10047 and the 5-HT1A receptor agonist osemozotan mimicked the effect of fluvoxamine. By contrast, desipramine, duloxetine and paroxetine, which have little affinity for the σ1 receptor, did not affect picrotoxin-induced anhedonia. The effect of fluvoxamine was blocked by a dopamine D2/3 receptor antagonist. Methylphenidate, an activator of the prefrontal dopamine system, ameliorated picrotoxin-induced anhedonia. CONCLUSION AND IMPLICATIONS: Picrotoxin-treated mice show anhedonic behaviour that is ameliorated by simultaneous activation of 5-HT1A and σ1 receptors. These findings suggest that the increased prefrontal dopamine release is associated with the anti-anhedonic effect observed in picrotoxin-treated mice.


Assuntos
Anedonia/efeitos dos fármacos , Picrotoxina/farmacologia , Receptores sigma/metabolismo , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Animais , Relação Dose-Resposta a Droga , Feminino , Masculino , Camundongos , Picrotoxina/química , Receptores sigma/agonistas , Receptores sigma/antagonistas & inibidores , Inibidores Seletivos de Recaptação de Serotonina/química , Relação Estrutura-Atividade , Receptor Sigma-1
11.
Comput Biol Chem ; 64: 202-209, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27423910

RESUMO

The channel blocker picrotoxinin has been studied with GABAA-ρ1 and GABAA-ρ2 homology models based on the GluCl crystal structure. Picrotoxinin is tenfold more potent for GABAA-ρ2 than for GABAA-ρ1 homomeric channels. This intra-subunit selectivity arises from the unconserved residues at the 2' sites, which are the essential molecular basis for both the binding and potency of picrotoxinin. The serine residues at the 2' positions of the ρ2 channel are predicted to form multiple hydrogen bonds and hydrophobic interactions with picrotoxinin, whereas the proline residues in the 2' positions of ρ1 channels are predicted to form only hydrophobic contacts with picrotoxinin. However, although the studied ρ1 P2'G, A, and V models form no hydrogen bonds with picrotoxinin, they may participate in several hydrophobic interactions, and the ligand may have distinctive binding modes with GABAA-ρ mutant channels. Picrotoxinin has a lower Emodel value with ρ2 than ρ1 homomeric models (-47Kcal/mol and -36Kcal/mol, respectively), suggesting that picrotoxin blocks the pores of the ρ2 channels more effectively.


Assuntos
Simulação de Acoplamento Molecular , Picrotoxina/análogos & derivados , Receptores de GABA-A/metabolismo , Sítios de Ligação , Membrana Celular , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Concentração Inibidora 50 , Ligantes , Modelos Biológicos , Estrutura Molecular , Picrotoxina/química , Picrotoxina/metabolismo , Domínios Proteicos , Receptores de GABA-A/química , Homologia de Sequência do Ácido Nucleico , Sesterterpenos
12.
J Comput Aided Mol Des ; 30(7): 559-67, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27460059

RESUMO

Permeation of ions through open channels and their accessibility to pore-targeting drugs depend on the pore cross-sectional dimensions, which are known only for static X-ray and cryo-EM structures. Here, we have built homology models of the closed, open and desensitized α1ß2γ2 GABAA receptor (GABAAR). The models are based, respectively, on the X-ray structure of α3 glycine receptor (α3 GlyR), cryo-EM structure of α1 GlyR and X-ray structure of ß3 GABAAR. We employed Monte Carlo energy minimizations to explore how the pore lumen may increase due to repulsions of flexible side chains from a variable-diameter electroneutral atom (an expanding sphere) pulled through the pore. The expanding sphere computations predicted that the pore diameter averaged along the permeation pathway is larger by approximately 3 Å than that computed for the models with fixed sidechains. Our models predict three major pore constrictions located at the levels of -2', 9' and 20' residues. Residues around the -2' and 9' rings are known to form the desensitization and activation gates of GABAAR. Our computations predict that the 20' ring may also serve as GABAAR gate whose physiological role is unclear. The side chain flexibility of residues -2', 9' and 20' and hence the dimensions of the constrictions depend on the GABAAR functional state.


Assuntos
Modelos Moleculares , Receptores de GABA-A/química , Receptores de Glicina/química , Homologia Estrutural de Proteína , Sequência de Aminoácidos , Biofísica , Simulação por Computador , Cristalografia por Raios X , Humanos , Íons/química , Método de Monte Carlo , Picrotoxina/análogos & derivados , Picrotoxina/química , Conformação Proteica , Sesterterpenos
13.
Nat Prod Rep ; 33(4): 535-9, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26891462

RESUMO

Covering: 1860-2016A mechanistic link may exist between convulsant plant substances typified by picrotoxinin, and 'neurotrophic' sesquiterpenes like jiadifenolide. Picrotoxinin elicits convulsion by anion blockade of the Cys-loop family of neurotransmitter-gated ion channels. These same receptors mediate neuronal development and neurite outgrowth prior to synapse formation. Due to its structural homology with picrotoxin and anisatin, it is possible that jiadifenolide enhances NGF-stimulated neurite outgrowth by modulation of the Cys-loop family of receptors.


Assuntos
Convulsivantes/farmacologia , Neuritos/efeitos dos fármacos , Sesquiterpenos/farmacologia , Convulsivantes/química , Lactonas/química , Lactonas/farmacologia , Estrutura Molecular , Picrotoxina/análogos & derivados , Picrotoxina/química , Picrotoxina/farmacologia , Sesquiterpenos/química , Sesterterpenos , Compostos de Espiro/química , Compostos de Espiro/farmacologia
14.
PLoS One ; 10(7): e0133548, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26193112

RESUMO

Partial agonists at the NMDA receptor co-agonist binding site may have potential therapeutic efficacy in a number of cognitive and neurological conditions. The entorhinal cortex is a key brain area in spatial memory and cognitive processing. At synapses in the entorhinal cortex, NMDA receptors not only mediate postsynaptic excitation but are expressed in presynaptic terminals where they tonically facilitate glutamate release. In a previous study we showed that the co-agonist binding site of the presynaptic NMDA receptor is endogenously and tonically activated by D-serine released from astrocytes. In this study we determined the effects of two co-agonist site partial agonists on both presynaptic and postsynaptic NMDA receptors in layer II of the entorhinal cortex. The high efficacy partial agonist, D-cycloserine, decreased the decay time of postsynaptic NMDA receptor mediated currents evoked by electrical stimulation, but had no effect on amplitude or other kinetic parameters. In contrast, a lower efficacy partial agonist, 1-aminocyclobutane-1-carboxylic acid, decreased decay time to a greater extent than D-cycloserine, and also reduced the peak amplitude of the evoked NMDA receptor mediated postsynaptic responses. Presynaptic NMDA receptors, (monitored indirectly by effects on the frequency of AMPA receptor mediated spontaneous excitatory currents) were unaffected by D-cycloserine, but were reduced in effectiveness by 1-aminocyclobutane-1-carboxylic acid. We discuss these results in the context of the effect of endogenous regulation of the NMDA receptor co-agonist site on receptor gating and the potential therapeutic implications for cognitive disorders.


Assuntos
Aminoácidos Cíclicos/química , Ciclosserina/química , Córtex Entorrinal/efeitos dos fármacos , Córtex Entorrinal/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Algoritmos , Animais , Astrócitos/metabolismo , Bicuculina/análogos & derivados , Bicuculina/química , Sítios de Ligação , Potenciais Pós-Sinápticos Excitadores/fisiologia , Feminino , Ácido Glutâmico/química , Hipocampo/metabolismo , Masculino , Neurônios/metabolismo , Técnicas de Patch-Clamp , Picrotoxina/química , Terminações Pré-Sinápticas/metabolismo , Ratos , Ratos Wistar , Receptores de GABA-A/metabolismo , Estricnina/química
15.
J Nat Prod ; 78(6): 1363-9, 2015 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-25993882

RESUMO

Poisonings due to consumption of honeys containing plant toxins have been reported widely. One cause is the neurotoxin tutin, an oxygenated sesquiterpene picrotoxane, traced back to honeybees (Apis mellifera) collecting honeydew produced by passionvine hoppers (Scolypopa australis) feeding on sap of the poisonous shrub tutu (Coriaria spp.). However, a pharmacokinetic study suggested that unidentified conjugates of tutin were also present in such honeys. We now report the discovery, using ion trap LC-MS, of two tutin glycosides and their purification and structure determination as 2-(ß-d-glucopyranosyl)tutin (4) and 2-[6'-(α-d-glucopyranosyl)-ß-d-glucopyranosyl]tutin (5). These compounds were used to develop a quantitative triple quadrupole LC-MS method for honey analysis, which showed the presence of tutin (3.6 ± 0.1 µg/g honey), hyenanchin (19.3 ± 0.5), tutin glycoside (4) (4.9 ± 0.4), and tutin diglycoside (5) (4.9 ± 0.1) in one toxic honey. The ratios of 4 and 5 to tutin varied widely in other tutin-containing honeys. The glycosidation of tutin may represent detoxification by one or both of the insects involved in the food chain from plant to honey.


Assuntos
Glicosídeos/análise , Mel/análise , Picrotoxina/análogos & derivados , Sesquiterpenos/farmacologia , Contaminação de Alimentos/análise , Glicosídeos/química , Glicosídeos/intoxicação , Estrutura Molecular , Neurotoxinas/sangue , Neurotoxinas/farmacocinética , Ressonância Magnética Nuclear Biomolecular , Picrotoxina/análise , Picrotoxina/química , Picrotoxina/farmacologia , Sesquiterpenos/análise , Sesquiterpenos/química
16.
Biochemistry ; 53(39): 6183-8, 2014 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-25238029

RESUMO

The Erwinia ligand-gated ion channel (ELIC) is a bacterial homologue of eukaryotic Cys-loop ligand-gated ion channels. This protein has the potential to be a useful model for Cys-loop receptors but is unusual in that it has an aromatic residue (Phe) facing into the pore, leading to some predictions that this protein is incapable of ion flux. Subsequent studies have shown this is not the case, so here we probe the role of this residue by examining the function of the ELIC in cases in which the Phe has been substituted with a range of alternative amino acids, expressed in Xenopus oocytes and functionally examined. Most of the mutations have little effect on the GABA EC50, but the potency of the weak pore-blocking antagonist picrotoxinin at F16'A-, F16'D-, F16'S-, and F16'T-containing receptors was increased to levels comparable with those of Cys-loop receptors, suggesting that this antagonist can enter the pore only when residue 16' is small. T6'S has no effect on picrotoxinin potency when expressed alone but abolishes the increased potency when combined with F16'S, indicating that the inhibitor binds at position 6', as in Cys-loop receptors, if it can enter the pore. Overall, the data support the proposal that the ELIC pore is a good model for Cys-loop receptor pores if the role of F16' is taken into consideration.


Assuntos
Proteínas de Bactérias/metabolismo , Receptores de Canais Iônicos de Abertura Ativada por Ligante com Alça de Cisteína/metabolismo , Erwinia/metabolismo , Fenilalanina/metabolismo , Picrotoxina/análogos & derivados , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sítios de Ligação/genética , Ligação Competitiva/efeitos dos fármacos , Receptores de Canais Iônicos de Abertura Ativada por Ligante com Alça de Cisteína/química , Receptores de Canais Iônicos de Abertura Ativada por Ligante com Alça de Cisteína/genética , Erwinia/genética , Feminino , Antagonistas de Receptores de GABA-A/metabolismo , Antagonistas de Receptores de GABA-A/farmacologia , Ativação do Canal Iônico/efeitos dos fármacos , Ativação do Canal Iônico/genética , Ativação do Canal Iônico/fisiologia , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/genética , Potenciais da Membrana/fisiologia , Modelos Moleculares , Dados de Sequência Molecular , Mutação de Sentido Incorreto , Oócitos/metabolismo , Oócitos/fisiologia , Fenilalanina/química , Fenilalanina/genética , Picrotoxina/química , Picrotoxina/metabolismo , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Sesterterpenos , Xenopus laevis , Ácido gama-Aminobutírico/farmacologia
17.
Amino Acids ; 46(11): 2587-93, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25119985

RESUMO

Taurine activates and modulates GABA receptors in vivo as well as those expressed in heterologous systems. This study aimed to determine whether the structural analogs of taurine: homotaurine and hypotaurine, have the ability to activate GABA-A receptors that include GABAρ subunits. The expression of GABA-A receptors containing GABAρ has been reported in the STC-1 cells and astrocytes. In both cell types, taurine, homo-, and hypotaurine gated with low efficiency a picrotoxin-sensitive GABA-A receptor. The known bimodal modulatory effect of taurine on GABAρ receptors was not observed; however, differences between the activation and deactivation rates were detected when they were perfused together with GABA. In silico docking simulations suggested that taurine, hypo-, and homotaurine do not form a cation-π interaction such as that generated by GABA in the agonist-binding site of GABAρ. This observation complements the electrophysiological data suggesting that taurine and its analogs act as partial agonists of GABA-A receptors. All the observations above suggest that the structural analogs of taurine are partial agonists of GABA-A receptors that occupy the agonist-binding site, but their structures do not allow the proper interaction with the receptor to fully gate its Cl(-) channel.


Assuntos
Astrócitos/metabolismo , Receptores de GABA-A/química , Taurina/química , Animais , Astrócitos/citologia , Sítios de Ligação , Caenorhabditis elegans , Linhagem Celular , Simulação por Computador , Eletrofisiologia , Humanos , Cinética , Ligantes , Camundongos , Técnicas de Patch-Clamp , Perfusão , Picrotoxina/química , Ligação Proteica , Conformação Proteica , Taurina/análogos & derivados
18.
Am J Chin Med ; 42(1): 23-35, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24467533

RESUMO

Loranthus parasiticus Merr (L. parasiticus) is a member of Loranthaceae family and is an important medicinal plant with a long history of Chinese traditional use. L. parasiticus, also known as Sang Ji Sheng (in Chinese), benalu teh (in Malay) and baso-kisei (in Japanese), is a semiparasitic plant, which is mostly distributed in the southern and southwestern regions of China. This review aims to provide a comprehensive overview of the ethnomedicinal use, phytochemistry and pharmacological activity of L. parasiticus and to highlight the needs for further investigation and greater global development of the plant's medicinal properties. To date, pharmacological studies have demonstrated significant biological activities, which support the traditional use of the plant as a neuroprotective, tranquilizing, anticancer, immunomodulatory, antiviral, diuretic and hypotensive agent. In addition, studies have identified antioxidative, antimutagenic, antiviral, antihepatotoxic and antinephrotoxic activity. The key bioactive constituents in L. parasiticus include coriaria lactone comprised of sesquiterpene lactones: coriamyrtin, tutin, corianin, and coriatin. In addition, two proanthocyanidins, namely, AC trimer and (+)-catechin, have been recently discovered as novel to L. parasiticus. L. parasiticus usefulness as a medicinal plant with current widespread traditional use warrants further research, clinical trials and product development to fully exploit its medicinal value.


Assuntos
Antioxidantes , Loranthaceae/química , Fármacos Neuroprotetores , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Animais , Anti-Hipertensivos , Antimutagênicos , Antineoplásicos Fitogênicos , Antivirais , Catequina/química , Catequina/isolamento & purificação , Diuréticos , Medicamentos de Ervas Chinesas , Humanos , Fatores Imunológicos , Lactonas/química , Lactonas/isolamento & purificação , Conformação Molecular , Fitoterapia , Picrotoxina/análogos & derivados , Picrotoxina/química , Picrotoxina/isolamento & purificação , Folhas de Planta , Sesquiterpenos/química , Sesquiterpenos/isolamento & purificação , Tranquilizantes
19.
Insect Biochem Mol Biol ; 45: 111-24, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24365472

RESUMO

Isoxazolines are a novel class of parasiticides that are potent inhibitors of γ-aminobutyric acid (GABA)-gated chloride channels (GABACls) and L-glutamate-gated chloride channels (GluCls). In this study, the effects of the isoxazoline drug fluralaner on insect and acarid GABACl (RDL) and GluCl and its parasiticidal potency were investigated. We report the identification and cDNA cloning of Rhipicephalus (R.) microplus RDL and GluCl genes, and their functional expression in Xenopus laevis oocytes. The generation of six clonal HEK293 cell lines expressing Rhipicephalus microplus RDL and GluCl, Ctenocephalides felis RDL-A285 and RDL-S285, as well as Drosophila melanogaster RDLCl-A302 and RDL-S302, combined with the development of a membrane potential fluorescence dye assay allowed the comparison of ion channel inhibition by fluralaner with that of established insecticides addressing RDL and GluCl as targets. In these assays fluralaner was several orders of magnitude more potent than picrotoxinin and dieldrin, and performed 5-236 fold better than fipronil on the arthropod RDLs, while a rat GABACl remained unaffected. Comparative studies showed that R. microplus RDL is 52-fold more sensitive than R. microplus GluCl to fluralaner inhibition, confirming that the GABA-gated chloride channel is the primary target of this new parasiticide. In agreement with the superior RDL on-target activity, fluralaner outperformed dieldrin and fipronil in insecticidal screens on cat fleas (Ctenocephalides felis), yellow fever mosquito larvae (Aedes aegypti) and sheep blowfly larvae (Lucilia cuprina), as well as in acaricidal screens on cattle tick (R. microplus) adult females, brown dog tick (Rhipicephalus sanguineus) adult females and Ornithodoros moubata nymphs. These findings highlight the potential of fluralaner as a novel ectoparasiticide.


Assuntos
Canais de Cloreto/antagonistas & inibidores , Antagonistas GABAérgicos/química , Proteínas de Insetos/fisiologia , Inseticidas/química , Isoxazóis/química , Rhipicephalus/genética , Sequência de Aminoácidos , Animais , Clonagem Molecular , Ctenocephalides/genética , DNA Complementar/química , Dieldrin/química , Drosophila melanogaster/genética , Células HEK293 , Humanos , Proteínas de Insetos/química , Proteínas de Insetos/genética , Dados de Sequência Molecular , Filogenia , Picrotoxina/análogos & derivados , Picrotoxina/química , Pirazóis/química , Alinhamento de Sequência , Sesterterpenos , Xenopus laevis , Ácido gama-Aminobutírico
20.
Chem Res Toxicol ; 26(10): 1444-54, 2013 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-24028067

RESUMO

The type A GABA receptors (GABARs) are ligand-gated ion channels (LGICs) found in the brain and are the major inhibitory neurotransmitter receptors. Upon binding of an agonist, the GABAR opens and increases the intraneuronal concentration of chloride ions, thus hyperpolarizing the cell and inhibiting the transmission of the nerve action potential. GABARs also contain many other modulatory binding pockets that differ from the agonist-binding site. The composition of the GABAR subunits can alter the properties of these modulatory sites. Picrotoxin is a noncompetitive antagonist for LGICs, and by inhibiting GABAR, picrotoxin can cause overstimulation and induce convulsions. We use addition of picrotoxin to probe the characteristics and possible mechanism of an additional modulatory pocket located at the interface between the ligand-binding domain and the transmembrane domain of the GABAR. Picrotoxin is widely regarded as a pore-blocking agent that acts at the cytoplasmic end of the channel. However, there are also data to suggest that there may be an additional, secondary binding site for picrotoxin. Through homology modeling, molecular docking, and molecular dynamics simulations, we show that binding of picrotoxin to this interface pocket correlates with these data, and negative modulation occurs at the pocket via a kinking of the pore-lining helices into a more closed orientation.


Assuntos
Picrotoxina/metabolismo , Receptores de GABA-A/metabolismo , Regulação Alostérica , Sítios de Ligação , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Simulação de Acoplamento Molecular , Picrotoxina/química , Ligação Proteica , Estrutura Terciária de Proteína , Receptores de GABA-A/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...