Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(8)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38673998

RESUMO

As one of the largest and most diverse classes of specialized metabolites in plants, terpenoids (oprenoid compounds, a type of bio-based material) are widely used in the fields of medicine and light chemical products. They are the most important secondary metabolites in coniferous species and play an important role in the defense system of conifers. Terpene synthesis can be promoted by regulating the expressions of terpene synthase genes, and the terpene biosynthesis pathway has basically been clarified in Pinus massoniana, in which there are multiple rate-limiting enzymes and the rate-limiting steps are difficult to determine, so the terpene synthase gene regulation mechanism has become a hot spot in research. Herein, we amplified a PmDXR gene (GenBank accession no. MK969119.1) of the MEP pathway (methyl-erythritol 4-phosphate) from Pinus massoniana. The DXR enzyme activity and chlorophyll a, chlorophyll b and carotenoid contents of overexpressed Arabidopsis showed positive regulation. The PmDXR gene promoter was a tissue-specific promoter and can respond to ABA, MeJA and GA stresses to drive the expression of the GUS reporter gene in N. benthamiana. The DXR enzyme was identified as a key rate-limiting enzyme in the MEP pathway and an effective target for terpene synthesis regulation in coniferous species, which can further lay the theoretical foundation for the molecularly assisted selection of high-yielding lipid germplasm of P. massoniana, as well as provide help in the pathogenesis of pine wood nematode disease.


Assuntos
Regulação da Expressão Gênica de Plantas , Pinus , Proteínas de Plantas , Pinus/genética , Pinus/metabolismo , Pinus/parasitologia , Pinus/enzimologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Clorofila/metabolismo , Clorofila/biossíntese , Carotenoides/metabolismo , Alquil e Aril Transferases/genética , Alquil e Aril Transferases/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Terpenos/metabolismo , Clorofila A/metabolismo , Plantas Geneticamente Modificadas , Acetatos/metabolismo , Oxilipinas/metabolismo , Ciclopentanos/metabolismo , Regiões Promotoras Genéticas , Ácido Abscísico/metabolismo , Vias Biossintéticas
2.
Int J Mol Sci ; 22(20)2021 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-34681852

RESUMO

Pine wood nematode (PWN) causes serious diseases in conifers, especially pine species. To investigate the transcriptomic profiles of genes involved in pine-PWN interactions, two different pine species, namely, Pinus thunbergii and P. massoniana, were selected for this study. Weighted gene coexpression network analysis (WGCNA) was used to determine the relationship between changes in gene expression and the PWN population after PWN infection. PWN infection negatively affects the expression of most genes in pine trees, including plant defense-related genes such as genes related to plant hormone signal transduction, plant-pathogen interactions, and the MAPK signaling pathway in plants. However, the expression of chalcone synthase genes and their related genes were proportional to the changes in nematode populations, and chalcone synthase genes were dominant within the coexpression module enriched by genes highly correlated with the nematode population. Many genes that were closely related to chalcone synthase genes in the module were related to flavonoid biosynthesis, flavone and flavonol biosynthesis, and phenylpropanoid biosynthesis. Pine trees could actively adjust their defense strategies in response to changes in the number of invasive PWNs, but the sustained expression of chalcone synthase genes should play an important role in the inhibition of PWN infection.


Assuntos
Aciltransferases/genética , Infecções por Nematoides/genética , Pinus/parasitologia , Doenças das Plantas/genética , Rabditídios , Animais , Resistência à Doença , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Infecções por Nematoides/enzimologia , Pinus/enzimologia , Pinus/genética , Pinus/metabolismo , Transdução de Sinais , Transcriptoma
3.
Int J Mol Sci ; 22(2)2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33467778

RESUMO

In the methyl-D-erythritol-4-phosphate (MEP) pathway, 1-deoxy-D-xylose-5-phosphate synthase (DXS) is considered the key enzyme for the biosynthesis of terpenoids. In this study, PmDXS (MK970590) was isolated from Pinus massoniana. Bioinformatics analysis revealed homology of MK970590 with DXS proteins from other species. Relative expression analysis suggested that PmDXS expression was higher in roots than in other plant parts, and the treatment of P. massoniana seedlings with mechanical injury via 15% polyethylene glycol 6000, 10 mM H2O2, 50 µM ethephon (ETH), 10 mM methyl jasmonate (MeJA), and 1 mM salicylic acid (SA) resulted in an increased expression of PmDXS. pET28a-PmDXS was expressed in Escherichia coli TransB (DE3) cells, and stress analysis showed that the recombinant protein was involved in resistance to NaCl and drought stresses. The subcellular localization of PmDXS was in the chloroplast. We also cloned a full-length 1024 bp PmDXS promoter. GUS expression was observed in Nicotiana benthamiana roots, stems, and leaves. PmDXS overexpression significantly increased carotenoid, chlorophyll a, and chlorophyll b contents and DXS enzyme activity, suggesting that DXS is important in isoprenoid biosynthesis. This study provides a theoretical basis for molecular breeding for terpene synthesis regulation and resistance.


Assuntos
Pentosefosfatos/química , Pinus/enzimologia , Terpenos/química , Transferases/metabolismo , Acetatos/química , Clorofila/química , Clorofila A/química , Biologia Computacional , Ciclopentanos/química , Escherichia coli/metabolismo , Perfilação da Expressão Gênica , Oxilipinas/química , Pigmentação , Folhas de Planta , Caules de Planta/enzimologia , Regiões Promotoras Genéticas , Proteínas Recombinantes/metabolismo , Ácido Salicílico/química , Nicotiana/metabolismo , Transferases/genética , Xilose
4.
J Mol Evol ; 88(3): 253-283, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32036402

RESUMO

In the biosynthesis of terpenoids, the ample catalytic versatility of terpene synthases (TPS) allows the formation of thousands of different molecules. A steadily increasing number of sequenced plant genomes invariably show that the TPS gene family is medium to large in size, comprising from 30 to 100 functional members. In conifers, TPSs belonging to the gymnosperm-specific TPS-d subfamily produce a complex mixture of mono-, sesqui-, and diterpenoid specialized metabolites, which are found in volatile emissions and oleoresin secretions. Such substances are involved in the defence against pathogens and herbivores and can help to protect against abiotic stress. Oleoresin terpenoids can be also profitably used in a number of different fields, from traditional and modern medicine to fine chemicals, fragrances, and flavours, and, in the last years, in biorefinery too. In the present work, after summarizing the current views on the biosynthesis and biological functions of terpenoids, recent advances on the evolution and functional diversification of plant TPSs are reviewed, with a focus on gymnosperms. In such context, an extensive characterization and phylogeny of all the known TPSs from different Pinus species is reported, which, for such genus, can be seen as the first effort to explore the evolutionary history of the large family of TPS genes involved in specialized metabolism. Finally, an approach is described in which the phylogeny of TPSs in Pinus spp. has been exploited to isolate for the first time mono-TPS sequences from Pinus nigra subsp. laricio, an ecologically important endemic pine in the Mediterranean area.


Assuntos
Alquil e Aril Transferases/genética , Evolução Molecular , Família Multigênica , Pinus/enzimologia , Proteínas de Plantas/genética , Sequência de Aminoácidos , Pinus/classificação , Terpenos/metabolismo
5.
J Microbiol Biotechnol ; 29(5): 776-784, 2019 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-31030455

RESUMO

Polyhydroxybutyrate (PHB), the most well-known polyhydroxyalkanoate, is a bio-based, biodegradable polymer that has the potential to replace petroleum-based plastics. Lignocellulose hydrolysate, a non-edible resource, is a promising substrate for the sustainable, fermentative production of PHB. However, its application is limited by the generation of inhibitors during the pretreatment processes. In this study, we investigated the feasibility of PHB production in E. coli in the presence of inhibitors found in lignocellulose hydrolysates. Our results show that the introduction of PHB synthetic genes (bktB, phaB, and phaC from Ralstonia eutropha H16) improved cell growth in the presence of the inhibitors such as furfural, 4-hydroxybenzaldehyde, and vanillin, suggesting that PHB synthetic genes confer resistance to these inhibitors. In addition, increased PHB production was observed in the presence of furfural as opposed to the absence of furfural, suggesting that this compound could be used to stimulate PHB production. Our findings indicate that PHB production using lignocellulose hydrolysates in recombinant E. coli could be an innovative strategy for cost-effective PHB production, and PHB could be a good target product from lignocellulose hydrolysates, especially glucose.


Assuntos
Aclimatação/genética , Escherichia coli/genética , Furaldeído/efeitos adversos , Genes Sintéticos/genética , Hidroxibutiratos/metabolismo , Poliésteres/metabolismo , Proteínas de Bactérias/genética , Cupriavidus necator/genética , Resistência a Medicamentos , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Hordeum/enzimologia , Lignina/metabolismo , Pinus/enzimologia , Poaceae/embriologia
6.
Planta ; 248(4): 933-946, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29974209

RESUMO

MAIN CONCLUSION: Synechocystis (a cyanobacterium) was employed as an alternative host for the production of plant essential oil constituents. ß-Phellandrene synthase (PHLS) genes from different plants, when expressed in Synechocystis, enabled synthesis of variable monoterpene hydrocarbon blends, converting Synechocystis into a cell factory that photosynthesized and released useful products. Monoterpene synthases are secondary metabolism enzymes that catalyze the generation of essential oil constituents in terrestrial plants. Essential oils, including monoterpene hydrocarbons, are of interest for their commercial application and value. Therefore, heterologous expression of monoterpene synthases for high-capacity essential oil production in photosynthetic microorganism transformants is of current interest. In the present work, the cyanobacterium Synechocystsis PCC 6803 was employed as an alternative host for the production of plant essential oil constituents. As a case study, ß-phellandrene synthase (PHLS) genes from different plants were heterologously expressed in Synechocystis. Genomic integration of individual PHLS-encoding sequences endowed Synechocystis with constitutive monoterpene hydrocarbons generation, occurring concomitant with photosynthesis and cell growth. Specifically, the ß-phellandrene synthase from Lavandula angustifolia (lavender), Solanum lycopersicum (tomato), Pinus banksiana (pine), Picea sitchensis (Sitka spruce) and Abies grandis (grand fir) were active in Synechocystis transformants but, instead of a single product, they generated a blend of terpene hydrocarbons comprising ß-phellandrene, α-phellandrene, ß-myrcene, ß-pinene, and δ-carene with variable percentage ratios ranging from < 10 to > 90% in different product combinations and proportions. Our results suggested that PHLS enzyme conformation and function depends on the cytosolic environment in which they reside, with the biochemical properties of the latter causing catalytic deviations from the products naturally observed in the corresponding gene-encoding plants, giving rise to the terpene hydrocarbon blends described in this work. These findings may have commercial application in the generation of designer essential oil blends and will further assist the development of heterologous cyanobacterial platforms for the generation of desired monoterpene hydrocarbon products.


Assuntos
Monoterpenos/metabolismo , Óleos Voláteis/metabolismo , Óleos de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Synechocystis/metabolismo , Abies/enzimologia , Abies/genética , Monoterpenos Acíclicos , Monoterpenos Bicíclicos , Compostos Bicíclicos com Pontes/metabolismo , Monoterpenos Cicloexânicos , Expressão Gênica , Liases Intramoleculares/genética , Liases Intramoleculares/metabolismo , Lavandula/enzimologia , Lavandula/genética , Solanum lycopersicum/enzimologia , Solanum lycopersicum/genética , Engenharia Metabólica , Fotossíntese , Picea/enzimologia , Picea/genética , Pinus/enzimologia , Pinus/genética , Proteínas de Plantas/genética , Proteínas Recombinantes de Fusão , Synechocystis/genética , Transgenes
7.
Sci Rep ; 7(1): 2377, 2017 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-28539650

RESUMO

Dark-operative protochlorophyllide oxidoreductase (DPOR) is a key enzyme to produce chlorophyll in the dark. Among photosynthetic eukaryotes, all three subunits chlL, chlN, and chlB are encoded by plastid genomes. In some gymnosperms, two codons of chlB mRNA are changed by RNA editing to codons encoding evolutionarily conserved amino acid residues. However, the effect of these substitutions on DPOR activity remains unknown. We first prepared cyanobacterial ChlB variants with amino acid substitution(s) to mimic ChlB translated from pre-edited mRNA. Their activities were evaluated by measuring chlorophyll content of dark-grown transformants of a chlB-lacking mutant of the cyanobacterium Leptolyngbya boryana that was complemented with pre-edited mimic chlB variants. The chlorophyll content of the transformant cells expressing the ChlB variant from the fully pre-edited mRNA was only one-fourth of the control cells. Co-purification experiments of ChlB with Strep-ChlN suggested that a stable complex with ChlN is greatly impaired in the substituted ChlB variant. We then confirmed that RNA editing efficiency was markedly greater in the dark than in the light in cotyledons of the black pine Pinus thunbergii. These results indicate that RNA editing on chlB mRNA is important to maintain appropriate DPOR activity in black pine chloroplasts.


Assuntos
Proteínas de Bactérias/química , Cloroplastos/enzimologia , Cianobactérias/enzimologia , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/química , Pinus/enzimologia , Proteínas de Plantas/química , Protoclorifilida/química , Sequência de Aminoácidos , Substituição de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cloroplastos/genética , Clonagem Molecular , Cianobactérias/genética , Escuridão , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Modelos Moleculares , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Fotossíntese/genética , Pinus/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Protoclorifilida/metabolismo , Edição de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia Estrutural de Proteína
8.
PLoS One ; 11(8): e0161575, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27557079

RESUMO

Samples of bleached kraft pine cellulosic pulp, either treated with an enzyme preparation (a Thermomyces lanuginosus xylanase, an Aspergillus sp. cellulase, and a multienzyme preparation NS-22086 containing both these activities) or untreated, were refined in a laboratory PFI mill. The treatment with cellulases contained in the last two preparations significantly improved the pulp's susceptibility to refining (the target freeness value of 30°SR was achieved in a significantly shorter time), increased water retention value (WRV) and fines contents while the weighted average fiber length was significantly reduced. These changes of pulp parameters caused deterioration of paper strength properties. The treatment with the xylanase, which partially hydrolyzed xylan, small amounts of which are associated with cellulose fibers, only slightly loosened the structure of fibers. These subtle changes positively affected the susceptibility of the pulp to refining (refining energy was significantly reduced) and improved the static strength properties of paper. Thus, the treatment of kraft pulps with xylanases may lead to substantial savings of refining energy without negative effects on paper characteristics.


Assuntos
Celulase/química , Papel/normas , Pinus/enzimologia , Xilosidases/química , Hidrólise
9.
Tsitol Genet ; 50(2): 36-43, 2016.
Artigo em Russo | MEDLINE | ID: mdl-27281923

RESUMO

Comparative studies of genetic variability were undertaken for 12 allozyme loci selections of trees and embryos of seed, and also for the crossing systems in five populations of Koch pine of (Pinus kochiana Klotzsch ex Koch) in Crimea. It was shown that in seed embryos the allelic variety peculiar to the maternal plants was restored, however the level of the available (H0) heterozygosity was considerably lower, 0.286 and 0.189 respectively. For the embryos unlike the trees, in the majority of the analyzed loci the considerable divergence was specific in the actual distribution of genotypes from the theoretically expected according to Hardy- Weinberg law. The proportion of cross pollination at the unilocal (t(s)) estimation varied from 0.384 to 0.673 in the populations, while at the multilocal ones (t(m)) it was 0.639-0.841.


Assuntos
Isoenzimas/genética , Pinus/crescimento & desenvolvimento , Pinus/genética , Proteínas de Plantas/genética , Polimorfismo Genético , Cruzamentos Genéticos , Loci Gênicos , Genética Populacional , Pinus/enzimologia , Sementes/enzimologia , Sementes/genética , Sementes/crescimento & desenvolvimento , Ucrânia
10.
Plant J ; 87(2): 215-29, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27125254

RESUMO

l-Phenylalanine serves as a building block for the biosynthesis of proteins, but also as a precursor for a wide range of plant-derived compounds essential for plants and animals. Plants can synthesize Phe within the plastids using arogenate as a precursor; however, an alternative pathway using phenylpyruvate as an intermediate, described for most microorganisms, has recently been proposed. The functionality of this pathway requires the existence of enzymes with prephenate dehydratase (PDT) activity (EC 4.2.1.51) in plants. Using phylogenetic studies, functional complementation assays in yeast and biochemical analysis, we have identified the enzymes displaying PDT activity in Pinus pinaster. Through sequence alignment comparisons and site-directed mutagenesis we have identified a 22-amino acid region conferring PDT activity (PAC domain) and a single Ala314 residue critical to trigger this activity. Our results demonstrate that all plant clades include PAC domain-containing ADTs, suggesting that the PDT activity, and thus the ability to synthesize Phe using phenylpyruvate as an intermediate, has been preserved throughout the evolution of plants. Moreover, this pathway together with the arogenate pathway gives plants a broad and versatile capacity to synthesize Phe and its derived compounds. PAC domain-containing enzymes are also present in green and red algae, and glaucophytes, the three emerging clades following the primary endosymbiont event resulting in the acquisition of plastids in eukaryotes. The evolutionary prokaryotic origin of this domain is discussed.


Assuntos
Pinus/genética , Prefenato Desidratase/genética , Aminoácidos Dicarboxílicos/metabolismo , Cicloexenos/metabolismo , Genes de Plantas/fisiologia , Redes e Vias Metabólicas/fisiologia , Fenilalanina/metabolismo , Ácidos Fenilpirúvicos/metabolismo , Filogenia , Pinus/enzimologia , Pinus/metabolismo , Plantas , Prefenato Desidratase/metabolismo , Tirosina/análogos & derivados , Tirosina/metabolismo
11.
Plant Physiol ; 171(1): 152-64, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26936895

RESUMO

Cytochrome P450 enzymes of the CYP720B subfamily play a central role in the biosynthesis of diterpene resin acids (DRAs), which are a major component of the conifer oleoresin defense system. CYP720Bs exist in families of up to a dozen different members in conifer genomes and fall into four different clades (I-IV). Only two CYP720B members, loblolly pine (Pinus taeda) PtCYP720B1 and Sitka spruce (Picea sitchensis) PsCYP720B4, have been characterized previously. Both are multisubstrate and multifunctional clade III enzymes, which catalyze consecutive three-step oxidations in the conversion of diterpene olefins to DRAs. These reactions resemble the sequential diterpene oxidations affording ent-kaurenoic acid from ent-kaurene in gibberellin biosynthesis. Here, we functionally characterized the CYP720B clade I enzymes CYP720B2 and CYP720B12 in three different conifer species, Sitka spruce, lodgepole pine (Pinus contorta), and jack pine (Pinus banksiana), and compared their activities with those of the clade III enzymes CYP720B1 and CYP720B4 of the same species. Unlike the clade III enzymes, clade I enzymes were ultimately found not to be active with diterpene olefins but converted the recently discovered, unstable diterpene synthase product 13-hydroxy-8(14)-abietene. Through alternative routes, CYP720B enzymes of both clades produce some of the same profiles of conifer oleoresin DRAs (abietic acid, neoabietic acid, levopimaric acid, and palustric acid), while clade III enzymes also function in the formation of pimaric acid, isopimaric acid, and sandaracopimaric acid. These results highlight the modularity of the specialized (i.e. secondary) diterpene metabolism, which produces conifer defense metabolites through variable combinations of different diterpene synthase and CYP720B enzymes.


Assuntos
Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Diterpenos/metabolismo , Picea/enzimologia , Pinus/enzimologia , Resinas Vegetais/metabolismo , Abietanos , Sequência de Aminoácidos , Sequência de Bases , Ácidos Carboxílicos , Clonagem Molecular , Sistema Enzimático do Citocromo P-450/análise , Sistema Enzimático do Citocromo P-450/classificação , DNA Complementar , DNA de Plantas , Diterpenos do Tipo Caurano/metabolismo , Escherichia coli/genética , Cromatografia Gasosa-Espectrometria de Massas , Expressão Gênica , Giberelinas/biossíntese , Microssomos , Fenantrenos , Filogenia , Picea/genética , Pinus/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Saccharomyces cerevisiae/genética , Transcriptoma
12.
Tree Physiol ; 35(11): 1264-77, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26433020

RESUMO

Gibberellins (GAs) are important regulators of plant shoot biomass growth, and GA 20-oxidase (GA20ox) is one of the major regulatory enzymes in the GA biosynthetic pathway. Previously, we showed that the expression levels of a putative GA20ox1 (i.e., PdGA20ox1) in stem tissue of 3-month-old seedlings of 12 families of Pinus densiflora were positively correlated with stem diameter growth across those same families growing in an even-aged 32-year-old pine forest (Park EJ, Lee WY, Kurepin LV, Zhang R, Janzen L, Pharis RP (2015) Plant hormone-assisted early family selection in Pinus densiflora via a retrospective approach. Tree Physiol 35:86-94). To further investigate the molecular function of this gene in the stem wood growth of forest trees, we produced transgenic poplar lines expressing PdGA20ox1 under the control of the 35S promoter (designated as 35S::PdGA20ox1). By age 3 months, most of the 35S::PdGA20ox1 poplar trees were showing an exceptional enhancement of stem wood growth, i.e., up to fourfold increases in stem dry weight, compared with the nontransformed control poplar plants. Significant increases in endogenous GA1, its immediate precursor (GA20) and its catabolite (GA8) in elongating internode tissue accompanied the increased stem growth in the transgenic lines. Additionally, the development of gelatinous fibers occurred in vertically grown stems of the 35S::PdGA20ox1 poplars. An analysis of the cell wall monosaccharide composition of the 35S::PdGA20ox1 poplars showed significant increases in xylose and glucose contents, indicating a qualitative increase in secondary wall depositions. Microarray analyses led us to find a total of 276 probe sets that were upregulated (using threefold as a threshold) in the stem tissues of 35S::PdGA20ox1 poplars relative to the controls. 'Cell organization or biogenesis'- and 'cell wall'-related genes were overrepresented, including many of genes that are involved in cell wall modification. Several transcriptional regulators, which positively regulate cell elongation through GA signaling, were also upregulated. In contrast, genes involved in defense signaling were appreciably downregulated in the 35S::PdGA20ox1 stem tissues, suggesting a growth versus defense trade-off. Taken together, our results suggest that PdGA20ox1 functions to promote stem growth and wood formation in poplar, probably by activating GA signaling while coincidentally depressing defense signaling.


Assuntos
Regulação Enzimológica da Expressão Gênica/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Oxigenases de Função Mista/metabolismo , Pinus/enzimologia , Populus/metabolismo , Madeira/crescimento & desenvolvimento , Ácido Abscísico/biossíntese , Biomassa , Giberelinas/metabolismo , Ácidos Indolacéticos/metabolismo , Oxigenases de Função Mista/genética , Pinus/crescimento & desenvolvimento , Pinus/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Populus/enzimologia , Populus/genética , Análise Serial de Proteínas , RNA de Plantas/genética , RNA de Plantas/metabolismo , Transdução de Sinais
13.
J Genet ; 94(3): 417-23, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26440080

RESUMO

Glutathione transferases (GSTs; EC 2.5.1.18) play important roles in stress tolerance and metabolic detoxification in plants.In higher plants, studies on GSTs have focussed largely on agricultural plants. There is restricted information about molecular characterization of GSTs in gymnosperms. To date, only tau class GST enzymes have been characterized from some pinus species. For the first time, the present study reports cloning and molecular characterization of two zeta class GST genes, namely PbGSTZ1 and PbGSTZ2 from Pinus brutia Ten., which is an economically important pine native to the eastern Mediterranean region and have to cope with several environmental stress conditions. The PbGSTZ1 gene was isolated from cDNA, whereas PbGSTZ2 was isolated from genomic DNA. Sequence analysis of PbGSTZ1 and PbGSTZ2 revealed the presence of an open reading frame of 226 amino acids with typical consensus sequences of the zeta class plant GSTs. Protein and secondary structure prediction analysis of two zeta class PbGSTZs have shared common features of other plant zeta class GSTs. Genomic clone, PbGSTZ2 gene, is unexpectedly intronless. Extensive sequence analysis of PbGSTZ2, with cDNA clone, PbGSTZ1, revealed 87% identity at nucleotide and 81% identity at amino acid levels with 41 amino acids differences suggesting that genomic PbGSTZ2 gene might be an allelic or a paralogue version of PbGSTZ1.


Assuntos
Glutationa Transferase/genética , Pinus/enzimologia , Proteínas de Plantas/genética , Sequência de Aminoácidos , Sequência de Bases , Northern Blotting , Densitometria , Glutationa Transferase/química , Glutationa Transferase/metabolismo , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Dados de Sequência Molecular , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Alinhamento de Sequência , Análise de Sequência de DNA
14.
Plant Physiol Biochem ; 94: 181-90, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26113157

RESUMO

Transgenic hybrid poplars engineered to express ectopically the heterologous pine cytosolic GS1a display a number of significant pleiotropic phenotypes including enhanced growth, enhanced nitrogen use efficiency, and resistance to drought stress. The present study was undertaken in order to assess mechanisms whereby ectopic expression of pine GS1a in transgenic poplars results in enhanced agronomic phenotypes. Microarray analysis using the Agilent Populus whole genome array has allowed identification of genes differentially expressed between wild type (WT) and GS transgenics in four tissues (sink leaves, source leaves, stems, and roots) under three growth conditions (well-watered, drought, and recovery). Analysis revealed that differentially expressed genes in functional categories related to nitrogen metabolism show a trend of significant down-regulation in GS poplars compared to the WT, including genes encoding nitrate and nitrite reductases. The down-regulation of these genes was verified using qPCR, and downstream effects were further tested using NR activity assays. Results suggest that higher glutamine levels in GS transgenics regulate nitrate uptake and reduction. Transcript levels of nitrogen-related genes in leaves, including GS/GOGAT cycle enzymes, aspartate aminotransferase, GABA shunt enzymes, photorespiration enzymes, asparagine synthetase, phenylalanine ammonia lyase, isocitrate dehydrogenase, and PII, were also assessed using qPCR revealing significant differences between GS poplars and the WT. Moreover, metabolites related to these differentially expressed genes showed alterations in levels, including higher levels of GABA, hydroxyproline, and putrescine in the GS transgenic. These alterations in nitrogen homeostasis offer insights into mechanisms accounting for drought tolerance observed in GS poplars.


Assuntos
Glutamato-Amônia Ligase/biossíntese , Nitrogênio/metabolismo , Pinus/genética , Proteínas de Plantas/biossíntese , Plantas Geneticamente Modificadas/enzimologia , Populus/enzimologia , Estresse Fisiológico , Glutamato-Amônia Ligase/genética , Pinus/enzimologia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Populus/genética
15.
Tree Physiol ; 35(9): 1000-6, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26093373

RESUMO

We have carried out a candidate-gene-based association genetic study in Pinus pinaster Aiton and evaluated the predictive performance for genetic merit gain of the most significantly associated genes and single nucleotide polymorphisms (SNPs). We used a second generation 384-SNP array enriched with candidate genes for growth and wood properties to genotype mother trees collected in 20 natural populations covering most of the European distribution of the species. Phenotypic data for total height, polycyclism, root-collar diameter and biomass were obtained from a replicated provenance-progeny trial located in two sites with contrasting environments (Atlantic vs Mediterranean climate). General linear models identified strong associations between growth traits (total height and polycyclism) and four SNPs from the korrigan candidate gene, after multiple testing corrections using false discovery rate. The combined genomic breeding value predictions assessed for the four associated korrigan SNPs by ridge regression-best linear unbiased prediction (RR-BLUP) and cross-validation accounted for up to 8 and 15% of the phenotypic variance for height and polycyclic growth, respectively, and did not improve adding SNPs from other growth-related candidate genes. For root-collar diameter and total biomass, they accounted for 1.6 and 1.1% of the phenotypic variance, respectively, but increased to 15 and 4.1% when other SNPs from lp3.1, lp3.3 and cad were included in RR-BLUP models. These results point towards a desirable integration of candidate-gene studies as a means to pre-select relevant markers, and aid genomic selection in maritime pine breeding programs.


Assuntos
Arabidopsis/genética , Celulase/genética , Pinus/enzimologia , Pinus/crescimento & desenvolvimento , Proteínas de Plantas/genética , Polimorfismo de Nucleotídeo Único/genética , Proteínas de Arabidopsis/genética , Sequência de Bases , Cruzamento , Genoma de Planta , Haplótipos/genética , Proteínas de Membrana/genética , Dados de Sequência Molecular , Pinus/genética , Proteínas de Plantas/metabolismo , Homologia de Sequência de Aminoácidos
16.
Tsitol Genet ; 49(2): 29-37, 2015.
Artigo em Russo | MEDLINE | ID: mdl-26030971

RESUMO

A comparative analysis of genetic variation at 12 polymorphic isozyme loci, and the mating system has been carried out in mature trees and their seed progeny in three small localities of Pinus brutia var. stankewiczii Sukacz. near the town of Sudak--settlement of Novyi Svet in the Crimea. We found that embryos maintain the same allelic diversity as mother plants but their observed heterozygosity is lower on the average by 37.4%. The significant deviation of genotype distribution from the theoretically expected ratios caused by the deficiency of heterozygotes was observed at 8 out of 12 loci. Multilocus estimate of outcrossing rate (t(m)) in populations varied from 68.9 to 94.9% making on the average 80.7%.


Assuntos
Genética Populacional , Oxirredutases/genética , Pinus/genética , Proteínas de Plantas/genética , Sementes/genética , Alelos , Expressão Gênica , Loci Gênicos , Variação Genética , Heterozigoto , Isoenzimas/genética , Isoenzimas/metabolismo , Perda de Heterozigosidade , Oxirredutases/metabolismo , Filogenia , Pinus/classificação , Pinus/enzimologia , Proteínas de Plantas/metabolismo , Reprodução/genética , Federação Russa , Sementes/enzimologia
17.
New Phytol ; 205(3): 1164-1174, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25348688

RESUMO

While multiple experiments have demonstrated that trees exposed to elevated CO2 can stimulate microbes to release nutrients from soil organic matter, the importance of root- versus mycorrhizal-induced changes in soil processes are presently unknown. We analyzed the contribution of roots and mycorrhizal activities to carbon (C) and nitrogen (N) turnover in a loblolly pine (Pinus taeda) forest exposed to elevated CO2 by measuring extracellular enzyme activities at soil microsites accessed via root windows. Specifically, we quantified enzyme activity from soil adjacent to root tips (rhizosphere), soil adjacent to hyphal tips (hyphosphere), and bulk soil. During the peak growing season, CO2 enrichment induced a greater increase of N-releasing enzymes in the rhizosphere (215% increase) than in the hyphosphere (36% increase), but a greater increase of recalcitrant C-degrading enzymes in the hyphosphere (118%) than in the rhizosphere (19%). Nitrogen fertilization influenced the magnitude of CO2 effects on enzyme activities in the rhizosphere only. At the ecosystem scale, the rhizosphere accounted for c. 50% and 40% of the total activity of N- and C-releasing enzymes, respectively. Collectively, our results suggest that root exudates may contribute more to accelerated N cycling under elevated CO2 at this site, while mycorrhizal fungi may contribute more to soil C degradation.


Assuntos
Dióxido de Carbono/farmacologia , Carbono/metabolismo , Florestas , Ciclo do Nitrogênio/efeitos dos fármacos , Pinus/metabolismo , Rizosfera , Ciclo Hidrológico , Biocatálise/efeitos dos fármacos , Espaço Extracelular/enzimologia , Fertilizantes , Nitrogênio/metabolismo , North Carolina , Pinus/enzimologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/microbiologia , Solo/química
18.
Bioengineered ; 6(1): 33-41, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25424521

RESUMO

Phytol is a diterpene alcohol of medicinal importance and it also has potential to be used as biofuel. We found over production of phytol in Nostoc punctiforme by expressing a 2-Methyl-3-buten-2-ol (MBO) synthase gene. MBO synthase catalyzes the conversion of dimethylallyl pyrophosphate (DMAPP) into MBO, a volatile hemiterpene alcohol, in Pinus sabiniana. The result of enhanced phytol production in N. punctiforme, instead of MBO, could be explained by one of the 2 models: either the presence of a native prenyltransferase enzyme with a broad substrate specificity, or appropriation of a MBO synthase metabolic intermediate by a native geranyl diphosphate (GDP) synthase. In this work, an expression vector with an indigenous petE promoter for gene expression in the cyanobacterium N. punctiforme was constructed and MBO synthase gene expression was successfully shown using reverse transcriptase (RT)-PCR and SDS-PAGE. Gas chromatography--mass spectrophotometry (GC-MS) was performed to confirm phytol production from the transgenic N. punctiforme strains. We conclude that the expression of MBO synthase in N. punctiforme leads to overproduction of an economically important compound, phytol. This study provides insights about metabolic channeling of isoprenoids in cyanobacteria and also illustrates the challenges of bioengineering non-native hosts to produce economically important compounds.


Assuntos
Expressão Gênica , Nostoc/genética , Fitol/metabolismo , Pinus/enzimologia , Proteínas de Plantas/genética , Nostoc/química , Nostoc/metabolismo , Pentanóis/metabolismo , Fitol/análise , Pinus/genética , Proteínas de Plantas/metabolismo
19.
J Pineal Res ; 57(3): 348-55, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25208036

RESUMO

Serotonin N-acetyltransferase (SNAT) is the penultimate enzyme in melatonin biosynthesis in both animals and plants. SNAT catalyzes serotonin into N-acetylserotonin, an immediate precursor for melatonin biosynthesis by N-acetylserotonin methyltransferase (ASMT). We cloned the SNAT gene from a gymnosperm loblolly pine (Pinus teada). The loblolly pine SNAT (PtSNAT) gene encodes 255 amino acids harboring a transit sequence with 67 amino acids and shows 67% amino acid identity with rice SNAT when comparing the mature polypeptide regions. Purified recombinant PtSNAT showed peak activity at 55°C with the K(m) (428 µM) and Vmax (3.9 nmol/min/mg protein) values. As predicted, PtSNAT localized to chloroplasts. The SNAT mRNA was constitutively expressed in all tissues, including leaf, bud, flower, and pinecone, whereas the corresponding protein was detected only in leaf. In accordance with the exclusive SNAT protein expression in leaf, melatonin was detected only in leaf at 0.45 ng per gram fresh weight. Sequence and phylogenetic analysis indicated that the gymnosperm PtSNAT had high homology with SNATs from all plant phyla (even with cyanobacteria), and formed a clade separated from the angiosperm SNATs, suggestive of direct gene transfer from cyanobacteria via endosymbiosis.


Assuntos
Arilalquilamina N-Acetiltransferase/genética , Pinus/genética , Sequência de Aminoácidos , Arilalquilamina N-Acetiltransferase/química , Arilalquilamina N-Acetiltransferase/isolamento & purificação , Sequência de Bases , Clonagem Molecular , Primers do DNA , DNA de Plantas , Filogenia , Pinus/enzimologia , Reação em Cadeia da Polimerase , Homologia de Sequência de Aminoácidos
20.
Plant Cell Physiol ; 55(9): 1669-78, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25016610

RESUMO

4-Coumarate:CoA ligase (4CL) catalyzes the formation of hydroxycinnamoyl-CoA esters for phenylpropanoid biosynthesis. Phylogenetically distinct Class I and Class II 4CL isoforms occur in angiosperms, and support lignin and non-lignin phenylpropanoid biosynthesis, respectively. In contrast, the few experimentally characterized gymnosperm 4CLs are associated with lignin biosynthesis and belong to the conifer-specific Class III. Here we report a new Pinus taeda isoform Pinta4CL3 that is phylogenetically more closely related to Class II angiosperm 4CLs than to Class III Pinta4CL1. Like angiosperm Class II 4CLs, Pinta4CL3 transcript levels were detected in foliar and root tissues but were absent in xylem, and recombinant Pinta4CL3 exhibited a substrate preference for 4-coumaric acid. Constitutive expression of Pinta4CL3 in transgenic Populus led to significant increases of hydroxycinnamoyl-quinate esters at the expense of hydroxycinnamoyl-glucose esters in green tissues. In particular, large increases of cinnamoyl-quinate in transgenic leaves suggested in vivo utilization of cinnamic acid by Pinta4CL3. Lignin was unaffected in transgenic Populus, consistent with Pinta4CL3 involvement in biosynthesis of non-structural phenylpropanoids. We discuss the in vivo cinnamic acid utilization activity of Pinta4CL3 and its adaptive significance in conifer defense. Together with phylogenetic inference, our data support an ancient origin of Class II 4CLs that pre-dates the angiosperm-gymnosperm split.


Assuntos
Coenzima A Ligases/metabolismo , Regulação da Expressão Gênica de Plantas , Pinus/enzimologia , Populus/enzimologia , Propanóis/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Clonagem Molecular , Coenzima A Ligases/genética , Ácidos Cumáricos/metabolismo , Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Isoenzimas , Lignina/metabolismo , Dados de Sequência Molecular , Filogenia , Pinus/genética , Folhas de Planta/química , Folhas de Planta/enzimologia , Folhas de Planta/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/química , Raízes de Plantas/enzimologia , Raízes de Plantas/genética , Populus/química , Populus/genética , Propionatos , Análise de Sequência de DNA , Xilema/química , Xilema/enzimologia , Xilema/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...