Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 850
Filtrar
1.
Sci Total Environ ; 927: 172166, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38575023

RESUMO

Previous favorable climate conditions stimulate tree growth making some forests more vulnerable to hotter droughts. This so-called structural overshoot may contribute to forest dieback, but there is little evidence on its relative importance depending on site conditions and tree species because of limited field data. Here, we analyzed remote sensing (NDVI) and tree-ring width data to evaluate the impacts of the 2017 drought on canopy cover and growth in mixed Mediterranean forests (Fraxinus ornus, Quercus pubescens, Acer monspessulanum, Pinus pinaster) located in southern Italy. Legacy effects were assessed by calculating differences between observed and predicted basal area increment (BAI). Overall, the growth response of the study stands to the 2017 drought was contingent on site conditions and species characteristics. Most sites presented BAI and canopy cover reductions during the drought. Growth decline was followed by a quick recovery and positive legacy effects, particularly in the case of F. ornus. However, we found negative drought legacies in some species (e.g., Q. pubescens, A. monspessulanum) and sites. In those sites showing negative legacies, high growth rates prior to drought in response to previous wet winter-spring conditions may have predisposed trees to drought damage. Vice versa, the positive drought legacy found in some F. ornus site was linked to post-drought growth release due to Q. pubescens dieback and mortality. Therefore, we found evidences of structural drought overshoot, but it was restricted to specific sites and species. Our findings highlight the importance of considering site settings such as stand composition, pre-drought conditions and different tree species when studying structural overshoot. Droughts contribute to modify the composition and dynamics in mixed forests.


Assuntos
Secas , Florestas , Árvores , Árvores/fisiologia , Itália , Quercus/crescimento & desenvolvimento , Quercus/fisiologia , Mudança Climática , Pinus/fisiologia , Pinus/crescimento & desenvolvimento , Monitoramento Ambiental , Fraxinus/fisiologia , Fraxinus/crescimento & desenvolvimento , Acer/crescimento & desenvolvimento , Acer/fisiologia
2.
Tree Physiol ; 44(4)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38470306

RESUMO

Drought is a major environmental stressor that limits seedling growth. Several studies have found that some ectomycorrhizal fungi may increase the drought tolerance of nursery-raised seedlings. However, the precise role that different ectomycorrhizal fungi species play in drought tolerance remains unclear. We evaluated the transpiration rate of Pinus sylvestris seedlings under drought stress in greenhouse conditions by exposing seedlings to 10 ectomycorrhizal fungi species, with different functional traits (exploration type and hydrophobicity), and to 3 natural soil inoculums. We measured the transpiration and water potential of the seedlings during a 10-day drought period and a 14-day recovery period. We then analyzed their root morphology, stem, needle, root biomass and needle chlorophyll fluorescence. We showed that exposing seedlings to ectomycorrhizal fungi or soil inoculum had a positive effect on their transpiration rate during the driest period and through the recovery phase, leading to 2- to 3-fold higher transpiration rates compared with the nonexposed control seedlings. Seedlings exposed to medium-distance ectomycorrhizal fungi performed better than other exploration types under drought conditions, but ectomycorrhizal fungi hydrophobicity did not seem to affect the seedlings response to drought. No significant differences were observed in biomass accumulation and root morphology between the seedlings exposed to different ectomycorrhizal fungi species and the control. Our results highlight the positive and species-specific effect of ectomycorrhizal fungi exposure on drought tolerance in nursery-raised Scots pine seedlings. The studied ectomycorrhizal fungi functional traits may not be sufficient to predict the seedling response to drought stress, thus physiological studies across multiple species are needed to draw the correct conclusion. Our findings have potential practical implications for enhancing seedling drought tolerance in nursery plant production.


Assuntos
Micorrizas , Pinus sylvestris , Pinus , Pinus sylvestris/fisiologia , Plântula/fisiologia , Biomassa , Raízes de Plantas/fisiologia , Secas , Transpiração Vegetal/fisiologia , Solo , Pinus/fisiologia
3.
Glob Chang Biol ; 30(2): e17190, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38403855

RESUMO

Enhancement of net primary production (NPP) in forests as atmospheric [CO2 ] increases is likely limited by the availability of other growth resources. The Duke Free Air CO2 Enrichment (FACE) experiment was located on a moderate-fertility site in the southeastern US, in a loblolly pine (Pinus taeda L.) plantation with broadleaved species growing mostly in mid-canopy and understory. Duke FACE ran from 1994 to 2010 and combined elevated [CO2 ] (eCO2 ) with nitrogen (N) additions. We assessed the spatial and temporal variation of NPP response using a dataset that includes previously unpublished data from 6 years of the replicated CO2 × N experiment and extends to 2 years beyond the termination of enrichment. Averaged over time (1997-2010), NPP of pine and broadleaved species were 38% and 52% higher under eCO2 compared to ambient conditions. Furthermore, there was no evidence of a decline in enhancement over time in any plot regardless of its native site quality. The relation between spatial variation in the response and native site quality was suggested but inconclusive. Nitrogen amendments under eCO2 , in turn, resulted in an additional 11% increase in pine NPP. For pine, the eCO2 -induced increase in NPP was similar above- and belowground and was driven by both increased leaf area index (L) and production efficiency (PE = NPP/L). For broadleaved species, coarse-root biomass production was more than 200% higher under eCO2 and accounted for the entire production response, driven by increased PE. Notably, the fraction of annual NPP retained in total living biomass was higher under eCO2 , reflecting a slight shift in allocation fraction to woody mass and a lower mortality rate. Our findings also imply that tree growth may not have been only N-limited, but perhaps constrained by the availability of other nutrients. The observed sustained NPP enhancement, even without N-additions, demonstrates no progressive N limitation.


Assuntos
Dióxido de Carbono , Pinus , Nitrogênio , Pinus/fisiologia , Florestas , Árvores , Pinus taeda , Folhas de Planta/fisiologia
4.
Int J Biometeorol ; 68(4): 743-748, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38214750

RESUMO

Hot droughts, droughts attributed to below-average precipitation and exceptional warmth, are increasingly common in the twenty-first century, yet little is known about their effect on coniferous tree growth because of their historical rarity. In much of the American West, including California, radial tree growth is principally driven by precipitation, and narrow ring widths are typically associated with either drier or drought conditions. However, for species growing at high elevations (e.g., Larix lyalli, Pinus albicaulis), growth can be closely aligned with above-average temperatures with maximum growth coinciding with meteorological drought, suggesting that the growth effects of drought span from adverse to beneficial depending on location. Here, we compare radial growth responses of three high-elevation old-growth pines (Pinus jeffreyi, P. lambertiana, and P. contorta) growing in the San Jacinto Mountains, California, during a twenty-first-century hot drought (2000-2020) largely caused by exceptional warmth and a twentieth-century drought (1959-1966) principally driven by precipitation deficits. Mean radial growth during the hot drought was 12% above average while 18% below average during the mid-century drought illustrating that the consequences of environmental stress exhibit spatiotemporal variability. We conclude that the effects of hot droughts on tree growth in high-elevation forests may produce responses different than what is commonly associated with extended dry periods for much of western North America's forested lands at lower elevational ranges and likely applies to other mountainous regions (e.g., Mediterranean Europe) defined by summer-dry conditions. Thus, the climatological/biological interactions discovered in Southern California may offer clues to the unique nature of high-elevation forested ecosystems globally.


Assuntos
Ecossistema , Pinus , Secas , Pinus/fisiologia , Florestas , California
5.
Tree Physiol ; 44(2)2024 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-38195942

RESUMO

Needle blights are serious fungal diseases affecting European natural and planted pine forests. Brown-spot needle blight (BSNB) disease, caused by the fungus Lecanosticta acicola, causes canopy defoliation and severe productivity losses, with consequences depending on host susceptibility. To gain new insights into BSNB plant-pathogen interactions, constitutive and pathogen-induced traits were assessed in two host species with differential disease susceptibility. Six-month-old Pinus radiata D. Don (susceptible) and Pinus pinea L. (more resistant) seedlings were needle inoculated with L. acicola under controlled conditions. Eighty days after inoculation, healthy-looking needles from symptomatic plants were assessed for physiological parameters and sampled for biochemical analysis. Disease progression, plant growth, leaf gas-exchanges and biochemical parameters were complemented with hormonal and untargeted primary metabolism analysis and integrated for a holistic analysis. Constitutive differences between pine species were observed. Pinus pinea presented higher stomatal conductance and transpiration rate and higher amino and organic acids, abscisic acid as well as putrescine content than P. radiata. Symptoms from BSNB disease were observed in 54.54% of P. radiata and 45.45% of P. pinea seedlings, being more pronounced and generalized in P. radiata. For both species, plant height, sub-stomatal CO2 concentration and water-use efficiency were impacted by infection. In P. radiata, total soluble sugars, starch and total flavonoids content increased after infection. No differences in hormone content after infection were observed. However, secondary metabolism was induced in P. pinea visible through total phenolics, flavonoids and putrescine accumulation. Overall, the observed results suggest that P. pinea constitutive and induced traits may function as two layers of a defence strategy which contributed to an increased BSNB resistance in comparison with P. radiata. This is the first integrative study linking plant physiological and molecular traits in Pinus-Lecanosticta acicola pathosystem, contributing to a better understanding of the underlying resistance mechanisms to BSNB disease in pines.


Assuntos
Ascomicetos , Pinus , Pinus/fisiologia , Putrescina/metabolismo , Plântula/fisiologia , Flavonoides/metabolismo
6.
Tree Physiol ; 44(3)2024 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-38198740

RESUMO

As wildfires increase in size and severity, large areas of forest are undergoing substantial increases in shrub cover. In forests where water is the limiting resource, the partitioning of soil water between shrubs and young trees may determine how shrubs affect tree growth and water-stress. Here we evaluated juvenile trees (average age = 32 years) of two dominant conifer species in the southern Sierra Nevada of California (Abies concolor (white fir) and Pinus jeffreyi (Jeffrey pine)) growing in the presence or absence of shrubs. The two shrub species included Arctostaphylos patula and Ceanothus cordulatus, a nitrogen-fixing species. We analyzed the δ2H and δ18O values of xylem water for both tree and shrub species to assess how shrub cover affects the water-uptake patterns of conifers and whether there is niche partitioning between trees and shrubs. We found that growing near shrubs did not have a significant effect on the water source dynamics of either tree species, with similar source water contributions calculated for conifers growing in both the presence and absence of shrubs. Using a tree-ring analysis of growth and δ13C from 2016 to 2021, a period of high precipitation variability, we found that shrub cover had a positive effect on tree growth while decreasing carbon discrimination, which may be due to increased nitrogen availability from Ceanothus cordulatus. Overall, our results suggest that growing in the presence of shrubs does not alter the water uptake patterns of white fir and Jeffrey pine and instead may have a positive effect on the growth rates of these species during both wet and dry years.


Assuntos
Pinus , Água , Florestas , Árvores/fisiologia , Pinus/fisiologia , Nitrogênio
7.
Ecotoxicology ; 33(1): 66-84, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38183574

RESUMO

Species-specific anatomical and morphological characteristics of Pinus sylvestris and Larix sibirica needles were studied at different levels of tree stand pollution by aluminum smelter emissions. The anatomical characteristics of the needle were studied using light microscopy. The level of tree stand pollution was determined using the cluster analysis outcomes of the pollutant elements content (fluorine, sulfur, and heavy metals) in the needles. Four levels of tree stand pollution were separated: low, moderate, high, and critical, as well as background tree stand in unpolluted areas. It was found that the state of tree phytomass deteriorated with increasing levels of pollution (from low to critical): pine crown defoliation increased to 85%, and larch defoliation increased to 65%. The life span of pine needles was reduced to 2-3 years, with a background value of 6-7 years. The change of morphological parameters was more pronounced in P. sylvestris: the weight and length of the 2-year-old shoot decreased by 2.7-3.1 times compared to the background values; the weight of needles on the shoot and the number of needle pairs on the shoot-by 1.9-2.1 times. The length of the needle and shoot and the number of L. sibirica brachyblasts decreased by 1.8-1.9 times. The anatomical parameters of the needle also changed to a greater extent in P. sylvestris. Up to the high level of tree pollution, we observed a decrease in the cross-sectional area of the needle, central cylinder, vascular bundle, area and thickness of mesophyll, number and diameter of resin ducts by 18-66% compared to background values. At the critical pollution level, when the content of pollutant elements in pine needles reached maximum values, the anatomical parameters of the remaining few green needles were close to background values. In our opinion, this may be due to the activation of mechanisms aimed at maintaining the viability of trees. A reduction in thickness and area of assimilation tissue in the L. sibirica needle was detected only at the critical pollution level. An upward trend in these parameters was found at low, medium, and high pollution levels of tree stand, which may indicate an adaptive nature. The results suggested that at a similar pollution level of trees, the greatest amount of negative anatomical and morphological changes were recorded in pine needles, which indicates a greater sensitivity of this species to technogenic emissions.


Assuntos
Poluentes Ambientais , Larix , Pinus sylvestris , Pinus , Alumínio , Pinus/fisiologia , Árvores
8.
Tree Physiol ; 44(1)2024 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-38070187

RESUMO

Climate change significantly impacts global forests, leading to tree decline and dieback. To cope with climate change, trees develop several functional traits, such as intra-annual density fluctuations (IADFs) in tree rings. The formation of these traits facilitates trees to optimize resource allocation, allowing them to withstand periods of stress and eventually recover when the conditions become favourable again. This study focuses on a Pinus pinaster Aiton forest in a warm, drought-prone Mediterranean area, comparing two growing seasons with different weather patterns. The innovative continuous monitoring approach used in this study combines high-resolution monitoring of sap flow (SF), analysis of xylogenesis and quantitative wood anatomy. Our results revealed the high plasticity of P. pinaster in water use and wood formation, shedding light on the link between IADFs and tree conductance. Indeed, the capacity to form large cells in autumn (as IADFs) improves the total xylem hydraulic conductivity of this species. For the first time, a continuous SF measurement system captured the dynamics of bimodal SF during the 2022 growing season in conjunction with the bimodal growth pattern observed through xylogenesis monitoring. These results highlight the intricate interplay between environmental conditions, water use, wood formation and tree physiology, providing valuable insights into the acclimation mechanisms employed by P. pinaster to cope with weather fluctuations.


Assuntos
Pinus , Madeira , Madeira/anatomia & histologia , Xilema/fisiologia , Pinus/fisiologia , Estações do Ano , Secas , Água
9.
Tree Physiol ; 44(1)2024 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-37788052

RESUMO

The ability of plants to adjust to the adverse effects of climate change is important for their survival and for their contribution to the global carbon cycle. This is particularly true in the Mediterranean region, which is among the regions that are most vulnerable to climate change. Here, we carried out a 2-year comparative ecophysiological study of ecosystem function in two similar Eastern Mediterranean forests of the same tree species (Pinus halepensis Mill.) under mild (Sani, Greece) and extreme (Yatir, Israel) climatic conditions. The partial effects of key environmental variables, including radiation, vapor pressure deficit, air temperature and soil moisture (Rg, D, T and soil water content (SWC), respectively), on the ecosystems' CO2 and water vapor fluxes were estimated using generalized additive models (GAMs). The results showed a large adjustment between sites in the seasonal patterns of both carbon and water fluxes and in the time and duration of the optimal period (defined here as the time when fluxes were within 85% of the seasonal maximum). The GAM analysis indicated that the main factor influencing the seasonal patterns was SWC, while T and D had significant but milder effects. During the respective optimal periods, the two ecosystems showed strong similarities in the fluxes' responses to the measured environmental variables, indicating similarity in their underlying physiological characteristics. The results indicate that Aleppo pine forests have a strong phenotypic adjustment potential to cope with increasing environmental stresses. This, in turn, will help their survival and their continued contribution to the terrestrial carbon sink in the face of climate change in this region.


Assuntos
Ecossistema , Pinus , Florestas , Árvores , Solo , Pinus/fisiologia , Ciclo do Carbono , Carbono
10.
Tree Physiol ; 44(1)2024 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-37861656

RESUMO

Conifers growing in temperate forests utilize sustained forms of thermal dissipation during winter to protect the photosynthetic apparatus from damage, which can be monitored via pronounced reductions in photochemical efficiency (Fv/Fm) during winter. Eastern white pine (Pinus strobus L.) and white spruce (Picea  glauca (Moench) Voss) are known to recover from winter stress at different rates, with pine recovering more slowly than spruce, suggesting different mechanisms for sustained dissipation in these species. Our objectives were to monitor pine and spruce throughout spring recovery in order to provide insights into key mechanisms for sustained dissipation in both species. We measured chlorophyll fluorescence, pigments, and abundance and phosphorylation status of key photosynthetic proteins. We found that both species rely on two forms of sustained dissipation involving retention of high amounts of antheraxanthin (A) + zeaxanthin (Z), one that is very slowly reversible and temperature independent and one that is more dynamic and occurs only on subzero days. Differences in protein abundance suggest that spruce, but not pine, likely upregulates cyclic or alternative pathways of electron transport involving the cytochrome b6f complex and photosystem I (PSI). Both species show an increased sustained phosphorylation of the D1 protein on subzero days, and spruce additionally shows dramatic increases in the sustained phosphorylation of light-harvesting complex II (LHCII) and other PSII core proteins on subzero days only, suggesting that a mechanism of sustained dissipation that is temperature dependent requires sustained phosphorylation of photosynthetic proteins in spruce, possibly allowing for direct energy transfer from PSII to PSI as a mechanism of photoprotection. The data suggest differences in strategy among conifers in mechanisms of sustained thermal dissipation in response to winter stress. Additionally, the flexible induction of sustained A + Z and phosphorylation of photosynthetic proteins in response to subzero temperatures during spring recovery seem to be important in providing photoprotection during transitional periods with high temperature fluctuation.


Assuntos
Picea , Pinus , Picea/fisiologia , Fotossíntese , Pinus/fisiologia , Fosforilação , Temperatura , Complexo de Proteína do Fotossistema II , Clorofila/metabolismo
11.
Ying Yong Sheng Tai Xue Bao ; 34(9): 2314-2320, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37899095

RESUMO

We took 5-year-old Pinus koraiensis seedlings under natural secondary forests with canopy densities of 0.2-0.3, 0.4-0.6, and 0.7-0.9 at Laoshan Plantation Experimental Station in Maoershan Experimental Forest Farm of Northeast Forestry University as monitor object, and P. koraiensis seedlings under full-light environment as control (CK), to investigate the photosynthetic characteristics and the anatomical structure of P. koraiensis needles in response to the changes of canopy densities. The results showed that the height and diameter of P. koraiensis seedlings tended to decrease while specific leaf area increased with the increases of canopy densities. The total biomass of P. koraiensis seedlings under different canopy densities ranked in an order of 0.4-0.6>CK>0.7-0.9>0.2-0.3. Photosynthetically active radiation (PAR) was significantly and positively correlated with leaf biomass, stem biomass, and root biomass. The net photosynthetic rate, transpiration rate, and intercellular CO2 concentration of P. koraiensis seedlings showed a decreasing trend with the increases of canopy densities, while the stomatal conductance showed an increasing trend. Net photosynthetic rate and chlorophyll a/b showed a significant positive correlation with PAR. Stomatal density showed a gradual decreasing trend with the increases of canopy densities, and the needle cross-sectional area, mesophyll tissue area, xylem area, and phloem area of P. koraiensis seedlings under canopy density 0.4-0.6 were significantly higher than those in other treatments. P. koraiensis seedlings with stronger photosynthetic abilities and higher needle anatomy parameters under canopy density 0.4-0.6, and were able to maintain strong competitiveness in this habitat. Those results indicated that 5-year-old P. koraiensis seedlings need certain shading environment.


Assuntos
Pinus , Humanos , Pré-Escolar , Pinus/fisiologia , Plântula , Clorofila A , Fotossíntese/fisiologia , Florestas
12.
New Phytol ; 240(1): 127-137, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37483100

RESUMO

Global warming and droughts push forests closer to their thermal limits, altering tree carbon uptake and growth. To prevent critical overheating, trees can adjust their thermotolerance (Tcrit ), temperature and photosynthetic optima (Topt and Aopt ), and canopy temperature (Tcan ) to stay below damaging thresholds. However, we lack an understanding of how soil droughts affect photosynthetic thermal plasticity and Tcan regulation. In this study, we measured the effect of soil moisture on the seasonal and diurnal dynamics of net photosynthesis (A), stomatal conductance (gs ), and Tcan , as well as the thermal plasticity of photosynthesis (Tcrit , Topt , and Aopt ), over the course of 1 yr using a long-term irrigation experiment in a drought-prone Pinus sylvestris forest in Switzerland. Irrigation resulted in higher needle-level A, gs , Topt , and Aopt compared with naturally drought-exposed trees. No daily or seasonal differences in Tcan were observed between treatments. Trees operated below their thermal thresholds (Tcrit ), independently of soil moisture content. Despite strong Tcan and Tair coupling, we provide evidence that drought reduces trees' temperature optimum due to a substantial reduction of gs during warm and dry periods of the year. These findings provide important insights regarding the effects of soil drought on the thermal tolerance of P. sylvestris.


Assuntos
Pinus sylvestris , Pinus , Pinus sylvestris/fisiologia , Solo , Temperatura , Folhas de Planta/fisiologia , Florestas , Fotossíntese/fisiologia , Árvores/fisiologia , Secas , Pinus/fisiologia
13.
New Phytol ; 240(2): 542-554, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37491863

RESUMO

Phenotypic plasticity is a main mechanism for sessile organisms to cope with changing environments. Plasticity is genetically based and can evolve under natural selection so that populations within a species show distinct phenotypic responses to environment. An important question that remains elusive is whether the intraspecific variation in plasticity at different spatial scales is independent from each other. To test whether variation in plasticity to macro- and micro-environmental variation is related among each other, we used growth data of 25 Pinus pinaster populations established in seven field common gardens in NW Spain. Phenotypic plasticity to macro-environmental variation was estimated across test sites while plasticity to micro-environmental variation was estimated by using semivariography and kriging for modeling within-site heterogeneity. We provide empirical evidence of among-population variation in the magnitude of plastic responses to both micro- and macro-environmental variation. Importantly, we found that such responses were positively correlated across spatial scales. Selection for plasticity at one scale of environmental variation may impact the expression of plasticity at other scales, having important consequences on the ability of populations to buffer climate change. These results improve our understanding of the ecological drivers underlying the expression of phenotypic plasticity.


Assuntos
Mudança Climática , Pinus , Adaptação Fisiológica/genética , Espanha , Pinus/fisiologia , Fenótipo
14.
New Phytol ; 240(1): 92-104, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37430467

RESUMO

Shifts in the age or turnover time of non-structural carbohydrates (NSC) may underlie changes in tree growth under long-term increases in drought stress associated with climate change. But NSC responses to drought are challenging to quantify, due in part to large NSC stores in trees and subsequently long response times of NSC to climate variation. We measured NSC age (Δ14 C) along with a suite of ecophysiological metrics in Pinus edulis trees experiencing either extreme short-term drought (-90% ambient precipitation plot, 2020-2021) or a decade of severe drought (-45% plot, 2010-2021). We tested the hypothesis that carbon starvation - consumption exceeding synthesis and storage - increases the age of sapwood NSC. One year of extreme drought had no impact on NSC pool size or age, despite significant reductions in predawn water potential, photosynthetic rates/capacity, and twig and needle growth. By contrast, long-term drought halved the age of the sapwood NSC pool, coupled with reductions in sapwood starch concentrations (-75%), basal area increment (-39%), and bole respiration rates (-28%). Our results suggest carbon starvation takes time, as tree carbon reserves appear resilient to extreme disturbance in the short term. However, after a decade of drought, trees apparently consumed old stored NSC to support metabolism.


Assuntos
Carbono , Pinus , Carbono/metabolismo , Pinus/fisiologia , Secas , Carboidratos/química , Amido/metabolismo , Árvores/fisiologia , Metabolismo dos Carboidratos
15.
Plant Cell Environ ; 46(9): 2763-2777, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37306365

RESUMO

Adaptation to future climates characterized by more frequent severe droughts requires enhanced mechanistic understanding of tree mortality. However, our knowledge of the physiological limits to withstand extreme drought, and how the coordination between water and carbon traits enhances survival, is still limited. Potted seedlings of Pinus massoniana were dehydrated to three target droughts (percentage loss of stem hydraulic conductivity of ca. 50%, 85%, and 100%; PLC50 , PLC85 and PLC100 ) and then relieved from these target droughts by fully rewatering. Predawn and midday water potentials (Ψ), relative water content (RWC), PLC and nonstructural carbohydrates (NSC) were monitored. During drought, Ψ and RWC declined as PLC increased. Root RWC declined more rapidly than other organ RWCs, particularly after PLC50 stress. All organ NSC concentrations were above predrought values. During rewatering, water trait recovery declined as drought increased, with no mortality at PLC50 but 75% mortality at PLC85 . The observed stem hydraulic recovery at PLC50 following rewatering was not correlated to NSC dynamics. Collectively, our results highlighted the primary role of hydraulic failure in Pinus massoniana seedling mortality by assessing mortality threshold and links among water status and water supply. Root RWC can be considered as a potential warning signal of P. massoniana mortality.


Assuntos
Pinus , Traqueófitas , Água , Secas , Carboidratos/química , Plântula/fisiologia , Pinus/fisiologia , Árvores/fisiologia
16.
Sci Total Environ ; 892: 164351, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37230347

RESUMO

Integration of whole-plant stomatal regulation and xylem hydraulics is of critical importance for predicting species response to drought stress. Yet intraspecific variability of stomatal and hydraulic traits, and how these variabilities interact, remain largely unknown. We hypothesized that drought can drive less stomatal regulation but increase xylem hydraulic safety, resulting in stomatal-hydraulic coordination within a species. We estimated sensitivity of whole-tree canopy conductance to soil drying together with xylem hydraulic traits of two dominant conifers, i.e. limber pine (Pinus flexilis) and Engelmann spruce (Picea engelmannii). Our study was conducted using sub-hourly measurements over five consecutive years (2013-2017) at three instrumented sites with different elevations within the Nevada Eco-hydrological Assessment Network (NevCAN) in Great Basin sky-island ecosystems. Both conifers showed a reduction of stomatal sensitivity to soil drying at lower elevations, indicating an active stomatal acclimation to drought. While limber pine increased xylem embolism resistance in parallel with reduced stomatal sensitivity to soil drying, an opposite hydraulic adjustment was detected in Engelmann spruce. Our results provide evidence that mature trees can respond to climatic changes using coordinated shifts in stomatal regulation and xylem hydraulics, but such changes can differ within and between species in ways that need to be examined using in situ data. Deciphering intraspecific variability in whole-plant stomatal and hydraulic traits ultimately contributes to defining drought tolerance and vulnerability, particularly for tree species that inhabit a wide range of landscapes.


Assuntos
Picea , Pinus , Ecossistema , Água/fisiologia , Pinus/fisiologia , Árvores/fisiologia , Xilema/fisiologia , Secas , Solo , Folhas de Planta/fisiologia
17.
Tree Physiol ; 43(9): 1548-1561, 2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37209141

RESUMO

Effects of the phytotoxic and widespread ozone (O3) pollution may be species specific, but knowledge on Mediterranean conifer responses to long-term realistic exposure is still limited. We examined responses regarding to photosynthesis, needle biochemical stress markers and carbon and nitrogen (N) isotopes of two Mediterranean pine species (Pinus halepensis Mill. and Pinus pinea L.). Seedlings were grown in a Free-Air Controlled Exposure experiment with three levels of O3 (ambient air, AA [38.7 p.p.b. as daily average]; 1.5 × AA and 2.0 × AA) during the growing season (May-October 2019). In P. halepensis, O3 caused a significant decrease in the photosynthetic rate, which was mainly due to a reduction of both stomatal and mesophyll diffusion conductance to CO2. Isotopic analyses indicated a cumulative or memory effect of O3 exposure on this species, as the negative effects were highlighted only in the late growing season in association with a reduced biochemical defense capacity. On the other hand, there was no clear effect of O3 on photosynthesis in P. pinea. However, this species showed enhanced N allocation to leaves to compensate for reduced photosynthetic N- use efficiency. We conclude that functional responses to O3 are different between the two species determining that P. halepensis with thin needles was relatively sensitive to O3, while P. pinea with thicker needles was more resistant due to a potentially low O3 load per unit mass of mesophyll cells, which may affect species-specific resilience in O3-polluted Mediterranean pine forests.


Assuntos
Ozônio , Pinus , Fotossíntese/fisiologia , Folhas de Planta , Pinus/fisiologia , Células do Mesofilo , Plântula
18.
Glob Chang Biol ; 29(15): 4368-4382, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37089078

RESUMO

Predicted increases in extreme droughts will likely cause major shifts in carbon sequestration and forest composition. Although growth declines during drought are widely documented, an increasing number of studies have reported both positive and negative responses to the same drought. These divergent growth patterns may reflect thresholds (i.e., nonlinear responses) promoted by changes in the dominant climatic constraints on tree growth. Here we tested whether stemwood growth exhibited linear or nonlinear responses to temperature and precipitation and whether stemwood growth thresholds co-occurred with multiple thresholds in source and sink processes that limit tree growth. We extracted 772 tree cores, 1398 needle length records, and 1075 stable isotope samples from 27 sites across whitebark pine's (Pinus albicaulis Engelm.) climatic niche in the Sierra Nevada. Our results indicated that a temperature threshold in stemwood growth occurred at 8.4°C (7.12-9.51°C; estimated using fall-spring maximum temperature). This threshold was significantly correlated with thresholds in foliar growth, as well as carbon (δ13 C) and nitrogen (δ15 N) stable isotope ratios, that emerged during drought. These co-occurring thresholds reflected the transition between energy- and water-limited tree growth (i.e., the E-W limitation threshold). This transition likely mediated carbon and nutrient cycling, as well as important differences in growth-defense trade-offs and drought adaptations. Furthermore, whitebark pine growing in energy-limited regions may continue to experience elevated growth in response to climate change. The positive effect of warming, however, may be offset by growth declines in water-limited regions, threatening the long-term sustainability of the recently listed whitebark pine species in the Sierra Nevada.


Assuntos
Pinus , Árvores , Secas , Água , Carbono , Pinus/fisiologia , Isótopos
19.
Ying Yong Sheng Tai Xue Bao ; 34(4): 977-984, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37078316

RESUMO

In this study, we sampled leaves of coniferous species Pinus koraiensis and broad-leaved tree species Fraxinus mandshurica from four latitudes in northeastern China to investigate the carbon (C), nitrogen (N), phosphorus (P) stoichiometric characteristics and nutrient resorption efficiency and their potential relationships, as well as their responses to climatic and edaphic factors. The results showed that stoichiometric characteristics were species-specific, and that the C and N contents in leaves of F. mandshurica significantly increased with increasing latitude. The C:N of F. mandshurica and N:P of P. koraiensis were negatively correlated with latitude, but an inverse relationship was found for N:P of F. mandshurica. P resorption efficiency was significantly correlated with latitude in P. koraiensis. The spatial variation of ecological stoichiometry of these two species was mainly affected by climatic factors such as mean annual temperature and precipitation, while that of nutrient resorption was influenced by several soil factors such as soil pH and nitrogen content. Principal component analysis showed that P resorption efficiency of P. koraiensis and F. mandshurica was significantly negatively correlated with N:P, but positively correlated with P content. N resorption efficiency showed significantly positive correlation with P content but negative correlation with N:P in P. koraiensis. Compared with P. koraiensis, F. mandshurica was more inclined to fast investment and return in terms of leaf traits.


Assuntos
Fraxinus , Pinus , Pinus/fisiologia , Árvores , Nutrientes , Folhas de Planta/fisiologia , Nitrogênio/análise , China , Solo
20.
Huan Jing Ke Xue ; 44(4): 2315-2324, 2023 Apr 08.
Artigo em Chinês | MEDLINE | ID: mdl-37040980

RESUMO

By analyzing the effects of acid rain and nitrogen deposition on the structure and diversity of soil bacterial communities, the response mechanism of Masson pine forests to environmental stress was investigated, providing a theoretical reference basis for resource management and conservation in Tianmu Mountain National Nature Reserve. Four treatments of the simulated acid rain and nitrogen deposition were set up in 2017 to 2021 in Tianmu Mountain National Nature Reserve (pH value of 5.5 and 0 kg·(hm2·a)-1, CK; pH value of 4.5 and 30 kg·(hm2·a)-1, T1; pH value of 3.5 and 60 kg·(hm2·a)-1, T2; pH value of 2.5 and 120 kg·(hm2·a)-1, T3). The differences in soil bacterial community composition and structure among treatments and their influencing factors were analyzed by collecting soils from four treatments, using the Illumina MiSeq PE300 second-generation high-throughput sequencing platform. The results showed that acid rain and nitrogen deposition significantly reduced soil bacterial α-diversity (P<0.05) in a Masson pine forest. The Masson pine forest soils consisted of 36 phylum groups of mycota, with Acidobacteria, Proteobacteria, Actinobacteria, and Chloroflexi as the main bacterial phyla (relative abundance>1%) in the Masson pine forest soils. Flavobacterium, Nitrospira, Haliangium, Candidatus_Koribacter, Bryobacter, Occallatibacter, Acidipla, Singulisphaera, Pajaroellobacter, and Acidothermus, which showed significant changes in relative abundance under the four treatments, could be used as indicator species for changes in soil bacterial communities under acid rain and nitrogen deposition stress. Soil pH and total nitrogen were influential factors in the diversity of soil bacterial communities. As a result, acid rain and nitrogen deposition increased the potential ecological risk, and the loss of microbial diversity will change the ecosystem function as well as reduce the stability of the ecosystem.


Assuntos
Chuva Ácida , Nitrogênio , Pinus , Microbiologia do Solo , Solo , Estresse Fisiológico , Chuva Ácida/efeitos adversos , Acidobacteria , Bactérias/isolamento & purificação , Ecossistema , Florestas , Nitrogênio/efeitos adversos , Nitrogênio/análise , Solo/química , Pinus/fisiologia , Estresse Fisiológico/fisiologia , Microbiota/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...