Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Appl ; 33(4): e2854, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37032063

RESUMO

As the climate changes, it is increasingly important to understand how forests will respond to drought and how forest management can influence those outcomes. In many forests that have become unnaturally dense, "restoration treatments," which decrease stand density using fire and/or mechanical thinning, are generally associated with reduced mortality during drought. However, the effects of such treatments on tree growth during drought are less clear. Previous studies have yielded apparently contradictory results, which may stem from differences in underlying aridity or drought intensity across studies. To address this uncertainty, we studied the growth of ponderosa pine (Pinus ponderosa) in paired treated and untreated areas before and during the extreme California drought of 2012-2016. Our study spanned gradients in climate and tree size and found that density reduction treatments could completely ameliorate drought-driven declines in growth under some contexts, specifically in more mesic areas and in medium-sized trees (i.e., normal annual precipitation > ca. 1100 mm and tree diameter at breast height < ca. 65 cm). Treatments were much less effective in ameliorating drought-associated growth declines in the most water-limited sites and largest trees, consistent with underlying ecophysiology. In medium-sized trees and wetter sites, growth of trees in untreated stands decreased by more than 15% during drought, while treatment-associated increases in growth of 25% or more persisted during the drought. Trees that ultimately died due to drought showed greater growth reductions during drought relative to trees that survived. Our results suggest that density reduction treatments can increase tree resistance to water stress, and they highlight an important pathway for treatments to influence carbon sequestration and other ecosystem services beyond mitigating tree mortality.


Assuntos
Resistência à Seca , Pinus ponderosa , Pinus ponderosa/fisiologia , Ecossistema , Florestas , Árvores/fisiologia , Secas
2.
Ecol Appl ; 33(2): e2760, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36218008

RESUMO

A key uncertainty of empirical models of post-fire tree mortality is understanding the drivers of elevated post-fire mortality several years following fire, known as delayed mortality. Delayed mortality can represent a substantial fraction of mortality, particularly for large trees that are a conservation focus in western US coniferous forests. Current post-fire tree mortality models have undergone limited evaluation of how injury level and time since fire interact to influence model accuracy and predictor variable importance. Less severe injuries potentially serve as an indicator for vulnerability to additional stressors such as bark beetle attack or moisture stress. We used a collection of 164,293 individual tree records to examine post-fire tree mortality in eight western USA conifers: Abies concolor, Abies grandis, Calocedrus decurrens, Larix occidentalis, Pinus contorta, Pinus lambertiana, Pinus ponderosa, and Pseudotsuga menziesii. We evaluated the importance of fire injury predictors on discriminating between surviving trees versus immediate and delayed post-fire mortality. We fit balanced random forest models for each species using cumulative tree mortality from 1 to 5-years post-fire. We compared these results to multi-class random forest models using first-year mortality, 2-5-year mortality, and survival 5-years post-fire as a response variable. Crown volume scorched, diameter at breast height, and relative bark char height, were used as predictor variables. The cumulative mortality models all predicted trees that died within 1-year of fire with high accuracy but failed to predict 2-5-year mortality. The multi-class models were an improvement but had lower accuracy for predicting 2-5-year mortality. Multi-class model accuracies ranged from 85% to 95% across all species for predicting 1-year post-fire mortality, 42%-71% for predicting 2-5-year mortality, and 64%-85% for predicting trees that lived past 5-years. Our study highlights the differences in tree species tolerance to fire injury and suggests that including second-order predictors such as beetle attack or climatic water stress before and after fire will be critical to improve accuracy and better understand the mechanisms and patterns of fire-caused tree death. Random forest models have potential for management applications such as post-fire harvesting and simulating future stand dynamics.


Assuntos
Besouros , Incêndios , Pinus , Pseudotsuga , Animais , Pinus ponderosa/fisiologia , Besouros/fisiologia , Pseudotsuga/fisiologia
3.
Ecol Appl ; 32(8): e2717, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36184740

RESUMO

We report on survival and growth of ponderosa pines (Pinus ponderosa Douglas ex P. Lawson & C. Lawson) 2 decades after forest restoration treatments in the G. A. Pearson Natural Area, northern Arizona. Despite protection from harvest that conserved old trees, a dense forest susceptible to uncharacteristically severe disturbance had developed during more than a century of exclusion of the previous frequent surface-fire regime that ceased upon Euro-American settlement in approximately 1876. Trees were thinned in 1993 to emulate prefire-exclusion forest conditions, accumulated forest floor was removed, and surface fire was re-introduced at 4-years intervals (full restoration). There was also a partial restoration treatment consisting of thinning alone. Compared with untreated controls, mortality of old trees (mean age 243 years, maximum 462 years) differed by <1 tree ha-1 and old-tree survival was statistically indistinguishable between treatments (90.5% control, 92.3% full, 82.6% partial). Post-treatment growth as measured by basal area increment of both old (pre-1876) and young (post-1876) pines was significantly higher in both treatments than counterpart control trees for more than 2 decades following thinning. Drought meeting the definition of megadrought affected the region almost all the time since the onset of the experiment, including 3 years that were severely dry. Growth of all trees declined in the driest 3 years, but old and young treated trees had significantly less decline. Association of tree growth with temperature (negative correlation) and precipitation (positive correlation) was much weaker in treated trees, indicating that they may experience less growth decline from warmer, drier conditions predicted in future decades. Overall, tree responses after the first 2 decades following treatment suggest that forest restoration treatments have led to substantial, sustained improvement in the growth of old and young ponderosa pines without affecting old-tree survival, thereby improving resilience to a warming climate.


Assuntos
Secas , Pinus ponderosa , Pinus ponderosa/fisiologia , Arizona , Florestas , Árvores/fisiologia
4.
Ecol Appl ; 32(4): e2555, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35112748

RESUMO

Human land use and climate change have increased forest density and wildfire risk in dry conifer forests of western North America, threatening various ecosystem services, including habitat for wildlife. Government policy supports active management to restore historical structure and ecological function. Information on potential contributions of restoration to wildlife habitat can allow assessment of tradeoffs with other ecological benefits when prioritizing treatments. We predicted avian responses to simulated treatments representing alternative scenarios to inform landscape-scale forest management planning along the Colorado Front Range. We used data from the Integrated Monitoring in Bird Conservation Regions program to inform a hierarchical multispecies occupancy model relating species occupancy and richness with canopy cover at two spatial scales. We then simulated changes in canopy cover (remotely sensed in 2018) under three alternative scenarios, (1) a "fuels reduction" scenario representing landscape-wide 30% reduction in canopy cover, (2) a "restoration" scenario representing more nuanced, spatially variable treatments targeting historical conditions, and (3) a reference, no-change scenario. Model predictions showed areas of potential gains and losses for species richness, richness of ponderosa pine forest habitat specialists, and the ratio of specialists to generalists at two (1 km2 and 250 m2 ) spatial scales. Under both fuels reduction and restoration scenarios, we projected greater gains than losses for species richness. Surprisingly, despite restoration more explicitly targeting ecologically relevant historical conditions, fuels reduction benefited bird species richness over a greater spatial extent than restoration, particularly in the lower montane life zone. These benefits reflected generally positive species associations with moderate canopy cover promoted more consistently under the fuels reduction scenario. In practice, contemporary forest management is likely to lie somewhere between the fuels reduction and restoration scenarios represented here. Therefore, our results inform where and how active forest management can best support avian diversity. Although our study raises questions regarding the value of including landscape-scale heterogeneity as a management objective, we do not question the value of targeting finer scale heterogeneity (i.e., stand and treatment level). Rather, our results combined with those from previous work clarify the scale at which targeting structural heterogeneity and historical reference conditions can promote particular ecosystem services.


Assuntos
Ecossistema , Traqueófitas , Animais , Animais Selvagens , Aves/fisiologia , Florestas , Humanos , Pinus ponderosa/fisiologia
5.
Plant Cell Environ ; 44(12): 3636-3651, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34612515

RESUMO

How carbohydrate reserves in conifers respond to drought and bark beetle attacks are poorly understood. We investigated changes in carbohydrate reserves and carbon-dependent diterpene defences in ponderosa pine trees that were experimentally subjected to two levels of drought stress (via root trenching) and two types of biotic challenge treatments (pheromone-induced bark beetle attacks or inoculations with crushed beetles that include beetle-associated fungi) for two consecutive years. Our results showed that trenching did not influence carbohydrates, whereas both biotic challenges reduced amounts of starch and sugars of trees. However, only the combined trenched-bark beetle attacked trees depleted carbohydrates and died during the first year of attacks. While live trees contained higher carbohydrates than dying trees, amounts of constitutive and induced diterpenes produced did not vary between live and beetle-attacked dying trees, respectively. Based on these results we propose that reallocation of carbohydrates to diterpenes during the early stages of beetle attacks is limited in drought-stricken trees, and that the combination of biotic and abiotic stress leads to tree death. The process of tree death is subsequently aggravated by beetle girdling of phloem, occlusion of vascular tissue by bark beetle-vectored fungi, and potential exploitation of host carbohydrates by bark beetle symbionts as nutrients.


Assuntos
Metabolismo dos Carboidratos , Secas , Cadeia Alimentar , Longevidade , Pinus ponderosa/fisiologia , Gorgulhos/fisiologia , Animais
6.
Plant Cell Environ ; 44(10): 3322-3335, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34251033

RESUMO

Predicted increases in forest drought mortality highlight the need for predictors of incipient drought-induced mortality (DIM) risk that enable proactive large-scale management. Such predictors should be consistent across plants with varying morphology and physiology. Because of their integrative nature, indicators of water status are promising candidates for real-time monitoring of DIM, particularly if they standardize morphological differences among plants. We assessed the extent to which differences in morphology and physiology between Pinus ponderosa populations influence time to mortality and the predictive power of key indicators of DIM risk. Time to incipient mortality differed between populations but occurred at the same relative water content (RWC) and water potential (WP). RWC and WP were accurate predictors of drought mortality risk. These results highlight that variables related to water status capture critical thresholds during DIM and the associated dehydration processes. Both WP and RWC are promising candidates for large-scale assessments of DIM risk. RWC is of special interest because it allows comparisons across different morphologies and can be remotely sensed. Our results offer promise for real-time landscape-level monitoring of DIM and its global impacts in the near term.


Assuntos
Secas , Pinus ponderosa/fisiologia , Plântula/crescimento & desenvolvimento , Água/metabolismo , Pinus ponderosa/crescimento & desenvolvimento , Plântula/fisiologia
7.
Nat Commun ; 12(1): 129, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33420082

RESUMO

The recent Californian hot drought (2012-2016) precipitated unprecedented ponderosa pine (Pinus ponderosa) mortality, largely attributable to the western pine beetle (Dendroctonus brevicomis; WPB). Broad-scale climate conditions can directly shape tree mortality patterns, but mortality rates respond non-linearly to climate when local-scale forest characteristics influence the behavior of tree-killing bark beetles (e.g., WPB). To test for these cross-scale interactions, we conduct aerial drone surveys at 32 sites along a gradient of climatic water deficit (CWD) spanning 350 km of latitude and 1000 m of elevation in WPB-impacted Sierra Nevada forests. We map, measure, and classify over 450,000 trees within 9 km2, validating measurements with coincident field plots. We find greater size, proportion, and density of ponderosa pine (the WPB host) increase host mortality rates, as does greater CWD. Critically, we find a CWD/host size interaction such that larger trees amplify host mortality rates in hot/dry sites. Management strategies for climate change adaptation should consider how bark beetle disturbances can depend on cross-scale interactions, which challenge our ability to predict and understand patterns of tree mortality.


Assuntos
Secas , Pinus ponderosa/parasitologia , Doenças das Plantas/parasitologia , Árvores/parasitologia , Gorgulhos/patogenicidade , Animais , California , Monitorização de Parâmetros Ecológicos/estatística & dados numéricos , Interações Hospedeiro-Parasita/fisiologia , Feromônios/metabolismo , Pinus ponderosa/fisiologia , Casca de Planta/parasitologia , Dispersão Vegetal , Árvores/fisiologia , Água , Gorgulhos/fisiologia
8.
Plant Cell Environ ; 44(3): 696-705, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32890427

RESUMO

Understanding tree physiological responses to fire is needed to accurately model post-fire carbon processes and inform management decisions. Given trees can die immediately or at extended time periods after fire, we combined two experiments to assess the short- (one-day) and long-term (21-months) fire effects on Pinus ponderosa sapling water transport. Native percentage loss of conductivity (nPLC), vulnerability to cavitation and xylem anatomy were assessed in unburned and burned saplings at lethal and non-lethal fire intensities. Fire did not cause any impact on nPLC and xylem cell wall structure in either experiment. However, surviving saplings evaluated 21-months post-fire were more vulnerable to cavitation. Our anatomical analysis in the long-term experiment showed that new xylem growth adjacent to fire scars had irregular-shaped tracheids and many parenchyma cells. Given conduit cell wall deformation was not observed in the long-term experiment, we suggest that the irregularity of newly grown xylem cells nearby fire wounds may be responsible for decreasing resistance to embolism in burned plants. Our findings suggest that hydraulic failure is not the main short-term physiological driver of mortality for Pinus ponderosa saplings. However, the decrease in embolism resistance in fire-wounded saplings could contribute to sapling mortality in the years following fire.


Assuntos
Incêndios , Pinus ponderosa/fisiologia , Caules de Planta/fisiologia , Pinus ponderosa/metabolismo , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Plântula/fisiologia , Água/metabolismo , Xilema/metabolismo , Xilema/fisiologia , Xilema/ultraestrutura
9.
Sci Total Environ ; 651(Pt 1): 381-398, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30240921

RESUMO

Accurate estimation of ecosystem-scale land surface energy and water balance has great importance in weather and climate studies. This paper summarizes seasonal and interannual fluctuations of energy and water balance components in two distinctive semiarid ecosystems, sagebrush (SB) and lodgepole pine (LP) in the Snake River basin of Idaho. This study includes 6 years (2011-2016) of eddy covariance (EC) along with modeled estimates. An analysis of the energy balance indicated a higher energy balance ratio (0.88) for SB than for LP (0.86). The inclusion of canopy storage (CS) increased the association between turbulent fluxes and available energy in LP. Green vegetation fraction (GVF) significantly controlled evapotranspiration (ET) and surface energy partitioning when available energy and soil moisture were not limited. Seasonal water balance in the Budyko framework showed severe water-limited conditions in SB (6-9 months) compared to LP (6-7 months). Based on the validated Noah land surface model estimates, direct soil evaporation (ESoil) is the main component of ET (62 to 79%) in SB due to a large proportion of bare soil (60%), whereas at the lodgepole pine site, it was transpiration (ETran, 42-52%). A complementary ratio (CR) analysis on ET and potential ET (PET) showed a strong asymmetric CR in SB, indicating significant advection. Both SG and LP showed strong coupling between soil moisture (SM) and air temperature (Ta). However, a weak coupling was observed in SB when the soil was dry and Ta was high. This weak coupling was due to the presence of net advection. The results presented here have a wider application: to help us understand and predict the survival, productivity, and hydroclimatology of water-limited ecosystems.


Assuntos
Artemisia/fisiologia , Ecossistema , Metabolismo Energético , Pinus ponderosa/fisiologia , Água/metabolismo , Clima , Idaho , Estações do Ano , Solo/química
10.
New Phytol ; 221(4): 1814-1830, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30259984

RESUMO

We modeled hydraulic stress in ponderosa pine seedlings at multiple scales to examine its influence on mortality and forest extent at the lower treeline in the northern Rockies. We combined a mechanistic ecohydrologic model with a vegetation dynamic stress index incorporating intensity, duration and frequency of hydraulic stress events, to examine mortality from loss of hydraulic conductivity. We calibrated our model using a glasshouse dry-down experiment and tested it using in situ monitoring data on seedling mortality from reforestation efforts. We then simulated hydraulic stress and mortality in seedlings within the Bitterroot River watershed of Montana. We show that cumulative hydraulic stress, its legacy and its consequences for mortality are predictable and can be modeled at local to landscape scales. We demonstrate that topographic controls on the distribution and availability of water and energy drive spatial patterns of hydraulic stress. Low-elevation, south-facing, nonconvergent locations with limited upslope water subsidies experienced the highest rates of modeled mortality. Simulated mortality in seedlings from 2001 to 2015 correlated with the current distribution of forest cover near the lower treeline, suggesting that hydraulic stress limits recruitment and ultimately constrains the low-elevation extent of conifer forests within the region.


Assuntos
Florestas , Pinus ponderosa/fisiologia , Plântula/fisiologia , Altitude , Calibragem , Hidrologia , Montana , Transpiração Vegetal , Estresse Fisiológico
11.
Syst Biol ; 67(6): 965-978, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29548012

RESUMO

Unique responses to climate change can occur across intraspecific levels, resulting in individualistic adaptation or movement patterns among populations within a given species. Thus, the need to model potential responses among genetically distinct populations within a species is increasingly recognized. However, predictive models of future distributions are regularly fit at the species level, often because intraspecific variation is unknown or is identified only within limited sample locations. In this study, we considered the role of intraspecific variation to shape the geographic distribution of ponderosa pine (Pinus ponderosa), an ecologically and economically important tree species in North America. Morphological and genetic variation across the distribution of ponderosa pine suggest the need to model intraspecific populations: the two varieties (var. ponderosa and var. scopulorum) and several haplotype groups within each variety have been shown to occupy unique climatic niches, suggesting populations have distinct evolutionary lineages adapted to different environmental conditions. We utilized a recently available, geographically widespread dataset of intraspecific variation (haplotypes) for ponderosa pine and a recently devised lineage distance modeling approach to derive additional, likely intraspecific occurrence locations. We confirmed the relative uniqueness of each haplotype-climate relationship using a niche-overlap analysis, and developed ecological niche models (ENMs) to project the distribution for two varieties and eight haplotypes under future climate forecasts. Future projections of haplotype niche distributions generally revealed greater potential range loss than predicted for the varieties. This difference may reflect intraspecific responses of distinct evolutionary lineages. However, directional trends are generally consistent across intraspecific levels, and include a loss of distributional area and an upward shift in elevation. Our results demonstrate the utility in modeling intraspecific response to changing climate and they inform management and conservation strategies, by identifying haplotypes and geographic areas that may be most at risk, or most secure, under projected climate change.


Assuntos
Mudança Climática , Ecossistema , Modelos Biológicos , Pinus ponderosa/fisiologia , Filogenia , Pinus ponderosa/genética
12.
Plant Dis ; 102(3): 640-644, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30673488

RESUMO

Poor seedling performance and reduced seed emergence are often ascribed to known pathogens that cause low seedling recruitment and poor seed emergence in forest nurseries and regeneration plantings. On the other hand, foliar endophytes are often overlooked as a source of poor emergence or tree seedling disease. Here, we show that an endophytic fungus common to the foliar microbiome of Pinus ponderosa acts as a cryptic pathogen in delaying emergence. In a series of experiments, we inoculated seed of P. ponderosa with a suspension of Sydowia polyspora 12 h prior to sowing. S. polyspora reduced seed emergence of its host, P. ponderosa, by as much as 30%. A tetrazolium chloride viability assay showed that S. polyspora reduces emergence by preventing germination; seed remained viable. In sum, pathogens affecting tree seed emergence and seedling recruitment may be endophytic as well as in seed and soil and deserve greater attention in studies of natural regeneration.


Assuntos
Ascomicetos/isolamento & purificação , Pinus ponderosa/microbiologia , Doenças das Plantas/microbiologia , Ascomicetos/patogenicidade , Endófitos , Germinação , Pinus ponderosa/fisiologia , Folhas de Planta/microbiologia , Folhas de Planta/fisiologia , Plântula/microbiologia , Plântula/fisiologia , Sementes/microbiologia , Sementes/fisiologia , Microbiologia do Solo , Árvores
13.
Tree Physiol ; 37(9): 1229-1238, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28938055

RESUMO

Across much of western North America, forests are predicted to experience a transition from snow- to rain-dominated precipitation regimes due to anthropogenic climate warming. Madrean sky island mixed conifer forests receive a large portion of their precipitation from summertime convective storms and may serve as a lens into the future for snow-dominated forests after prolonged warming. To better understand the linkage between physiological traits, climate variation, and the structure and function of mixed conifer forests, we measured leaf photosynthetic (A) responses to controlled variation in internal CO2 concentration (Ci) to quantify interspecific phenological variation in A/Ci-derived ecophysiological traits among ponderosa pine (Pinus ponderosa Lawson and C. Lawson), southwestern white pine (Pinus strobiformis Engelm.) and Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco). Species had similar, positive responses in net photosynthesis under ambient conditions (Anet) to the onset of summertime monsoonal precipitation, but during the cooler portions of the year P. ponderosa was able to maintain greater Anet than P. menziesii and P. strobiformis. Moreover, P. ponderosa had greater Anet in response to ephemerally favorable springtime conditions than either P. menziesii or P. strobiformis. Monsoonal precipitation was associated with a sharp rise in the maximum rates of electron transport (Jmax) and carboxylation (VCmax) in P. menziesii in comparison with P. ponderosa and P. strobiformis. In contrast, species shared similar low values of Jmax and VCmax in response to cool winter temperatures. Patterns of relative stomatal limitation followed predictions based on species' elevational distributions, reinforcing the role of stomatal behavior in maintaining hydraulic conductivity and shaping bioclimatic limits. Phenological variation in ecophysiologial traits among co-occurring tree species in a Madrean mixed conifer forest may promote temporal resource partitioning and thereby contribute to species' coexistence. Moreover, these results provide a physiological basis for predicting the ecological implications of North American mixed conifer forests currently transitioning from snow- to rain-dominated precipitation regimes.


Assuntos
Florestas , Fotossíntese , Pinus ponderosa/fisiologia , Pseudotsuga/fisiologia , América do Norte , Árvores/fisiologia
14.
Proc Natl Acad Sci U S A ; 114(28): 7391-7396, 2017 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-28652352

RESUMO

Long generation times limit species' rapid evolution to changing environments. Trees provide critical global ecosystem services, but are under increasing risk of mortality because of climate change-mediated disturbances, such as insect outbreaks. The extent to which disturbance changes the dynamics and strength of selection is unknown, but has important implications on the evolutionary potential of tree populations. Using a 40-y-old Pinus ponderosa genetic experiment, we provide rare evidence of context-dependent fluctuating selection on growth rates over time in a long-lived species. Fast growth was selected at juvenile stages, whereas slow growth was selected at mature stages under strong herbivory caused by a mountain pine beetle (Dendroctonus ponderosae) outbreak. Such opposing forces led to no net evolutionary response over time, thus providing a mechanism for the maintenance of genetic diversity on growth rates. Greater survival to mountain pine beetle attack in slow-growing families reflected, in part, a host-based life-history trade-off. Contrary to expectations, genetic effects on tree survival were greatest at the peak of the outbreak and pointed to complex defense responses. Our results suggest that selection forces in tree populations may be more relevant than previously thought, and have implications for tree population responses to future environments and for tree breeding programs.


Assuntos
Besouros/fisiologia , Pinus ponderosa/fisiologia , Agricultura , Animais , Teorema de Bayes , Biodiversidade , Mudança Climática , Ecossistema , Florestas , Variação Genética , Risco , Fatores de Tempo
15.
Tree Physiol ; 37(3): 301-315, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28008081

RESUMO

Temperature and the frequency and intensity of heat waves are predicted to increase throughout the 21st century. Germinant seedlings are expected to be particularly vulnerable to heat stress because they are in the boundary layer close to the soil surface where intense heating occurs in open habitats. We quantified leaf thermotolerance and whole-plant physiological responses to heat stress in first-year germinant seedlings in two populations each of Pinus ponderosa P. and C. Lawson (PIPO) and Pseudotsuga menziesii (Mirb.) Franco (PSME) from climates with contrasting precipitation and temperature regimes. Thermotolerance of detached needles was evaluated using chlorophyll fluorescence (FV/FM, FO) and electrolyte leakage. PSME was more heat tolerant than PIPO according to both independent assessments of thermotolerance. Following exposure of whole seedlings to a simulated heat wave at 45 °C for 1 h in a growth chamber, we monitored FV/FM, photosynthesis, stomatal conductance, non-structural carbohydrates (NSCs) and carbon isotope ratios (δ13C) for 14 days. Heat treatment induced significant reductions in FV/FM in both species and a transient reduction in photosynthetic gas exchange only in PIPO 1 day after treatment. Heat treatment induced an increase in glucose + fructose concurrent with a decrease in starch in both species, whereas total NSC and sucrose were not affected by heat treatment. The negative relationship between glucose + fructose and starch observed in treated plants may be due to the conversion of starch to glucose + fructose to aid recovery from heat-induced damage. Populations from drier sites displayed greater δ13C values than those from wetter sites, consistent with higher intrinsic water-use efficiency and drought resistance of populations from drier climates. Thermotolerance and heat stress responses appeared to be phenotypically plastic and representative of the environment in which plants were grown, whereas intrinsic water-use efficiency appeared to reflect ecotypic differentiation and the climate of origin.


Assuntos
Clima , Resposta ao Choque Térmico , Pinus ponderosa/fisiologia , Pseudotsuga/fisiologia , Termotolerância , Oregon , Fotossíntese , Plântula/fisiologia
16.
Am Nat ; 188(6): 589-601, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27860509

RESUMO

Increasingly, the species that we discover will be uncommon, area restricted, and vulnerable to extinction. I describe the natural history of a newly discovered seed-eating finch from the Rocky Mountain region, the South Hills crossbill (Loxia curvirostra complex). It relies on seeds in the closed cones of the fire-adapted Rocky Mountain lodgepole pine (Pinus contorta latifolia) and is found only in the higher elevations of two small mountain ranges in southern Idaho. Here crossbills and pine are engaged in a coevolutionary arms race. Although most of the seeds remain secured within the cones for decades until the heat of a stand-replacing fire causes the cone scales to separate, seeds become accessible to crossbills slowly as cones weather and gaps form between some of the scales. However, hot days (≥32°C), especially four or more hot days, seem to mimic the effect of fire, apparently causing the immediate release of a fraction of the seeds. Such events caused a 20% annual decline in crossbills that lasted up to 4 years and an 80% decline in the population between 2003 and 2011. This is an example of a novel trophic mismatch between a consumer and its resource caused by a shift in the phenology of the resource arising from climate change. Not only do these phenological shifts have the potential to cause seed consumers to decline, these shifts are also likely to cause reduced recruitment of the plants. The South Hills crossbill is especially vulnerable and will likely go extinct this century before lodgepole pine is extirpated from the South Hills.


Assuntos
Evolução Biológica , Mudança Climática , Extinção Biológica , Tentilhões/fisiologia , Pinus ponderosa/fisiologia , Animais , Idaho , Sementes/fisiologia , Seleção Genética
17.
Ecol Appl ; 26(2): 382-91, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27209781

RESUMO

Changing climate and a legacy of fire-exclusion have increased the probability of high-severity wildfire, leading to an increased risk of forest carbon loss in ponderosa pine forests in the southwestern USA. Efforts to reduce high-severity fire risk through forest thinning and prescribed burning require both the removal and emission of carbon from these forests, and any potential carbon benefits from treatment may depend on the occurrence of wildfire. We sought to determine how forest treatments alter the effects of stochastic wildfire events on the forest carbon balance. We modeled three treatments (control, thin-only, and thin and burn) with and without the occurrence of wildfire. We evaluated how two different probabilities of wildfire occurrence, 1% and 2% per year, might alter the carbon balance of treatments. In the absence of wildfire, we found that thinning and burning treatments initially reduced total ecosystem carbon (TEC) and increased net ecosystem carbon balance (NECB). In the presence of wildfire, the thin and burn treatment TEC surpassed that of the control in year 40 at 2%/yr wildfire probability, and in year 51 at 1%/yr wildfire probability. NECB in the presence of wildfire showed a similar response to the no-wildfire scenarios: both thin-only and thin and burn treatments increased the C sink. Treatments increased TEC by reducing both mean wildfire severity and its variability. While the carbon balance of treatments may differ in more productive forest types, the carbon balance benefits from restoring forest structure and fire in southwestern ponderosa pine forests are clear.


Assuntos
Carbono/fisiologia , Incêndios , Florestas , Pinus ponderosa/fisiologia , Arizona , Simulação por Computador , Modelos Biológicos
18.
PLoS One ; 11(5): e0154579, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27195808

RESUMO

In a recent PLOS ONE paper, we conducted an evidence-based analysis of current versus historical fire regimes and concluded that traditionally defined reference conditions of low-severity fire regimes for ponderosa pine (Pinus ponderosa) and mixed-conifer forests were incomplete, missing considerable variability in forest structure and fire regimes. Stevens et al. (this issue) agree that high-severity fire was a component of these forests, but disagree that one of the several sources of evidence, stand age from a large number of forest inventory and analysis (FIA) plots across the western USA, support our findings that severe fire played more than a minor role ecologically in these forests. Here we highlight areas of agreement and disagreement about past fire, and analyze the methods Stevens et al. used to assess the FIA stand-age data. We found a major problem with a calculation they used to conclude that the FIA data were not useful for evaluating fire regimes. Their calculation, as well as a narrowing of the definition of high-severity fire from the one we used, leads to a large underestimate of conditions consistent with historical high-severity fire. The FIA stand age data do have limitations but they are consistent with other landscape-inference data sources in supporting a broader paradigm about historical variability of fire in ponderosa and mixed-conifer forests than had been traditionally recognized, as described in our previous PLOS paper.


Assuntos
Incêndios , Agricultura Florestal/métodos , Florestas , Pinus ponderosa/fisiologia , Traqueófitas/fisiologia , Desastres , Ecologia , Ecossistema , Reprodutibilidade dos Testes , Árvores
19.
Glob Chang Biol ; 22(3): 1029-45, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26663665

RESUMO

Range shifts are among the most ubiquitous ecological responses to anthropogenic climate change and have large consequences for ecosystems. Unfortunately, the ecophysiological forces that constrain range boundaries are poorly understood, making it difficult to mechanistically project range shifts. To explore the physiological mechanisms by which drought stress controls dry range boundaries in trees, we quantified elevational variation in drought tolerance and in drought avoidance-related functional traits of a widespread gymnosperm (ponderosa pine - Pinus ponderosa) and angiosperm (trembling aspen - Populus tremuloides) tree species in the southwestern USA. Specifically, we quantified tree-to-tree variation in growth, water stress (predawn and midday xylem tension), drought avoidance traits (branch conductivity, leaf/needle size, tree height, leaf area-to-sapwood area ratio), and drought tolerance traits (xylem resistance to embolism, hydraulic safety margin, wood density) at the range margins and range center of each species. Although water stress increased and growth declined strongly at lower range margins of both species, ponderosa pine and aspen showed contrasting patterns of clinal trait variation. Trembling aspen increased its drought tolerance at its dry range edge by growing stronger but more carbon dense branch and leaf tissues, implying an increased cost of growth at its range boundary. By contrast, ponderosa pine showed little elevational variation in drought-related traits but avoided drought stress at low elevations by limiting transpiration through stomatal closure, such that its dry range boundary is associated with limited carbon assimilation even in average climatic conditions. Thus, the same climatic factor (drought) may drive range boundaries through different physiological mechanisms - a result that has important implications for process-based modeling approaches to tree biogeography. Further, we show that comparing intraspecific patterns of trait variation across ranges, something rarely done in a range-limit context, helps elucidate a mechanistic understanding of range constraints.


Assuntos
Carbono/metabolismo , Secas , Pinus ponderosa/fisiologia , Dispersão Vegetal , Populus/fisiologia , Mudança Climática , Colorado , Pinus ponderosa/crescimento & desenvolvimento , Populus/crescimento & desenvolvimento , Estresse Fisiológico , Árvores/crescimento & desenvolvimento , Árvores/fisiologia
20.
Tree Physiol ; 35(11): 1223-35, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26433021

RESUMO

Bark beetles (Coleoptera: Curculionidae, Scolytinae) cause widespread tree mortality in coniferous forests worldwide. Constitutive and induced host defenses are important factors in an individual tree's ability to survive an attack and in bottom-up regulation of bark beetle population dynamics, yet quantifying defense levels is often difficult. For example, in Pinus spp., resin flow is important for resistance to bark beetles but is extremely variable among individuals and within a season. While resin is produced and stored in resin ducts, the specific resin duct metrics that best correlate with resin flow remain unclear. The ability and timing of some pine species to produce induced resin is also not well understood. We investigated (i) the relationships between ponderosa pine (Pinus ponderosa Lawson & C. Lawson) resin flow and axial resin duct characteristics, tree growth and physiological variables, and (ii) if mechanical wounding induces ponderosa pine resin flow and resin ducts in the absence of bark beetles. Resin flow increased later in the growing season under moderate water stress and was highest in faster growing trees. The best predictors of resin flow were nonstandardized measures of resin ducts, resin duct size and total resin duct area, both of which increased with tree growth. However, while faster growing trees tended to produce more resin, models of resin flow using only tree growth were not statistically significant. Further, the standardized measures of resin ducts, density and duct area relative to xylem area, decreased with tree growth rate, indicating that slower growing trees invested more in resin duct defenses per unit area of radial growth, despite a tendency to produce less resin overall. We also found that mechanical wounding induced ponderosa pine defenses, but this response was slow. Resin flow increased after 28 days, and resin duct production did not increase until the following year. These slow induced responses may allow unsuccessfully attacked or wounded trees to resist future bark beetle attacks. Forest management that encourages healthy, vigorously growing trees will also favor larger resin ducts, thereby conferring increased constitutive resistance to bark beetle attacks.


Assuntos
Besouros/fisiologia , Pinus ponderosa/crescimento & desenvolvimento , Pinus ponderosa/fisiologia , Desenvolvimento Vegetal/fisiologia , Animais , Pinus ponderosa/parasitologia , Resinas Vegetais , Estações do Ano , Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...