Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 300
Filtrar
1.
J Agric Food Chem ; 72(3): 1607-1617, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38190504

RESUMO

Piper nigrum is a popular crop that can be used as seasoning or as an additive but its active ingredients also have an effect on the nervous system. Nineteen new amide alkaloids (1a/1b, 2-5, 6a/6b, 7, 8a/8b, 9, 10a/10b, 11a-11b, 12-14) were isolated from P. nigrum, guided by inhibitory activity of AChE and LC-MS/MS based on GNPS. The configurations were determined by extensive spectral analysis, Bulkiness rule, and NMR calculations. The inhibitory activities of AChE/BuChE and Aß aggregation were tested, and the results showed compounds 2, 7, and 12 had significant inhibitory activities. These components were identified in the crude fraction and their relative quantities were tested, which suggested that compound 2 was the index component in the active site from P. nigrum.


Assuntos
Alcaloides , Piper nigrum , Piper , Piper nigrum/química , Extratos Vegetais/química , Cromatografia Líquida , Espectrometria de Massas em Tandem , Alcaloides/química , Piper/química
2.
Molecules ; 28(23)2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38067483

RESUMO

The fruits of Amomum kravanh, Citrus hystrix and Piper nigrum 'Kampot' are traditionally used as spices in Cambodian cuisine. In this study, the chemical composition of essential oils (EOs) and supercritical CO2 extracts from all three species was determined using GC-MS, with two columns of different polarity (HP-5/DB-HeavyWAX). Differences between the chemical profile of the EOs and CO2 extracts were observed for all species. The greatest difference was detected in A. kravanh EO containing mainly eucalyptol (78.8/72.6%), while the CO2 extract was rich in fatty acids (13/55.92%) and long-chain alkanes (25.55/9.54%). Furthermore, the results for the CO2 extract of this species differed, where tricosane (14.74%) and oleic acid (29.26%) were the main compounds identified when utilizing the HP-5 or DB-HeavyWAX columns, respectively. Moreover, the EO and CO2 extract from P. nigrum 'Kampot' fruits and the CO2 extract from C. hystrix fruit peel, containing respective amounts 34.84/39.55% (for EO) and 54.21/55.86% (for CO2 extract) of ß-caryophyllene and 30.2/28.9% of ß-pinene, were isolated and analyzed for the first time. Generally, these findings suggest that supercritical CO2 could potentially be used for the extraction of all three spices. Nevertheless, further research determining the most efficient extraction parameters is required before its commercial application.


Assuntos
Amomum , Cromatografia com Fluido Supercrítico , Citrus , Óleos Voláteis , Piper nigrum , Óleos Voláteis/química , Piper nigrum/química , Dióxido de Carbono/química , Amomum/química , Extratos Vegetais/química , Óleos de Plantas/química
3.
Molecules ; 28(14)2023 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-37513459

RESUMO

Gastric cancer is one of the most frequent types of neoplasms worldwide, usually presenting as aggressive and difficult-to-manage tumors. The search for new structures with anticancer potential encompasses a vast research field in which natural products arise as promising alternatives. In this scenario, piperine, an alkaloid of the Piper species, has received attention due to its biological activity, including anticancer attributes. The present work proposes three heating-independent, reliable, low-cost, and selective methods for obtaining piperine from Piper nigrum L. (Black pepper). Electronic (SEM) and optical microscopies, X-ray diffraction, nuclear magnetic resonance spectroscopies (13C and 1H NMR), and optical spectroscopies (UV-Vis, photoluminescence, and FTIR) confirm the obtention of piperine crystals. The MTT assay reveals that the piperine samples exhibit good cytotoxic activity against primary and metastasis models of gastric cancer cell lines from the Brazilian Amazon. The samples showed selective cytotoxicity on the evaluated models, revealing higher effectiveness in cells bearing a higher degree of aggressiveness. Moreover, the investigated piperine crystals demonstrated the ability to act as a good cytotoxicity enhancer when combined with traditional chemotherapeutics (5-FU and GEM), allowing the drugs to achieve the same cytotoxic effect in cells employing lower concentrations. These results establish piperine as a promising molecule for therapy investigations in aggressive gastric cancer, both in its isolated form or as a bioenhancer.


Assuntos
Alcaloides , Antineoplásicos , Piper nigrum , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/tratamento farmacológico , Alcaloides/química , Benzodioxóis/química , Piperidinas/química , Alcamidas Poli-Insaturadas/química , Piper nigrum/química , Antineoplásicos/farmacologia
4.
Food Res Int ; 167: 112654, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37087244

RESUMO

Based on the distinct fluorescence of piperine and tryptophan, and their different profiles in pepper and several possible adulterants, front-face synchronous fluorescence spectroscopy (FFSFS) was applied for the fast and non-invasive authentication of ground black pepper adulterated with papaya seed powder and buckwheat flour, and ground white pepper adulterated with whole wheat and maize flours. For either single adulterant or dual adulterants in the range of 10-40% w/w, prediction models were constructed based on the combination of unfolded total synchronous fluorescence spectra and partial least square (PLS) regression, and were validated by both five-fold cross-validation and external validation. The built PLS2 models produced suitable results, with most of the determination coefficients of prediction (Rp2) greater than 0.8, the root mean square error of prediction (RMSEP) < 5% and residual predictive deviation (RPD) greater than 2. The limits of detection (LODs) were 11.1, 5.5, 10.6 and 12.0% for papaya seed powder, buckwheat, whole wheat and maize flours, respectively. Most relative prediction errors for simulated blind samples were within ± 30%. Besides, piperine in ground black and white pepper was also determined with acceptable PLS results.


Assuntos
Alcaloides , Piper nigrum , Piper nigrum/química , Espectrometria de Fluorescência/métodos , Pós
5.
Food Chem ; 406: 135090, 2023 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-36462355

RESUMO

Black pepper (P. nigrum L.) is considered one of the most valuable spices and a promising candidate in natural product research. In this study, the influence of different combinations of pressures (100-300 bar) and temperatures (40-60 °C) on the supercritical CO2 (SC-CO2) recovery of several key compounds from black pepper was evaluated systematically. The extraction curves showed that terpenes were recovered in a short time under all studied conditions. In contrast, higher pressure values were required to extract piperamides efficiently. Furthermore, the differences in the extraction kinetics of piperine, piperettine, pellitorine, guineensine, and N-isobutyl-2,4,14-eicosatrienamide were linked with several structural features, such as the nature of the amine group or the terminal part of the fatty acid. The data from the isocratic experiments represented the starting point for designing a two-step pressure gradient SC-CO2 process in which one terpene-rich and one piperamide-rich product were successively obtained.


Assuntos
Piper nigrum , Piper nigrum/química , Dióxido de Carbono/química , Terpenos , Especiarias , Extratos Vegetais/química
6.
Crit Rev Food Sci Nutr ; 63(16): 2840-2850, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34609267

RESUMO

Brain aging is one of the unavoidable aspects of geriatric life. As one ages, changes such as the shrinking of certain parts (particularly the frontal cortex, which is vital to learning and other complex mental activities) of the brain may occur. Consequently, communications between neurons are less effective, and blood flow to the brain could also decrease. Efforts made at the biological level for repair become inadequate, leading to the accumulation of ß-amyloid peptide in the brain faster than its probable degradation mechanism, resulting in cognitive malfunction. Subsequent clinical usage of drugs in battling related brain-aging ailments has been associated with several undesirable side effects. However, recent research has investigated the potential use of natural compounds from food in combating such occurrences. This review provides information about the use of Piper guineense (black pepper) as a possible agent in managing brain aging because of its implications for practical brain function. P. guineense contains an alkaloid (piperine) reported to be an antioxidant, anti-depressant, and central nervous system stimulant. This alkaloid and other related compounds are neuroprotective agents that reduce lipid oxidation and inhibit tangles in the brain tissues.


Assuntos
Alcaloides , Piper nigrum , Piper , Piper nigrum/química , Piper/química , Benzodioxóis/química , Benzodioxóis/farmacologia , Alcamidas Poli-Insaturadas/química , Alcamidas Poli-Insaturadas/farmacologia , Encéfalo
7.
Crit Rev Food Sci Nutr ; 63(22): 5813-5840, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34996326

RESUMO

Translation of traditional knowledge of herbs into a viable product for clinical use is still an uphill task. Piperine, a pungent alkaloid molecule derived from Piper nigrum and Piper longum possesses diverse pharmacological effects. Traditionally, pepper is used for arthritis, bronchitis, gastritis, diarrhea, snake bite, menstrual pain, fever, and bacterial infections, etc. The anti-inflammatory, antioxidant and immunomodulatory actions of piperine are the possible mechanisms behind its therapeutic potential. Various in-silico and experimental studies have shown piperine as a possible promising molecule in coronavirus disease (COVID-19), ebola, and dengue due to its immunomodulatory and antiviral activities. The other important clinical applications of piperine are due to its bio enhancing effect on drugs, by modulating, absorption in the gastrointestinal tract, altering activities of transporters like p-glycoprotein substrates, and modulating drug metabolism by altering the expression of cytochrome P450 or UDP-glucuronosyltransferase enzymes. Piperine attracted clinicians in treating patients with arthritis, metabolic syndrome, diabetes, skin infections, gastric and liver disorders. This review focused on systematic, evidence-based insight into the use of piperine in clinical settings and mechanistic details behind its therapeutic actions. Also, highlights a number of clinical trials of piperine at various stages exploring its clinical application in cancer, neurological, respiratory, and viral disease, etc.


Assuntos
Alcaloides , COVID-19 , Piper nigrum , Humanos , Alcaloides/farmacologia , Alcaloides/uso terapêutico , Piperidinas/farmacologia , Piperidinas/uso terapêutico , Benzodioxóis/farmacologia , Benzodioxóis/uso terapêutico , Alcamidas Poli-Insaturadas/farmacologia , Alcamidas Poli-Insaturadas/uso terapêutico , Piper nigrum/química
8.
J Oleo Sci ; 71(12): 1789-1797, 2022 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-36336340

RESUMO

To overcome the problems of incomplete flavor components from Piper nigrum extract and the Piper nigrum product easy deterioration in the storage process, microcapsules of the whole Piper nigrum were prepared by spray-drying combined with enzymatic hydrolysis. Under the best conditions for the microencapsulation obtained by the response surface methodology, which have been determined as the ratio of core and wall material (1:0.2, w/w), proportion of wall materials (starch sodium octenyl succinate : maltodextrin : xanthan gum) (1:1:0.2, w/w/w), wall material concentration (11%, w/v) and inlet air temperature (180°C), the embedding rate of the prepared Piper nigrum microcapsules reached 90.21%. Fourier transform infrared spectroscopy, scanning electron microscopy and particle size distribution studies established that the Piper nigrum powder was entrapped within the microcapsules, which had intact morphology and uniform particle size distribution. Besides, gas chromatography-mass spectrometry analysis demonstrated that the prepared Piper nigrum microcapsules could preserve the major of the volatile aroma components of Piper nigrum, carene, D-limonene, α-phellandrene, and (-)-ß-pinene. The obtained results showed that the microcapsules might contribute to the development of preserving original flavor from Piper nigrum and have potential applications in the commodity market.


Assuntos
Piper nigrum , Cápsulas/química , Piper nigrum/química , Secagem por Atomização , Cromatografia Gasosa-Espectrometria de Massas , Dessecação
9.
J Agric Food Chem ; 70(49): 15487-15498, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36450093

RESUMO

The roots of Piper nigrum L., a seasoning for cooking various types of broths, are renowned for their high nutritional content and potential medicinal benefits. In this study, nine pairs of novel cyclohexene-type bisamide alkaloids (1a/1b-9a/9b) were isolated from the pepper roots using molecular network analysis strategies. Their structures were determined by extensive spectroscopic data, electronic circular dichroism (ECD) calculations, and X-ray diffraction analyses. Using an intermolecular Diels-Alder reaction, a strategy for the synthesis of bisamide alkaloids from different monomeric amide alkaloids was developed. Furthermore, these compounds were chirally separated for the first time, and compounds 3a and 5a/5b showed significant anti-neuroinflammation effects in the models of lipopolysaccharide(LPS)-induced BV2 microglial cells. Meanwhile, compounds 6b and 7a displayed concentration-dependent inhibitory activities against acetylcholinesterase with IC50 values of 6.05 ± 1.10 and 3.81 ± 0.10 µM, respectively. These findings confirmed that these bisamide alkaloids could be applied in functional food formulations and pharmaceutical products as well as facilitate the further development and usage of pepper roots.


Assuntos
Alcaloides , Piper nigrum , Piper nigrum/química , Acetilcolinesterase , Estrutura Molecular , Alcaloides/química , Raízes de Plantas/química
10.
Molecules ; 27(19)2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36234940

RESUMO

Volatile organic metabolites (VOMs) present in different spices can provide distinct analytical biosignatures related to organoleptic properties and health benefits. This study aimed to establish the volatilomic fingerprint of six of the most consumed spices all over the world (saffron (Crocus sativus L.), cinnamon (Cinnamomum verum), cumin (Cuminum cyminum L.), black pepper, (Piper nigrum L.), sweet paprika (Capsicum annuum L.), and curry (a mix of different herbs and spices)). Based on headspace solid phase microextraction (HS-SPME) followed by gas chromatography-mass spectrometry (GC-MS) analysis, this is a powerful strategy to explore and establish the spice's volatile pattern and unravel the potential health benefits related to the most important VOMs identified in each spice. This comprehensive knowledge will help in the definition of their authenticity, while simultaneously protecting against potential frauds and adulterations. A total of 162 VOMs were identified. Semi-quantitative assessments revealed that terpenoids and sesquiterpenoids amounted to the major volatile class in the investigated spices, except for cinnamon, where carbonyl compounds are the major group. Most of the studied spices comprised key characteristics of aroma and health bioactive compounds, e.g., dihydrojuneol in saffron, cinnamaldehyde in cinnamon, cuminaldehyde in cumin and curry, and caryophyllene in black pepper. The principal component analysis (PCA) and partial least-squares discriminant analysis (PLS-DA) successfully discriminated the investigated spices, being α-cubebene, 3-methyl butanal, ß-patchoulene and ß-selinene, the most important VOMs (highest VIP's) that contributed to its discrimination. Moreover, some VOMs have a high influence on the spice's bioactive potential, helping to prevent certain diseases including cancer, inflammatory-related diseases, diabetes, and cardiovascular diseases.


Assuntos
Capsicum , Crocus , Cuminum , Piper nigrum , Compostos Orgânicos Voláteis , Crocus/química , Cuminum/química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Piper nigrum/química , Especiarias/análise , Terpenos/análise , Compostos Orgânicos Voláteis/análise
11.
Biomed Pharmacother ; 153: 113456, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36076569

RESUMO

Dexamethasone acts as an immunosuppressive drug and has been used recently in the management of specific coronavirus disease 2019 (COVID-19) cases; however, various adverse effects could limit its use. In this work, we studied the mitigation effects of black pepper oil (BP oil) on glycemic parameters, dyslipidemia, oxidative and nitrosative stress and pancreatic fibrosis in dexamethasone-treated rats. Animals were divided into five groups that were treated with vehicle, dexamethasone (10 mg/kg, SC) or black pepper oil (BP oil, 0.5 mL, or 1 mL/kg) or metformin (50 mg/kg) plus dexamethasone for 4 consecutive days. Serum insulin, blood glucose, total cholesterol, triglycerides, and Homeostatic Model Assessment for Insulin Resistance (HOMA-IR) were higher in the dexamethasone group vs the control group and decreased in BP oil and metformin groups relative to the dexamethasone group. Pancreatic nitric oxide, inducible nitric oxide synthase and malondialdehyde levels were increased in the dexamethasone group vs the control group and decreased in BP oil and metformin groups relative to the dexamethasone group. Pancreatic endothelial nitric oxide synthase and reduced glutathione were declined in the dexamethasone group vs the control group. They were increased in BP oil and metformin groups relative to the dexamethasone group. Moreover, the pancreatic islets diameter and collagen deposition were assessed and found to be higher in the dexamethasone group vs the control group. BP oil and metformin groups showed to regress this effect. In conclusion, BP oil may alleviate hyperglycemia, hyperinsulinemia, insulin resistance, dyslipidemia and pancreatic structural derangements and fibrosis by suppressing oxidative stress, increasing endogenous antioxidant levels, modulating nitric oxide signaling, preventing pancreatic stellate cells transition and collagen deposition.


Assuntos
Dexametasona , Metformina , Pâncreas , Piper nigrum , Óleos de Plantas , Animais , Glicemia , Dexametasona/efeitos adversos , Dexametasona/farmacologia , Dislipidemias/tratamento farmacológico , Fibrose , Resistência à Insulina , Metformina/farmacologia , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/efeitos dos fármacos , Óxido Nítrico Sintase Tipo II/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Pâncreas/efeitos dos fármacos , Pâncreas/patologia , Piper nigrum/química , Óleos de Plantas/farmacologia , Óleos de Plantas/uso terapêutico , Ratos , Ratos Wistar , Tratamento Farmacológico da COVID-19
12.
Molecules ; 27(18)2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36144701

RESUMO

India is the largest producer in the world of black pepper and it is the center of origin for Piper. The present study gives a comparative account of the chemical composition of the Piper nigrum and its wild putative parent the P. trichostachyon. Microextractions were performed and the quantification of six phenolic compounds (namely epicatechin, gallic acid, catechol, chlorogenic acid, caffeic acid, and catechin), piperine from leaves, petioles, and the fruits of both the species, were accomplished using the RP-UFLC system. The polyphenols (phenolic, flavonoid) and their antioxidant activities were also estimated. Among the six phenolic compounds studied, only three were detected and quantified. The polyphenol content correlating to the antioxidant activities was higher in the P. trichostachyon, whereas the piperine content was 108 times greater in the P. nigrum fruits. The Piper trichostachyon comparatively showed a higher content of polyphenols. The microextractions reduced the solvent consumption, the quantity of the plant material, and the amount of time used for the extraction. The first report on the TPC, TF, and the antioxidant activity of the P. trichostachyon has been described, and it also forms a scientific basis for its use in traditional medicine. The petioles of both species are good sources of phenolic compounds. A quantitative chemical analysis is a useful index in the identification and comparison of the species.


Assuntos
Catequina , Piper nigrum , Piper , Alcaloides , Antioxidantes/farmacologia , Benzodioxóis , Catecóis , Ácido Clorogênico , Flavonoides , Ácido Gálico , Fenóis , Piper nigrum/química , Piperidinas , Extratos Vegetais/farmacologia , Polifenóis/farmacologia , Alcamidas Poli-Insaturadas , Solventes
13.
Molecules ; 27(18)2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36144719

RESUMO

Emulgel is a new innovatory technique for drug development permitting controlled release of active ingredients for topical administration. We report a stable emulgel of 4% Piper nigrum extract (PNE) prepared using 80% ethanol. The PNE-loaded formulation had an antioxidant activity of 84% and tyrosinase inhibition was 82%. Prepared formulation rendered spherical-shaped globules with high zeta potential (-45.5 mV) indicative of a stable system. Total phenolic contents were 58.01 mg GAE/g of dry extract whereas total flavonoid content was 52.63 mg QE/g of dry extract. Sun protection factor for PNE-loaded emulgel was 7.512 and formulation was stable without any evidence of physical and chemical changes following 90 days of storage. Gas chromatography-mass spectroscopy (GC-MS) revealed seventeen bioactive compounds in the PNE including monoterpenoids, triterpenoids, a tertiary alcohol, fatty acid esters, and phytosterols. In silico studies of GC-MS identified compounds show higher binding affinity in comparison to standard kojic acid indicating tyrosinase inhibition. It can be concluded that PNE-loaded emulgel had prominent antioxidant and tyrosinase inhibition and can be utilized as a promising topical system for anti-aging skin formulation.


Assuntos
Fitosteróis , Piper nigrum , Triterpenos , Alérgenos , Antioxidantes/química , Antioxidantes/farmacologia , Preparações de Ação Retardada , Etanol , Álcoois Graxos , Flavonoides , Simulação de Acoplamento Molecular , Monofenol Mono-Oxigenase , Monoterpenos , Piper nigrum/química , Extratos Vegetais/química , Sementes
14.
J Food Biochem ; 46(12): e14406, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36121189

RESUMO

The active compounds isolated from Black pepper have anticancer effects, but the bioactivity of Black pepper essential oil (BP-EO) is rarely studied. BP-EO has poor stability and a suitable dose form should be prepared for in vivo delivery. Triple negative breast cancer (TNBC) has attracted more and more attention due to its high mitotic index, high metastasis rate and poor prognosis. In this study, the composition of BP-EO was analyzed by gas chromatography-mass spectrometry (GC-MS), and nanoparticles (NPs) loaded with BP-EO were prepared by nanoprecipitation method using Eudragit L100 as a carrier. We investigated the preparation, characterization, stability and in vitro release of nanoparticles. MTT assay, cell wound healing, Transwell invasion assay and Western blot were used to study the anti-tumor effect and mechanism of MDA-MB-231 cells. The GC-MS analysis identified a total of 33 compounds among which alkenes account for 63.55%. The prepared BP-EO NPs exhibited nanoscale morphology, good stability and pH-responsive and sustained release character which is suitable for in vivo delivery. BP-EO NPs significantly inhibited the proliferation, migration and invasion of MDA-MB-231 cells. Furthermore, BP-EO NPs significantly inhibited the expressions of Wnt and ß-catenin and significantly activated the expression of GSK-3ß in MDA-MB-231 cells. Therefore, BP-EO NPs prepared in this study provide a new effective strategy for the treatment of TNBC. PRACTICAL APPLICATIONS: Black pepper is rich in essential oil and has excellent antioxidant and antibacterial activities. However, the anti-tumor activity of BP-EO has not been studied. In this study, we found that BP-EO has excellent anticancer activity. To achieve effective encapsulation of black pepper essential oil and an excellent anti-triple negative breast cancer activity, nanoparticles loaded with BP-EO were prepared using Eudragit L100 as the carrier by the nanoprecipitation method. The in vitro study revealed that BP-EO NPs inhibited proliferation, migration and invasion of MDA-MB-231 cells via inhibiting the Wnt/ß-Catenin signaling pathway. This study provides new ideas and innovations for the treatment of invasive triple negative breast cancer in the future. At the same time, we will further reveal the application potential, pharmacokinetic characteristics and precise mechanism of BP-EO NPs in vivo in subsequent studies.


Assuntos
Nanopartículas , Óleos Voláteis , Piper nigrum , Neoplasias de Mama Triplo Negativas , Humanos , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Piper nigrum/química , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Glicogênio Sintase Quinase 3 beta
15.
Molecules ; 27(9)2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35566194

RESUMO

Piper nigrum, or black pepper, produces piperine, an alkaloid that has diverse pharmacological activities. In this study, N-aryl amide piperine analogs were prepared by semi-synthesis involving the saponification of piperine (1) to yield piperic acid (2) followed by esterification to obtain compounds 3, 4, and 5. The compounds were examined for their antitrypanosomal, antimalarial, and anti-SARS-CoV-2 main protease activities. The new 2,5-dimethoxy-substituted phenyl piperamide 5 exhibited the most robust biological activities with no cytotoxicity against mammalian cell lines, Vero and Vero E6, as compared to the other compounds in this series. Its half-maximal inhibitory concentration (IC50) for antitrypanosomal activity against Trypanosoma brucei rhodesiense was 15.46 ± 3.09 µM, and its antimalarial activity against the 3D7 strain of Plasmodium falciparum was 24.55 ± 1.91 µM, which were fourfold and fivefold more potent, respectively, than the activities of piperine. Interestingly, compound 5 inhibited the activity of 3C-like main protease (3CLPro) toward anti-SARS-CoV-2 activity at the IC50 of 106.9 ± 1.2 µM, which was threefold more potent than the activity of rutin. Docking and molecular dynamic simulation indicated that the potential binding of 5 in the 3CLpro active site had the improved binding interaction and stability. Therefore, new aryl amide analogs of piperine 5 should be investigated further as a promising anti-infective agent against human African trypanosomiasis, malaria, and COVID-19.


Assuntos
Alcaloides , Antimaláricos , COVID-19 , Piper nigrum , Alcaloides/química , Alcaloides/farmacologia , Animais , Antimaláricos/farmacologia , Benzodioxóis , Humanos , Mamíferos , Simulação de Acoplamento Molecular , Piper nigrum/química , Piperidinas , Alcamidas Poli-Insaturadas/química , Alcamidas Poli-Insaturadas/farmacologia
16.
Food Chem ; 390: 133148, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35551027

RESUMO

This study aimed to evaluate the piperine content, essential oil composition, and multi-elemental composition of black pepper samples according to different drying methods and harvest season. Differences in essential oil composition and B, Ca, K, Mg, and S were noted according to sampling campaign, indicating secondary metabolism plant alterations. Mechanical drying resulted in essential oil composition changes due to high temperature exposure during processing. Increases in Fe and Cr contents when employing mechanical dryers with direct heating were also observed, due to direct contact with metallic structures and particulate material from the burning process. The As and Pb contents of several samples were higher than the maximum permissible limits, reaching 0.46 and 0.56 mg kg-1, respectively, thus surpassing legislation safety limitations for human consumption.


Assuntos
Óleos Voláteis , Piper nigrum , Alcaloides , Benzodioxóis , Humanos , Óleos Voláteis/química , Piper nigrum/química , Piperidinas , Alcamidas Poli-Insaturadas/química , Estações do Ano
17.
Pharm Biol ; 60(1): 437-450, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35188051

RESUMO

CONTEXT: Ocimum sanctum Linn (Labiatae) (OS), Zingiber officinale Rose (Zingiberaceae) (ZO), and Piper nigrum Linn (Piperaceae) (PN) are used in traditional medicine as immunomodulator, anti-inflammatory, and bioavailability enhancer agents. OBJECTIVE: Active phytoconstituents of OS, ZO, PN hydro-alcoholic extracts and their effects on gut microbiota, basal inflammation and lipid profile were investigated in rats. MATERIALS AND METHODS: Active phytoconstituents of extracts were analysed using HPLC and GC-MS. SD rats were supplemented with individual/combined extracts (OS-850; ZO-500; PN-100 mg/kg Bw) and Fructooligosaccharide (standard prebiotic-5g/kg-Bw), orally for 30 days. Haematology, lipid profile, LPS, CRP, IL-6, insulin and histology of vital organs were analysed. Caecal bacterial levels were assessed by RT-PCR. RESULTS: High content of phenolic compounds luteolin-7-O-glucoside (430 ± 2.3 mg/100g), gallic acid (84.13 ± 1.2 mg/100 g) and flavones (88.18 ± 1.8 mg/100 g) were found in OS, ZO, and PN, respectively. Combined extract was rich in luteolin-7-O-glucoside (266.0 ± 1.80 mg/100 g). Essential oils including methyleugenol (13.96%), 6-shogaol (11.00%), piperine (18.26%), and cyclopentasiloxane (10.06%) were higher in OS, ZO, PN and combined extract. Higher levels of caecal Lactobacillus (1.7-3.4-fold), Bifidobacterium (5.89-28.4-fold), and lower levels of Firmicutes (0.04-0.91-fold), Bacteroides (0.69-0.88-fold) were noted among extracts and FOS supplemented rats. Significant (p < 0.05) decrease in plasma lipid profile and LPS was noted in all supplemented rats. DISCUSSION AND CONCLUSIONS: The current study could be first of its kind in exploring prebiotic potential of OS, ZO, PN and their effect on native gut bacterial population.


Assuntos
Microbioma Gastrointestinal/efeitos dos fármacos , Inflamação/tratamento farmacológico , Óleos Voláteis/farmacologia , Extratos Vegetais/farmacologia , Animais , Anti-Inflamatórios/isolamento & purificação , Anti-Inflamatórios/farmacologia , Feminino , Zingiber officinale/química , Lipídeos/sangue , Medicina Tradicional , Ocimum sanctum/química , Óleos Voláteis/isolamento & purificação , Piper nigrum/química , Prebióticos/administração & dosagem , Ratos , Ratos Sprague-Dawley
18.
Polim Med ; 52(1): 31-36, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35196422

RESUMO

Black pepper (Piper nigrum L.) is a climbing perennial plant in the Piperaceae family. Pepper has been known since antiquity for its use both as a medicine and a spice. It is particularly valued for its pungency attributed to its principal constituent - piperine. This review summarizes the information on the biological source of piperine, its extraction and isolation strategies, physicochemical properties, and pharmacological activity - analgesic, immunomodulatory, anti-depressive, anti-diarrheal, hepatoprotective, etc. The effect of piperine on biotransformation of co-administered drugs is also presented in this review, along with the mechanisms involved in its bioavailability-enhancing effect. Its important medicinal uses, including anti-hepatotoxic, anti-diarrheal, anti-depressive, analgesic, and immunomodulatory effects, besides many other traditional uses, are compiled. Based on an exhaustive review of literature, it may be concluded that piperine is a very promising alkaloid found in members of the Piperaceae family.


Assuntos
Alcaloides , Piper nigrum , Alcaloides/química , Alcaloides/farmacologia , Alcaloides/uso terapêutico , Benzodioxóis/química , Benzodioxóis/farmacologia , Benzodioxóis/uso terapêutico , Piper nigrum/química , Piperidinas/química , Piperidinas/farmacologia , Piperidinas/uso terapêutico , Alcamidas Poli-Insaturadas/química , Alcamidas Poli-Insaturadas/farmacologia , Alcamidas Poli-Insaturadas/uso terapêutico
19.
Appl Biochem Biotechnol ; 194(1): 291-301, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34988845

RESUMO

Corona virus pandemic outbreak also known as COVID-19 has created an imbalance in this world. Scientists have adopted the use of natural or alternative medicines which are consumed mostly as dietary supplements to boost the immune system as herbal remedies. India is famous for traditional medicinal formulations which includes 'Trikadu'-a combination of three acrids, namely Zingiber officinale, Piper nigrum and Piper longum which have antioxidant properties that boost our immune system hence acting as a strong preventive measure. In this study, AutoDock 4.0 was used to study interaction between the phytocompounds of Trikadu with RNA-dependent polymerase protein and enveloped protein of the SARS-CoV-2 virus. Analysis of the results showed that coumarin, coumaperine and bisdemethoxycurcumin showed strong bonding interactions with both the proteins. We can conclude that Trikadu has the potential molecules; hence, it can be incorporated in the diet to boost the immune system as a preventive measure against the virus.


Assuntos
Tratamento Farmacológico da COVID-19 , COVID-19/imunologia , Fitoterapia , Preparações de Plantas/uso terapêutico , SARS-CoV-2 , Antioxidantes/isolamento & purificação , Antioxidantes/uso terapêutico , COVID-19/virologia , Simulação por Computador , RNA-Polimerase RNA-Dependente de Coronavírus/química , RNA-Polimerase RNA-Dependente de Coronavírus/efeitos dos fármacos , Suplementos Nutricionais , Zingiber officinale/química , Humanos , Sistema Imunitário/efeitos dos fármacos , Índia , Ligantes , Medicina Tradicional , Simulação de Acoplamento Molecular , Compostos Fitoquímicos/química , Compostos Fitoquímicos/uso terapêutico , Piper/química , Piper nigrum/química , Preparações de Plantas/isolamento & purificação , Plantas Medicinais/química , SARS-CoV-2/química , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/efeitos dos fármacos
20.
Phytochem Anal ; 33(2): 204-213, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34342083

RESUMO

INTRODUCTION: The major chemical marker of black pepper (Piper nigrum L) is piperine and its estimation is extremely important for quality assessment of black pepper. The methods for piperine quantification, to date, are laboratory based and use high end instruments like chromatographs, which require tedious sample processing and cause sample destruction. OBJECTIVES: In this article, we present a simple, rapid and green analytical method based on Raman spectroscopy for the quantitative assessment of piperine. MATERIAL AND METHODS: To assess the potential of the technique, we report the complete vibrational characterisation of the piperine with density functional theory (DFT) calculations. RESULTS: The theoretical peaks were obtained at 1097 cm-1 , 1388 cm-1 , 1528 cm-1 , 1578 cm-1 , and at 1627 cm-1 , and this result was verified in a Raman spectrometer followed by a preliminary experiment. Twenty black pepper samples were analysed using high-performance liquid chromatography (HPLC) and used as reference data for Raman analysis. The Raman shift spectra were analysed using partial least squares (PLS) and good prediction accuracy with correlation coefficient of prediction (Rp2 ) = 0.93, root mean square error of prediction (RMSEP) = 0.13 and residual prediction deviation (RPD) = 3.9 obtained. CONCLUSIONS: The results demonstrate the efficacy of the Raman technique for the estimation of piperine in the dry fruit of Piper nigrum.


Assuntos
Piper nigrum , Alcaloides , Benzodioxóis/química , Piper nigrum/química , Piperidinas , Alcamidas Poli-Insaturadas/química , Análise Espectral Raman/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...