Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem Mol Biol Educ ; 47(6): 620-631, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31520514

RESUMO

Bioinformatics was recently introduced as a module for both undergraduate and postgraduate biological sciences students at our institution. Our experience shows that inquiry-based hands-on exercises provide the most efficient approach to bioinformatic straining. In this article, we report a structural bioinformatics project carried out by Master degree students to determine structure-function relationships of the uncharacterized prokaryotic 5-oxoprolinase subunit A (PxpA). PxpA associates with the PxpBC complex to form a functional 5-oxoprolinase enzyme for conversion of 5-oxoproline to L-glutamate. Although the exact role of PxpA is yet to be determined, it has been demonstrated that PxpBC catalyses the first step of the reaction, which is phosphorylation of 5-oxoproline. Here, we provide evidence that PxpA is involved in the last two steps of the reaction:decyclization of the labile phosphorylated 5-oxoproline to the equally labile γ-glutamylphosphate, and subsequent dephosphorylation to L-glutamate. Structural bioinformatics analysis of four putative PxpA structures revealed that PxpA adopts a non-canonical TIM barrel fold with well-characterized TIM barrel enzyme features. These include a C-terminal groove comprising potentially essential conserved amino acid residues organized into putative motifs. Phylogenetic analysis suggests a relationship between taxonomic grouping and PxpA oligomerization. PxpA forms a tunnel upon ligand binding, thus suggesting that the PxpABC complex employs the mechanism of substrate channeling to protect labile intermediates. Ultimately, students were able to form a testable hypothesis on the function of PxpA, an achievement we consider encouraging other students to emulate. © 2019 International Union of Biochemistry and Molecular Biology, 47(6):620-631, 2019.


Assuntos
Disciplinas das Ciências Biológicas/educação , Biologia Computacional/educação , Piroglutamato Hidrolase/química , Piroglutamato Hidrolase/metabolismo , Currículo , Ácido Glutâmico/química , Ácido Glutâmico/metabolismo , Humanos , Modelos Moleculares , Ácido Pirrolidonocarboxílico/química , Ácido Pirrolidonocarboxílico/metabolismo , Relação Estrutura-Atividade , Estudantes
2.
J Biosci ; 35(1): 21-5, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20413906

RESUMO

Cystinosis, an inherited disease caused by a defect in the lysosomal cystine transporter (CTNS), is characterized by renal proximal tubular dysfunction. Adenosine triphosphate (ATP) depletion appears to be a key event in the pathophysiology of the disease, even though the manner in which ATP depletion occurs is still a puzzle. We present a model that explains how a futile cycle that is generated between two ATP-utilizing enzymes of the gamma-glutamyl cycle leads to ATP depletion. The enzyme gamma-glutamyl cysteine synthetase (gamma-GCS), in the absence of cysteine, forms 5-oxoproline (instead of the normal substrate, gamma-glutamyl cysteine) and the 5-oxoproline is converted into glutamate by the ATP-dependant enzyme, 5-oxoprolinase. Thus, in cysteine-limiting conditions, glutamate is cycled back into glutamate via 5-oxoproline at the cost of two ATP molecules without production of glutathione and is the cause of the decreased levels of glutathione synthesis, as well as the ATP depletion observed in these cells. The model is also compatible with the differences seen in the human patients and the mouse model of cystinosis, where renal failure is not observed.


Assuntos
Trifosfato de Adenosina/química , Sistemas de Transporte de Aminoácidos Neutros/química , Glutamato-Cisteína Ligase/fisiologia , Piroglutamato Hidrolase/fisiologia , Animais , Cisteína/química , Cistinose/metabolismo , Modelos Animais de Doenças , Glutamato-Cisteína Ligase/química , Ácido Glutâmico/química , Humanos , Camundongos , Modelos Biológicos , Piroglutamato Hidrolase/química , Ácido Pirrolidonocarboxílico/química
3.
Anal Chem ; 82(8): 3212-21, 2010 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-20349993

RESUMO

We present a liquid chromatography-mass spectrometry (LC-MS) method that capitalizes on the mass-resolving power of the orbitrap to enable sensitive and specific measurement of known and unanticipated metabolites in parallel, with a focus on water-soluble species involved in core metabolism. The reversed phase LC method, with a cycle time 25 min, involves a water-methanol gradient on a C18 column with tributylamine as the ion pairing agent. The MS portion involves full scans from 85 to 1000 m/z at 1 Hz and 100,000 resolution in negative ion mode on a stand alone orbitrap ("Exactive"). The median limit of detection, across 80 metabolite standards, was 5 ng/mL with the linear range typically >or=100-fold. For both standards and a cellular extract from Saccharomyces cerevisiae (Baker's yeast), the median inter-run relative standard deviation in peak intensity was 8%. In yeast exact, we detected 137 known compounds, whose (13)C-labeling patterns could also be tracked to probe metabolic flux. In yeast engineered to lack a gene of unknown function (YKL215C), we observed accumulation of an ion of m/z 128.0351, which we subsequently confirmed to be oxoproline, resulting in annotation of YKL215C as an oxoprolinase. These examples demonstrate the suitability of the present method for quantitative metabolomics, fluxomics, and discovery metabolite profiling.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Metabolômica/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Cromatografia de Fase Reversa , Cinética , Metaboloma , Piroglutamato Hidrolase/química , Saccharomyces cerevisiae/metabolismo
4.
Appl Environ Microbiol ; 66(8): 3201-5, 2000 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-10919770

RESUMO

The gene encoding a novel 5-oxoprolinase without ATP-hydrolyzing activity from Alcaligenes faecalis N-38A was cloned and characterized. The coding region of this gene is 1,299 bp long. The predicted primary protein is composed of 433 amino acid residues, with a 31-amino-acid signal peptide. The mature protein is composed of 402 amino acid residues with a molecular mass of 46,163 Da. The derived amino acid sequence of the enzyme showed no significant sequence similarity to any other proteins reported so far. The 5-oxoprolinase gene was expressed in Escherichia coli by using a regulatory expression system with an isopropyl-beta-D-thiogalactopyranoside-inducible tac promoter, and its expression level was approximately 16 mg per liter. The purified enzyme has the same characteristics as the authentic enzyme, except for the amino terminus, which has three additional amino acids. The enzyme was markedly inhibited by p-chloromercuribenzoic acid, EDTA, o-phenanthroline, HgCl(2), and CuSO(4). The EDTA-inactivated enzyme was completely restored by the addition of Zn(2+) or Co(2+). In addition, the enzyme was found to contain 1 g-atom of zinc per mol of protein. These results suggest that the 5-oxoprolinase produced by A. faecalis N-38A is a zinc metalloenzyme.


Assuntos
Alcaligenes/enzimologia , Alcaligenes/genética , Escherichia coli/genética , Piroglutamato Hidrolase/genética , Piroglutamato Hidrolase/metabolismo , Trifosfato de Adenosina/metabolismo , Alcaligenes/química , Sequência de Aminoácidos , Sequência de Bases , Clonagem Molecular , Escherichia coli/enzimologia , Hidrólise , Dados de Sequência Molecular , Piroglutamato Hidrolase/química , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Análise de Sequência de DNA
5.
J Biol Chem ; 271(50): 32293-300, 1996 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-8943290

RESUMO

5-Oxoprolinase (EC 3.5.2) catalyzes a reaction in which the endergonic cleavage of 5-oxo-L-proline to form L-glutamate is coupled to the exergonic hydrolysis of ATP to ADP and inorganic phosphate. Highly purified preparations of the enzyme have been obtained from rat kidney and Pseudomonas putida. The rat kidney enzyme is composed of two strongly interacting, apparently identical subunits (Mr = 142,000), whereas that from P. putida is composed of two functionally different protein components that can readily be dissociated. Here we report the cloning of rat kidney 5-oxoprolinase with preliminary expression studies. cDNA clones encoding the enzyme were isolated by screening a lambdagt11 cDNA library beginning with a degenerate oligonucleotide probe based on peptide sequence data obtained from the purified enzyme. The whole cDNA clone was completed by amplifying its 5' end from a premade library of rat kidney Marathon-ReadyTM cDNAs using polymerase chain reaction methodology. The composite cDNA (4,016 bases) revealed an uninterrupted open reading frame encoding 1,288 amino acid residues (Mr = 137,759). The deduced amino acid sequence contains all four of the peptide sequences that were independently found in peptide fragments derived from the enzyme. Expression of the full-length clone in Escherichia coli yielded a product of the same size as the rat kidney enzyme and which reacted with antibodies directed against the rat kidney enzyme. The predicted amino acid sequence is almost 50% identical throughout its entire length to that of a hypothetical yeast protein YKL215C. It is also 26% identical in half its length to the bacterial hydantoinase HyuA and 26% identical in the other half to the bacterial hydantoinase HyuB. The results suggest unexpected evolutionary relationships among the hydantoinases and rat kidney 5-oxoprolinase which share the common property of hydrolyzing the imide bond of 5-membered rings but which do not all require ATP.


Assuntos
Rim/enzimologia , Piroglutamato Hidrolase/química , Sequência de Aminoácidos , Animais , Sequência de Bases , Clonagem Molecular , DNA Complementar/química , Eletroforese em Gel de Poliacrilamida , Dados de Sequência Molecular , Piroglutamato Hidrolase/genética , RNA Mensageiro/metabolismo , Ratos , Mapeamento por Restrição , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...