Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 461
Filtrar
1.
Microb Cell Fact ; 23(1): 143, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38773442

RESUMO

BACKGROUND: Zymomonas mobilis is well known for its outstanding ability to produce ethanol with both high specific productivity and with high yield close to the theoretical maximum. The key enzyme in the ethanol production pathway is the pyruvate decarboxylase (PDC) which is converting pyruvate to acetaldehyde. Since it is widely considered that its gene pdc is essential, metabolic engineering strategies aiming to produce other compounds derived from pyruvate need to find ways to reduce PDC activity. RESULTS: Here, we present a new platform strain (sGB027) of Z. mobilis in which the native promoter of pdc was replaced with the IPTG-inducible PT7A1, allowing for a controllable expression of pdc. Expression of lactate dehydrogenase from E. coli in sGB027 allowed the production of D-lactate with, to the best of our knowledge, the highest reported specific productivity of any microbial lactate producer as well as with the highest reported lactate yield for Z. mobilis so far. Additionally, by expressing the L-alanine dehydrogenase of Geobacillus stearothermophilus in sGB027 we produced L-alanine, further demonstrating the potential of sGB027 as a base for the production of compounds other than ethanol. CONCLUSION: We demonstrated that our new platform strain can be an excellent starting point for the efficient production of various compounds derived from pyruvate with Z. mobilis and can thus enhance the establishment of this organism as a workhorse for biotechnological production processes.


Assuntos
Escherichia coli , Etanol , Ácido Láctico , Engenharia Metabólica , Piruvato Descarboxilase , Zymomonas , Zymomonas/metabolismo , Zymomonas/genética , Piruvato Descarboxilase/metabolismo , Piruvato Descarboxilase/genética , Engenharia Metabólica/métodos , Etanol/metabolismo , Ácido Láctico/metabolismo , Ácido Láctico/biossíntese , Escherichia coli/metabolismo , Escherichia coli/genética , L-Lactato Desidrogenase/metabolismo , L-Lactato Desidrogenase/genética , Alanina/metabolismo , Ácido Pirúvico/metabolismo , Fermentação
2.
Plant Physiol Biochem ; 207: 108417, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38354527

RESUMO

Strawberry is one of the most popular fruits in the world, because their high fruit quality, especially with respect to the combination of aroma, flavor, color, and nutritional compounds. Pyruvate decarboxylase (PDC) is the first of two enzymes specifically required for ethanolic fermentation and catalyzes the decarboxylation of pyruvate to yield acetaldehyde and CO2. The ethanol, an important alcohol which acts as a precursor for the ester and other alcohols formation in strawberry, is produced by the PDC. The objective was found all different PDCs genes present in the strawberry genome and investigate PDC gene expression and ligand-protein interactions in strawberry fruit. Volatile organic compounds were evaluated during the development of the fruit. After this, eight FaPDC were identified with four genes that increase the relative expression during fruit ripening process. Molecular dynamics simulations were performed to analyze the behavior of Pyr and TPP ligands within the catalytic and regulatory sites of the PDC proteins. Results indicated that energy-restrained simulations exhibited minor fluctuations in ligand-protein interactions, while unrestrained simulations revealed crucial insights into ligand affinity. TPP consistently displayed strong interactions with the catalytic site, emphasizing its pivotal role in enzymatic activity. However, FaPDC6 and FaPDC9 exhibited decreased pyruvate affinity initially, suggesting unique binding characteristics requiring further investigation. Finally, the present study contributes significantly to understanding PDC gene expression and the intricate molecular dynamics underlying strawberry fruit ripening, shedding light on potential targets for further research in this critical biological pathway.


Assuntos
Fragaria , Piruvato Descarboxilase , Piruvato Descarboxilase/genética , Piruvato Descarboxilase/metabolismo , Fragaria/genética , Fragaria/metabolismo , Frutas/metabolismo , Ligantes , Proteínas de Plantas/metabolismo , Etanol/metabolismo , Piruvatos/metabolismo , Regulação da Expressão Gênica de Plantas
3.
Appl Microbiol Biotechnol ; 107(16): 5095-5105, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37405435

RESUMO

Saccharomyces cerevisiae is the workhorse of fermentation industry. Upon engineering for D-lactate production by a series of gene deletions, this yeast had deficiencies in cell growth and D-lactate production at high substrate concentrations. Complex nutrients or high cell density were thus required to support growth and D-lactate production with a potential to increase medium and process cost of industrial-scale D-lactate production. As an alternative microbial biocatalyst, a Crabtree-negative and thermotolerant yeast Kluyveromyces marxianus was engineered in this study to produce high titer and yield of D-lactate at a lower pH without growth defects. Only pyruvate decarboxylase 1 (PDC1) gene was replaced by a codon-optimized bacterial D-lactate dehydrogenase (ldhA). Ethanol, glycerol, or acetic acid was not produced by the resulting strain, KMΔpdc1::ldhA. Aeration rate at 1.5 vvm and culture pH 5.0 at 30 °C provided the highest D-lactate titer of 42.97 ± 0.48 g/L from glucose. Yield and productivity of D-lactate, and glucose-consumption rate were 0.85 ± 0.01 g/g, 0.90 ± 0.01 g/(L·h), and 1.06 ± 0.00 g/(L·h), respectively. Surprisingly, D-lactate titer, productivity, and glucose-consumption rate of 52.29 ± 0.68 g/L, 1.38 ± 0.05 g/(L·h), and 1.22 ± 0.00 g/(L·h), respectively, were higher at 42 °C compared to 30 °C. Sugarcane molasses, a low-value carbon, led to the highest D-lactate titer and yield of 66.26 ± 0.81 g/L and 0.91 ± 0.01 g/g, respectively, in a medium without additional nutrients. This study is a pioneer work of engineering K. marxianus to produce D-lactate at the yield approaching theoretical maximum using simple batch process. Our results support the potential of an engineered K. marxianus for D-lactate production on an industrial scale. KEY POINTS: • K. marxianus was engineered by deleting PDC1 and expressing codon-optimized D-ldhA. • The strain allowed high D-lactate titer and yield under pH ranging from 3.5 to 5.0. • The strain produced 66 g/L D-lactate at 30 °C from molasses without any additional nutrients.


Assuntos
Kluyveromyces , Ácido Láctico , Saccharomyces cerevisiae/metabolismo , Kluyveromyces/genética , Kluyveromyces/metabolismo , L-Lactato Desidrogenase/metabolismo , Glucose , Piruvato Descarboxilase/genética , Piruvato Descarboxilase/metabolismo , Concentração de Íons de Hidrogênio , Fermentação
4.
Appl Microbiol Biotechnol ; 107(11): 3535-3549, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37099057

RESUMO

Tyrosol is an important chemical in medicine and chemical industries, which can be synthesized by a four-enzyme cascade pathway constructed in our previous study. However, the low catalytic efficiency of pyruvate decarboxylase from Candida tropicalis (CtPDC) in this cascade is a rate-limiting step. In this study, we resolved the crystal structure of CtPDC and investigated the mechanism of allosteric substrate activation and decarboxylation of this enzyme toward 4-hydroxyphenylpyruvate (4-HPP). In addition, based on the molecular mechanism and structural dynamic changes, we conducted protein engineering of CtPDC to improve decarboxylation efficiency. The conversion of the best mutant, CtPDCQ112G/Q162H/G415S/I417V (CtPDCMu5), had over two-fold improvement compared to the wild-type. Molecular dynamic (MD) simulation revealed that the key catalytic distances and allosteric transmission pathways were shorter in CtPDCMu5 than in the wild type. Furthermore, when CtPDC in the tyrosol production cascade was replaced with CtPDCMu5, the tyrosol yield reached 38 g·L-1 with 99.6% conversion and 1.58 g·L-1·h-1 space-time yield in 24 h through further optimization of the conditions. Our study demonstrates that protein engineering of the rate-limiting enzyme in the tyrosol synthesis cascade provides an industrial-scale platform for the biocatalytic production of tyrosol. KEY POINTS: • Protein engineering of CtPDC based on allosteric regulation improved the catalytic efficiency of decarboxylation. • The application of the optimum mutant of CtPDC removed the rate-limiting bottleneck in the cascade. • The final titer of tyrosol reached 38 g·L-1 in 24 h in 3 L bioreactor.


Assuntos
Álcool Feniletílico , Piruvato Descarboxilase , Piruvato Descarboxilase/genética , Piruvato Descarboxilase/metabolismo , Engenharia de Proteínas , Álcool Feniletílico/metabolismo
5.
Curr Microbiol ; 80(5): 143, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36941373

RESUMO

The use of un-utilized feedstock and seawater for material and/or energy production using marine microbial catalysts is one potential option toward contributing to the development of a more sustainable society. Ethanol production from alginate, which is an oxidized polysaccharide present in brown seaweed, is extremely difficult due to the imbalance of reducing power in the microbial cells. Production of ethanol by such means has so far been unsuccessful using marine microbial biocatalysts. To produce ethanol from alginate, an alternative pathway consisting of a pyruvate decarboxylase gene (pdc) and an alcohol dehydrogenase II gene (adhII) derived from Zymomonas mobilis strain ZM4 was implemented into a metabolically engineered bacterium, Vibrio halioticoli, which is a representative marine alginate decomposer. No ethanol from alginate was produced in the wild-type V. halioticoli; however, the engineered V. halioticoli harboring the pdc and adhII operon (Pet operon), designated to the V. halioticoli (Pet), was able to produce 880 mg/L ethanol in maximum from 1.5% alginate for 72 h. The Pet operon also worked on the other marine alginolytic vibrios for ethanol production from alginate. This is the first case of ethanol production from alginate using marine bacterial biocatalysts under seawater-based media.


Assuntos
Alginatos , Vibrio , Humanos , Biomassa , Etanol/metabolismo , Fermentação , Polissacarídeos , Piruvato Descarboxilase/genética , Piruvato Descarboxilase/metabolismo , Vibrio/genética , Vibrio/metabolismo
6.
Sci Rep ; 12(1): 4664, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35304512

RESUMO

Protein tyrosine nitration (PTN), in which tyrosine (Tyr) residues on proteins are converted into 3-nitrotyrosine (NT), is one of the post-translational modifications mediated by reactive nitrogen species (RNS). Many recent studies have reported that PTN contributed to signaling systems by altering the structures and/or functions of proteins. This study aimed to investigate connections between PTN and the inhibitory effect of nitrite-derived RNS on fermentation ability using the yeast Saccharomyces cerevisiae. The results indicated that RNS inhibited the ethanol production of yeast cells with increased intracellular pyruvate content. We also found that RNS decreased the activities of pyruvate decarboxylase (PDC) as a critical enzyme involved in ethanol production. Our proteomic analysis revealed that the main PDC isozyme Pdc1 underwent the PTN modification at Tyr38, Tyr157, and Tyr344. The biochemical analysis using the recombinant purified Pdc1 enzyme indicated that PTN at Tyr157 or Tyr344 significantly reduced the Pdc1 activity. Interestingly, the substitution of Tyr157 or Tyr344 to phenylalanine, which is no longer converted into NT, recovered the ethanol production under the RNS treatment conditions. These findings suggest that nitrite impairs the fermentation ability of yeast by inhibiting the Pdc1 activity via its PTN modification at Tyr157 and Tyr344 of Pdc1.


Assuntos
Piruvato Descarboxilase , Saccharomyces cerevisiae , Etanol/metabolismo , Fermentação , Nitritos/metabolismo , Proteômica , Piruvato Descarboxilase/metabolismo , Espécies Reativas de Nitrogênio/metabolismo , Saccharomyces cerevisiae/metabolismo , Tirosina/metabolismo
7.
Prep Biochem Biotechnol ; 52(1): 62-69, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33881948

RESUMO

Saccharomyces cerevisiae has good reproductive ability in both haploid and diploid forms, a pyruvate decarboxylase plays an important role in S. cerevisiae cell metabolism. In this study, pdc1 and pdc5 double knockout strains of S. cerevisiae H14-02 (MATa type) and S. cerevisiae H5-02 (MATα type) were obtained by the Cre/loxP technique. The effects of the deletion of pdc1 and pdc5 on the metabolites of the two haploid S. cerevisiae strains were consistent. In S. cerevisiae H14-02, the ethanol conversion decreased by 30.19%, the conversion of glycerol increased by 40.005%, the concentration of acetic acid decreased by 43.54%, the concentration of acetoin increased by 12.79 times, and the activity of pyruvate decarboxylase decreased by 40.91% compared to those in the original H14 strain. The original S. cerevisiae haploid strain H14 produced a small amount of acetoin but produced very little 2,3-butanediol. However, S. cerevisiae H14-02 produced 1.420 ± 0.063 g/L 2,3-BD. This study not only provides strain selection for obtaining haploid strains with a high yield of 2,3-BD but also lays a foundation for haploid S. cerevisiae to be used as a new tool for genetic research and breeding programs.


Assuntos
Carboxiliases/genética , Piruvato Descarboxilase/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Acetoína/metabolismo , Butileno Glicóis/metabolismo , Carboxiliases/metabolismo , Etanol/metabolismo , Deleção de Genes , Regulação Fúngica da Expressão Gênica , Técnicas de Inativação de Genes , Glicerol/metabolismo , Haploidia , Piruvato Descarboxilase/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
8.
Mol Plant ; 14(8): 1281-1296, 2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-33940211

RESUMO

Bacterial wilt caused by the soil-borne plant pathogen Ralstonia solanacearum is a devastating disease worldwide. Upon plant colonization, R. solanacearum replicates massively, causing plant wilting and death; collapsed infected tissues then serve as a source of inoculum. In this work, we show that the plant metabolic pathway mediated by pyruvate decarboxylases (PDCs) contributes to plant tolerance to bacterial wilt disease. Arabidopsis and tomato plants respond to R. solanacearum infection by increasing PDC activity, and plants with deficient PDC activity are more susceptible to bacterial wilt. Treatment with either pyruvic acid or acetic acid (substrate and product of the PDC pathway, respectively) enhances plant tolerance to bacterial wilt disease. An effector protein secreted by R. solanacearum, RipAK, interacts with PDCs and inhibits their oligomerization and enzymatic activity. Collectively, our work reveals a metabolic pathway involved in plant resistance to biotic and abiotic stresses, and a bacterial virulence strategy to promote disease and the completion of the pathogenic life cycle.


Assuntos
Proteínas de Bactérias/metabolismo , Redes e Vias Metabólicas , Doenças das Plantas/microbiologia , Ralstonia solanacearum/metabolismo , Ralstonia solanacearum/patogenicidade , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Piruvato Descarboxilase/metabolismo , Ralstonia solanacearum/genética , Ralstonia solanacearum/crescimento & desenvolvimento , Virulência , Xilema/microbiologia
9.
Proc Natl Acad Sci U S A ; 117(51): 32806-32815, 2020 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-33288721

RESUMO

The yeast Saccharomyces cerevisiae is a powerful model system for systems-wide biology screens and large-scale proteomics methods. Nearly complete proteomics coverage has been achieved owing to advances in mass spectrometry. However, it remains challenging to scale this technology for rapid and high-throughput analysis of the yeast proteome to investigate biological pathways on a global scale. Here we describe a systems biology workflow employing plate-based sample preparation and rapid, single-run, data-independent mass spectrometry analysis (DIA). Our approach is straightforward, easy to implement, and enables quantitative profiling and comparisons of hundreds of nearly complete yeast proteomes in only a few days. We evaluate its capability by characterizing changes in the yeast proteome in response to environmental perturbations, identifying distinct responses to each of them and providing a comprehensive resource of these responses. Apart from rapidly recapitulating previously observed responses, we characterized carbon source-dependent regulation of the GID E3 ligase, an important regulator of cellular metabolism during the switch between gluconeogenic and glycolytic growth conditions. This unveiled regulatory targets of the GID ligase during a metabolic switch. Our comprehensive yeast system readout pinpointed effects of a single deletion or point mutation in the GID complex on the global proteome, allowing the identification and validation of targets of the GID E3 ligase. Moreover, this approach allowed the identification of targets from multiple cellular pathways that display distinct patterns of regulation. Although developed in yeast, rapid whole-proteome-based readouts can serve as comprehensive systems-level assays in all cellular systems.


Assuntos
Espectrometria de Massas/métodos , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Carbono/metabolismo , Meios de Cultura , Frutose-Bifosfatase/metabolismo , Glucose/metabolismo , Malato Desidrogenase/metabolismo , Mutação Puntual , Piruvato Descarboxilase/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética , ATPase Trocadora de Sódio-Potássio/metabolismo , Estresse Fisiológico , Biologia de Sistemas/métodos , Ubiquitina-Proteína Ligases/genética , Fluxo de Trabalho
10.
Sci Rep ; 10(1): 16669, 2020 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-33028901

RESUMO

Alcohol dehydrogenase (ADH) and pyruvate decarboxylase (PDC) are key to the establishment of the fermentative metabolism in plants during oxygen shortage. Most of the evidence that both ADH and PDC are required for plant tolerance to hypoxia comes from experiments performed by limiting oxygen in the environment, such as by exposing plants to gaseous hypoxia or to waterlogging or submergence. However, recent experiments have shown that hypoxic niches might exist in plants grown in aerobic conditions. Here, we investigated the importance of ADH and PDC for plant growth and development under aerobic conditions, long-term waterlogging and short-term submergence. Data were collected after optimizing the software associated with a commercially-available phenotyping instrument, to circumvent problems in separation of plants and background pixels based on colour features, which is not applicable for low-oxygen stressed plants due to the low colour contrast of leaves with the brownish soil. The results showed that the growth penalty associated with the lack of functional ADH1 or both PDC1 and PDC2 is greater under aerobic conditions than in hypoxia, highlighting the importance of fermentative metabolism in plants grown under normal, aerobic conditions.


Assuntos
Álcool Desidrogenase/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Fenótipo , Piruvato Descarboxilase/metabolismo , Álcool Desidrogenase/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Hipóxia/genética , Hipóxia/metabolismo , Desenvolvimento Vegetal/fisiologia , Piruvato Descarboxilase/genética
11.
Microbiologyopen ; 9(7): e1051, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32342649

RESUMO

Fatty acid ethyl esters (FAEEs) are fatty acid-derived molecules and serve as an important form of biodiesel. The oleaginous yeast Yarrowia lipolytica is considered an ideal host platform for the production of fatty acid-derived products due to its excellent lipid accumulation capacity. In this proof-of-principle study, several metabolic engineering strategies were applied for the overproduction of FAEE biodiesel in Y. lipolytica. Here, chromosome-based co-overexpression of two heterologous genes, namely, PDC1 (encoding pyruvate decarboxylase) and ADH1 (encoding alcohol dehydrogenase) from Saccharomyces cerevisiae, and the endogenous GAPDH (encoding glyceraldehyde-3-phosphate dehydrogenase) gene of Y. lipolytica resulted in successful biosynthesis of ethanol at 70.8 mg/L in Y. lipolytica. The engineered Y. lipolytica strain expressing the ethanol synthetic pathway together with a heterologous wax ester synthase (MhWS) exhibited the highest FAEE titer of 360.8 mg/L, which is 3.8-fold higher than that of the control strain when 2% exogenous ethanol was added to the culture medium of Y. lipolytica. Furthermore, a synthetic microbial consortium comprising an engineered Y. lipolytica strain that heterologously expressed MhWS and a S. cerevisiae strain that could provide ethanol as a substrate for the production of the final product in the final engineered Y. lipolytica strain was created in this study. Finally, this synthetic consortium produced FAEE biodiesel at a titer of 4.8 mg/L under the optimum coculture conditions.


Assuntos
Biocombustíveis/microbiologia , Ácidos Graxos/biossíntese , Engenharia Metabólica/métodos , Yarrowia/genética , Yarrowia/metabolismo , Álcool Desidrogenase/genética , Álcool Desidrogenase/metabolismo , DNA Fúngico/genética , Escherichia coli/genética , Ésteres/química , Etanol/metabolismo , Ácidos Graxos/química , Gliceraldeído-3-Fosfato Desidrogenases/genética , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Estudo de Prova de Conceito , Piruvato Descarboxilase/genética , Piruvato Descarboxilase/metabolismo , Energia Renovável , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
12.
Microbiologyopen ; 9(5): e1010, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32053746

RESUMO

Metabolosomes, catabolic bacterial microcompartments (BMCs), are proteinaceous organelles that are associated with the breakdown of metabolites such as propanediol and ethanolamine. They are composed of an outer multicomponent protein shell that encases a specific metabolic pathway. Protein cargo found within BMCs is directed by the presence of an encapsulation peptide that appears to trigger aggregation before the formation of the outer shell. We investigated the effect of three distinct encapsulation peptides on foreign cargo in a recombinant BMC system. Our data demonstrate that these peptides cause variations in enzyme activity and protein aggregation. We observed that the level of protein aggregation generally correlates with the size of metabolosomes, while in the absence of cargo BMCs self-assemble into smaller compartments. The results agree with a flexible model for BMC formation based around the ability of the BMC shell to associate with an aggregate formed due to the interaction of encapsulation peptides.


Assuntos
Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Metalotioneína/metabolismo , Organelas/enzimologia , Peptídeos/metabolismo , Bactérias/genética , Bactérias/ultraestrutura , Proteínas de Bactérias/genética , Genes Bacterianos , Redes e Vias Metabólicas , Organelas/ultraestrutura , Peptídeos/genética , Transporte Proteico , Piruvato Descarboxilase/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
13.
J Cereb Blood Flow Metab ; 40(3): 678-691, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-30890077

RESUMO

Triheptanoin is anticonvulsant in several seizure models. Here, we investigated changes in glucose metabolism by triheptanoin interictally in the chronic stage of the pilocarpine mouse epilepsy model. After injection of [U-13C6]-glucose (i.p.), enrichments of 13C in intermediates of glycolysis and the tricarboxylic acid (TCA) cycle were quantified in hippocampal extracts and maximal activities of enzymes in each pathway were measured. The enrichment of 13C glucose in plasma was similar across all groups. Despite this, we observed reductions in incorporation of 13C in several glycolytic intermediates compared to control mice suggesting glucose utilization may be impaired and/or glycogenolysis increased in the untreated interictal hippocampus. Triheptanoin prevented the interictal reductions of 13C incorporation in most glycolytic intermediates, suggesting it increased glucose utilization or - as an additional astrocytic fuel - it decreased glycogen breakdown. In the TCA cycle metabolites, the incorporation of 13C was reduced in the interictal state. Triheptanoin restored the correlation between 13C enrichments of pyruvate relative to most of the TCA cycle intermediates in "epileptic" mice. Triheptanoin also prevented the reductions of hippocampal pyruvate dehydrogenase and 2-oxoglutarate dehydrogenase activities. Decreased glycogen breakdown and increased glucose utilization and metabolism via the TCA cycle in epileptogenic brain areas may contribute to triheptanoin's anticonvulsant effects.


Assuntos
Ciclo do Ácido Cítrico/efeitos dos fármacos , Epilepsia/metabolismo , Glucose , Glicólise/efeitos dos fármacos , Hipocampo/metabolismo , Complexo Cetoglutarato Desidrogenase/metabolismo , Piruvato Descarboxilase/metabolismo , Triglicerídeos/farmacologia , Animais , Doença Crônica , Modelos Animais de Doenças , Epilepsia/patologia , Glucose/análogos & derivados , Glucose/farmacocinética , Glucose/farmacologia , Hipocampo/patologia , Masculino , Camundongos
14.
Nat Prod Rep ; 37(1): 100-135, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31074473

RESUMO

Covering: up to 2019Metabolic production of CO2 is natural product chemistry on a mammoth scale. Just counting humans, among all other respiring organisms, the seven billion people on the planet exhale about 3 billion tons of CO2 per year. Essentially all of the biogenic CO2 arises by action of discrete families of decarboxylases. The mechanistic routes to CO2 release from carboxylic acid metabolites vary with the electronic demands and structures of specific substrates and illustrate the breadth of chemistry employed for C-COO (C-C bond) disconnections. Most commonly decarboxylated are α-keto acid and ß-keto acid substrates, the former requiring thiamin-PP as cofactor, the latter typically cofactor-free. The extensive decarboxylation of amino acids, e.g. to neurotransmitter amines, is synonymous with the coenzyme form of vitamin B6, pyridoxal-phosphate, although covalent N-terminal pyruvamide residues serve in some amino acid decarboxylases. All told, five B vitamins (B1, B2, B3, B6, B7), ATP, S-adenosylmethionine, manganese and zinc ions are pressed into service for specific decarboxylase catalyses. There are additional cofactor-independent decarboxylases that operate by distinct chemical routes. Finally, while most decarboxylases use heterolytic ionic mechanisms, a small number of decarboxylases carry out radical pathways.


Assuntos
Dióxido de Carbono/metabolismo , Carbono/metabolismo , Carboxiliases/metabolismo , Animais , Biotina/metabolismo , Carboxiliases/química , Ácidos Carboxílicos/metabolismo , Catálise , Coenzimas/química , Coenzimas/metabolismo , Humanos , Redes e Vias Metabólicas , NAD/metabolismo , Neurotransmissores/metabolismo , Niacinamida/metabolismo , Piruvato Descarboxilase/metabolismo , Zinco/metabolismo
15.
J Biotechnol ; 308: 27-34, 2020 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-31733223

RESUMO

L-Phenylacetylcarbinol (L-PAC) which is used as a precursor for the production of ephedrine and pseudoephedrine is the first reported biologically produced α-hydroxy ketone compound. l-PAC is commercially produced by the yeast Saccharomyces cerevisiae. Yeast cells transform exogenously added benzaldehyde into l-PAC by using the action of pyruvate decarboxylase (PDC) enzyme. In this work, genome-scale model and flux balance analysis were used to identify novel target genes for the enhancement of l-PAC production in yeast. The effect of gene deletions on the flux distributions in the metabolic model of S. cerevisiae was assessed using OptGene and minimization of metabolic adjustments. Six single gene deletion strains, namely Δrpe1, Δpda1, Δadh3, Δadh1, Δzwf1 and Δpdc1, were predicted in silico and further tested in vivo by using knock-out strains cultivated semi-anaerobically on glucose and benzaldehyde as substrates. Δzwf1 mutant exhibited the highest l-PAC formation (2.48 g/L) by using 2 g/L of benzaldehyde which is equivalent to 88 % of the theoretical yield.


Assuntos
Acetona/análogos & derivados , Proteínas Fúngicas/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Acetona/metabolismo , Benzaldeídos/metabolismo , Simulação por Computador , Proteínas Fúngicas/metabolismo , Deleção de Genes , Glucose/metabolismo , Engenharia Metabólica , Piruvato Descarboxilase/genética , Piruvato Descarboxilase/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
16.
PLoS Pathog ; 15(10): e1008092, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31648290

RESUMO

The viral replication proteins of plus-stranded RNA viruses orchestrate the biogenesis of the large viral replication compartments, including the numerous viral replicase complexes, which represent the sites of viral RNA replication. The formation and operation of these virus-driven structures require subversion of numerous cellular proteins, membrane deformation, membrane proliferation, changes in lipid composition of the hijacked cellular membranes and intensive viral RNA synthesis. These virus-driven processes require plentiful ATP and molecular building blocks produced at the sites of replication or delivered there. To obtain the necessary resources from the infected cells, tomato bushy stunt virus (TBSV) rewires cellular metabolic pathways by co-opting aerobic glycolytic enzymes to produce ATP molecules within the replication compartment and enhance virus production. However, aerobic glycolysis requires the replenishing of the NAD+ pool. In this paper, we demonstrate the efficient recruitment of pyruvate decarboxylase (Pdc1) and alcohol dehydrogenase (Adh1) fermentation enzymes into the viral replication compartment. Depletion of Pdc1 in combination with deletion of the homologous PDC5 in yeast or knockdown of Pdc1 and Adh1 in plants reduced the efficiency of tombusvirus replication. Complementation approach revealed that the enzymatically functional Pdc1 is required to support tombusvirus replication. Measurements with an ATP biosensor revealed that both Pdc1 and Adh1 enzymes are required for efficient generation of ATP within the viral replication compartment. In vitro reconstitution experiments with the viral replicase show the pro-viral function of Pdc1 during the assembly of the viral replicase and the activation of the viral p92 RdRp, both of which require the co-opted ATP-driven Hsp70 protein chaperone. We propose that compartmentalization of the co-opted fermentation pathway in the tombusviral replication compartment benefits the virus by allowing for the rapid production of ATP locally, including replenishing of the regulatory NAD+ pool by the fermentation pathway. The compartmentalized production of NAD+ and ATP facilitates their efficient use by the co-opted ATP-dependent host factors to support robust tombusvirus replication. We propose that compartmentalization of the fermentation pathway gives an evolutionary advantage for tombusviruses to replicate rapidly to speed ahead of antiviral responses of the hosts and to outcompete other pathogenic viruses. We also show the dependence of turnip crinkle virus, bamboo mosaic virus, tobacco mosaic virus and the insect-infecting Flock House virus on the fermentation pathway, suggesting that a broad range of viruses might induce this pathway to support rapid replication.


Assuntos
Álcool Desidrogenase/metabolismo , Piruvato Descarboxilase/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/virologia , Tombusvirus/crescimento & desenvolvimento , Replicação Viral/fisiologia , Trifosfato de Adenosina/biossíntese , Fermentação/fisiologia , Glicólise/fisiologia , Proteínas de Choque Térmico HSP70/metabolismo , Interações Hospedeiro-Patógeno/fisiologia , NAD/metabolismo , RNA Viral/biossíntese , Saccharomyces cerevisiae/metabolismo , Nicotiana/virologia , Tombusvirus/genética , Replicação Viral/genética
17.
Sci Rep ; 9(1): 11576, 2019 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-31399628

RESUMO

In this work, we describe the construction of a synthetic metabolic pathway enabling direct biosynthesis of 1,3-propanediol (PDO) from glucose via the Krebs cycle intermediate malate. This non-natural pathway extends a previously published synthetic pathway for the synthesis of (L)-2,4-dihydroxybutyrate (L-DHB) from malate by three additional reaction steps catalyzed respectively, by a DHB dehydrogenase, a 2-keto-4-hydroxybutyrate (OHB) dehydrogenase and a PDO oxidoreductase. Screening and structure-guided protein engineering provided a (L)-DHB dehydrogenase from the membrane-associated (L)-lactate dehydrogenase of E. coli and OHB decarboxylase variants derived from the branched-chain keto-acid decarboxylase encoded by kdcA from Lactococcus lactis or pyruvate decarboxylase from Zymomonas mobilis. The simultaneous overexpression of the genes encoding these enzymes together with the endogenous ydhD-encoded aldehyde reductase enabled PDO biosynthesis from (L)-DHB. While the simultaneous expression of the six enzymatic activities in a single engineered E. coli strain resulted in a low production of 0.1 mM PDO from 110 mM glucose, a 40-fold increased PDO titer was obtained by co-cultivation of an E. coli strain expressing the malate-DHB pathway with another strain harboring the DHB-to-PDO pathway.


Assuntos
Escherichia coli/metabolismo , Glucose/metabolismo , Lactococcus lactis/metabolismo , Engenharia Metabólica , Propilenoglicóis/metabolismo , Zymomonas/metabolismo , Vias Biossintéticas , Ciclo do Ácido Cítrico , Escherichia coli/enzimologia , Escherichia coli/genética , Glucose/genética , Microbiologia Industrial/métodos , Lactococcus lactis/enzimologia , Lactococcus lactis/genética , Engenharia Metabólica/métodos , Piruvato Descarboxilase/genética , Piruvato Descarboxilase/metabolismo , Zymomonas/enzimologia , Zymomonas/genética
19.
BMC Microbiol ; 19(1): 149, 2019 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-31269895

RESUMO

BACKGROUND: Adaptability to different environmental conditions is an essential characteristic of pathogenic microorganisms as it facilitates their invasion of host organisms. The most external component of pathogenic yeast-like fungi from the Candida genus is the multilayered cell wall. This structure is composed mainly of complex polysaccharides and proteins that can undergo dynamic changes to adapt to the environmental conditions of colonized niches. RESULTS: We utilized cell surface shaving with trypsin and a shotgun proteomic approach to reveal the surface-exposed proteins of three important non-albicans Candida species-C. glabrata, C. parapsilosis and C. tropicalis. These proteinaceous components were identified after the growth of the fungal cells in various culture media, including artificial saliva, artificial urine and vagina-simulative medium under aerobic conditions and anaerobically in rich YPD medium. Several known proteins involved in cell wall maintenance and fungal pathogenesis were identified at the cell surface as were a number of atypical cell wall components-pyruvate decarboxylase (Pdc11), enolase (Eno1) and glyceraldehyde-3-phosphate dehydrogenase (Tdh3) which are so-called 'moonlighting' proteins. Notably, many of these proteins showed significant upregulation at the cell surface in growth media mimicking the conditions of infection compared to defined synthetic medium. CONCLUSIONS: Moonlighting proteins are expressed under diverse conditions at the cell walls of the C. glabrata, C. parapsilosis and C. tropicalis fungal pathogens. This indicates a possible universal surface-associated role of these factors in the physiology of these fungi and in the pathology of the infections they cause.


Assuntos
Candida glabrata/metabolismo , Candida parapsilosis/metabolismo , Candida tropicalis/metabolismo , Membrana Celular/metabolismo , Candida glabrata/crescimento & desenvolvimento , Candida parapsilosis/crescimento & desenvolvimento , Candida tropicalis/crescimento & desenvolvimento , Parede Celular/metabolismo , Meios de Cultura/química , Proteínas Fúngicas/metabolismo , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/metabolismo , Fosfopiruvato Hidratase/metabolismo , Proteoma , Piruvato Descarboxilase/metabolismo , Tripsina/metabolismo
20.
Int J Mol Sci ; 20(5)2019 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-30857203

RESUMO

APETALA2/ethylene-responsive factor superfamily (AP2/ERF) is a transcription factor involved in abiotic stresses, for instance, cold, drought, and low oxygen. In this study, a novel ethylene-responsive transcription factor named AdRAP2.3 was isolated from Actinidia deliciosa 'Jinkui'. AdRAP2.3 transcription levels in other reproductive organs except for the pistil were higher than those in the vegetative organs (root, stem, and leaf) in kiwi fruit. Plant hormones (Salicylic acid (SA), Methyl-jasmonate acid (MeJA), 1-Aminocyclopropanecarboxylic Acid (ACC), Abscisic acid (ABA)), abiotic stresses (waterlogging, heat, 4 °C and NaCl) and biotic stress (Pseudomonas Syringae pv. Actinidiae, Psa) could induce the expression of AdRAP2.3 gene in kiwi fruit. Overexpression of the AdRAP2.3 gene conferred waterlogging stress tolerance in transgenic tobacco plants. When completely submerged, the survival rate, fresh weight, and dry weight of transgenic tobacco lines were significantly higher than those of wile type (WT). Upon the roots being submerged, transgenic tobacco lines grew aerial roots earlier. Overexpression of AdRAP2.3 in transgenic tobacco improved the pyruvate decarboxylase (PDC) and alcohol dehydrogenase (ADH) enzyme activities, and improved the expression levels of waterlogging mark genes NtPDC, NtADH, NtHB1, NtHB2, NtPCO1, and NtPCO2 in roots under waterlogging treatment. Overall, these results demonstrated that AdRAP2.3 might play an important role in resistance to waterlogging through regulation of PDC and ADH genes in kiwi fruit.


Assuntos
Actinidia/fisiologia , Etilenos/metabolismo , Regulação da Expressão Gênica de Plantas , Nicotiana/fisiologia , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/fisiologia , Estresse Fisiológico , Fatores de Transcrição/metabolismo , Actinidia/genética , Álcool Desidrogenase/genética , Álcool Desidrogenase/metabolismo , Genes de Plantas , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Piruvato Descarboxilase/genética , Piruvato Descarboxilase/metabolismo , Nicotiana/genética , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...