Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 200
Filtrar
1.
Sci Rep ; 14(1): 11497, 2024 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-38769106

RESUMO

Barth syndrome (BTHS) is a rare disorder caused by mutations in the TAFAZZIN gene. Previous studies from both patients and model systems have established metabolic dysregulation as a core component of BTHS pathology. In particular, features such as lactic acidosis, pyruvate dehydrogenase (PDH) deficiency, and aberrant fatty acid and glucose oxidation have been identified. However, the lack of a mechanistic understanding of what causes these conditions in the context of BTHS remains a significant knowledge gap, and this has hindered the development of effective therapeutic strategies for treating the associated metabolic problems. In the current study, we utilized tafazzin-knockout C2C12 mouse myoblasts (TAZ-KO) and cardiac and skeletal muscle tissue from tafazzin-knockout mice to identify an upstream mechanism underlying impaired PDH activity in BTHS. This mechanism centers around robust upregulation of pyruvate dehydrogenase kinase 4 (PDK4), resulting from hyperactivation of AMP-activated protein kinase (AMPK) and subsequent transcriptional upregulation by forkhead box protein O1 (FOXO1). Upregulation of PDK4 in tafazzin-deficient cells causes direct phospho-inhibition of PDH activity accompanied by increased glucose uptake and elevated intracellular glucose concentration. Collectively, our findings provide a novel mechanistic framework whereby impaired tafazzin function ultimately results in robust PDK4 upregulation, leading to impaired PDH activity and likely linked to dysregulated metabolic substrate utilization. This mechanism may underlie previously reported findings of BTHS-associated metabolic dysregulation.


Assuntos
Proteínas Quinases Ativadas por AMP , Proteína Forkhead Box O1 , Camundongos Knockout , Piruvato Desidrogenase Quinase de Transferência de Acetil , Animais , Camundongos , Proteína Forkhead Box O1/metabolismo , Proteína Forkhead Box O1/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Piruvato Desidrogenase Quinase de Transferência de Acetil/metabolismo , Piruvato Desidrogenase Quinase de Transferência de Acetil/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Regulação para Cima , Transdução de Sinais , Mioblastos/metabolismo , Linhagem Celular , Glucose/metabolismo , Aciltransferases
2.
Cancer Med ; 13(9): e7221, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38733179

RESUMO

BACKGROUND: Cervical cancer is one of the most common gynecological cancers. Accumulated evidence shows that long non-coding RNAs (lncRNAs) play essential roles in cervical cancer occurrence and progression, but their specific functions and mechanisms remain to be further explored. METHODS: The RT-qPCR assay was used to detect the expression of NEAT1 in cervical cancer tissues and cell lines. CCK-8, colony formation, flow cytometry, western blotting, and Transwell assays were used to evaluate the impact of NEAT1 on the malignant behavior of cervical cancer cells. Glucose consumption, lactate production, ATP levels, ROS levels, MMP levels, and the mRNA expressions of glycolysis-related genes and tricarboxylic acid cycle-related genes were detected to analyze the effect of NEAT1 on metabolism reprograming in cervical cancer cells. The expressions of PDK1, ß-catenin and downstream molecules of the WNT/ß-catenin signaling pathway in cervical cancer cells and tissues were detected by western blotting, RT-qPCR, immunofluorescence and immunohistochemistry assays. RESULTS: This study investigated the role and possible molecular mechanism of lncRNA nuclear paraspeckle assembly transcript 1 (NEAT1) in cervical cancer. Our results showed that NEAT1 was highly expressed in cervical cancer tissues and cell lines. Downregulation of NEAT1 inhibited the proliferation, migration, invasion and glycolysis of cervical cancer cells, while overexpression of NEAT1 led to the opposite effects. Mechanistically, NEAT1 upregulated pyruvate dehydrogenase kinase (PDK1) through the WNT/ß-catenin signaling pathway, which enhanced glycolysis and then facilitated cervical cancer metastasis. Furthermore, NEAT1 maintained the protein stability of ß-catenin but did not affect its mRNA level. We also excluded the direct binding of NEAT1 to the ß-catenin protein via RNA pull-down assay. The suppressive impact of NEAT1 knockdown on cell proliferation, invasion, and migration was rescued by ß-catenin overexpression. The WNT inhibitor iCRT3 attenuated the carcinogenic effect induced by NEAT1 overexpression. CONCLUSION: In summary, these findings indicated that NEAT1 may contribute to the progression of cervical cancer by activating the WNT/ß-catenin/PDK1 signaling axis.


Assuntos
Proliferação de Células , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Piruvato Desidrogenase Quinase de Transferência de Acetil , RNA Longo não Codificante , Neoplasias do Colo do Útero , Via de Sinalização Wnt , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/metabolismo , Feminino , Piruvato Desidrogenase Quinase de Transferência de Acetil/metabolismo , Piruvato Desidrogenase Quinase de Transferência de Acetil/genética , Linhagem Celular Tumoral , beta Catenina/metabolismo , beta Catenina/genética , Glicólise , Movimento Celular
3.
Endocrinol Diabetes Metab ; 7(3): e00482, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38556697

RESUMO

BACKGROUND: Stevioside (SV) with minimal calories is widely used as a natural sweetener in beverages due to its high sweetness and safety. However, the effects of SV on glucose uptake and the pyruvate dehydrogenase kinase isoenzyme (PDK4) as an important protein in the regulation of glucose metabolism, remain largely unexplored. In this study, we used C2C12 skeletal muscle cells that was induced by palmitic acid (PA) to assess the effects and mechanisms of SV on glucose uptake and PDK4. METHODS: The glucose uptake of C2C12 cells was determined by 2-NBDG; expression of the Pdk4 gene was measured by quantitative real-time PCR; and expression of the proteins PDK4, p-AMPK, TBC1D1 and GLUT4 was assessed by Western blotting. RESULTS: In PA-induced C2C12 myotubes, SV could significantly promote cellular glucose uptake by decreasing PDK4 levels and increasing p-AMPK and TBC1D1 levels. SV could promote the translocation of GLUT4 from the cytoplasm to the cell membrane in cells. Moreover, in Pdk4-overexpressing C2C12 myotubes, SV decreased the level of PDK4 and increased the levels of p-AMPK and TBC1D1. CONCLUSION: SV was found to ameliorate PA-induced abnormal glucose uptake via the PDK4/AMPK/TBC1D1 pathway in C2C12 myotubes. Although these results warranted further investigation for validation, they may provide some evidence of SV as a safe natural sweetener for its use in sugar-free beverages to prevent and control T2DM.


Assuntos
Proteínas Quinases Ativadas por AMP , Diterpenos do Tipo Caurano , Glucosídeos , Ácido Palmítico , Ácido Palmítico/metabolismo , Ácido Palmítico/farmacologia , Piruvato Desidrogenase Quinase de Transferência de Acetil/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Quinases Ativadas por AMP/farmacologia , Músculo Esquelético/metabolismo , Glucose/metabolismo , Glucose/farmacologia , Fibras Musculares Esqueléticas/metabolismo , Edulcorantes/farmacologia , Edulcorantes/metabolismo
4.
J Cancer Res Clin Oncol ; 150(4): 218, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38678126

RESUMO

BACKGROUND: Targeting ferroptosis mediated by autophagy presents a novel therapeutic approach to breast cancer, a mortal neoplasm on the global scale. Pyruvate dehydrogenase kinase isozyme 4 (PDK4) has been denoted as a determinant of breast cancer metabolism. The target of this study was to untangle the functional mechanism of PDK4 in ferroptosis dependent on autophagy in breast cancer. METHODS: RT-qPCR and western blotting examined PDK4 mRNA and protein levels in breast cancer cells. Immunofluorescence staining appraised light chain 3 (LC3) expression. Fe (2 +) assay estimated total iron level. Relevant assay kits and C11-BODIPY (591/581) staining evaluated lipid peroxidation level. DCFH-DA staining assayed intracellular reactive oxygen species (ROS) content. Western blotting analyzed the protein levels of autophagy, ferroptosis and apoptosis-signal-regulating kinase 1 (ASK1)/c-Jun N-terminal kinase (JNK) pathway-associated proteins. RESULTS: PDK4 was highly expressed in breast cancer cells. Knockdown of PDK4 induced the autophagy of breast cancer cells and 3-methyladenine (3-MA), an autophagy inhibitor, countervailed the promoting role of PDK4 interference in ferroptosis in breast cancer cells. Furthermore, PDK4 knockdown activated ASK1/JNK pathway and ASK1 inhibitor (GS-4997) partially abrogated the impacts of PDK4 absence on the autophagy and ferroptosis in breast cancer cells. CONCLUSION: To sum up, deficiency of PDK4 activated ASK1/JNK pathway to stimulate autophagy-dependent ferroptosis in breast cancer.


Assuntos
Autofagia , Neoplasias da Mama , Ferroptose , MAP Quinase Quinase Quinase 5 , Humanos , Ferroptose/fisiologia , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/genética , Feminino , Autofagia/fisiologia , MAP Quinase Quinase Quinase 5/metabolismo , MAP Quinase Quinase Quinase 5/genética , Piruvato Desidrogenase Quinase de Transferência de Acetil/metabolismo , Piruvato Desidrogenase Quinase de Transferência de Acetil/genética , Sistema de Sinalização das MAP Quinases/fisiologia , Animais , Linhagem Celular Tumoral , Camundongos , Espécies Reativas de Oxigênio/metabolismo
5.
JCI Insight ; 9(10)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38652558

RESUMO

Chronic kidney disease (CKD) causes accumulation of uremic metabolites that negatively affect skeletal muscle. Tryptophan-derived uremic metabolites are agonists of the aryl hydrocarbon receptor (AHR), which has been shown to be activated in CKD. This study investigated the role of the AHR in skeletal muscle pathology of CKD. Compared with controls with normal kidney function, AHR-dependent gene expression (CYP1A1 and CYP1B1) was significantly upregulated in skeletal muscle of patients with CKD, and the magnitude of AHR activation was inversely correlated with mitochondrial respiration. In mice with CKD, muscle mitochondrial oxidative phosphorylation (OXPHOS) was markedly impaired and strongly correlated with the serum level of tryptophan-derived uremic metabolites and AHR activation. Muscle-specific deletion of the AHR substantially improved mitochondrial OXPHOS in male mice with the greatest uremic toxicity (CKD + probenecid) and abolished the relationship between uremic metabolites and OXPHOS. The uremic metabolite/AHR/mitochondrial axis in skeletal muscle was verified using muscle-specific AHR knockdown in C57BL/6J mice harboring a high-affinity AHR allele, as well as ectopic viral expression of constitutively active mutant AHR in mice with normal renal function. Notably, OXPHOS changes in AHRmKO mice were present only when mitochondria were fueled by carbohydrates. Further analyses revealed that AHR activation in mice led to significantly increased pyruvate dehydrogenase kinase 4 (Pdk4) expression and phosphorylation of pyruvate dehydrogenase enzyme. These findings establish a uremic metabolite/AHR/Pdk4 axis in skeletal muscle that governs mitochondrial deficits in carbohydrate oxidation during CKD.


Assuntos
Camundongos Endogâmicos C57BL , Músculo Esquelético , Fosforilação Oxidativa , Piruvato Desidrogenase Quinase de Transferência de Acetil , Receptores de Hidrocarboneto Arílico , Insuficiência Renal Crônica , Triptofano , Animais , Receptores de Hidrocarboneto Arílico/metabolismo , Receptores de Hidrocarboneto Arílico/genética , Camundongos , Masculino , Insuficiência Renal Crônica/metabolismo , Triptofano/metabolismo , Músculo Esquelético/metabolismo , Humanos , Piruvato Desidrogenase Quinase de Transferência de Acetil/metabolismo , Piruvato Desidrogenase Quinase de Transferência de Acetil/genética , Uremia/metabolismo , Mitocôndrias Musculares/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Feminino , Camundongos Knockout , Citocromo P-450 CYP1B1/metabolismo , Citocromo P-450 CYP1B1/genética , Citocromo P-450 CYP1A1/metabolismo , Citocromo P-450 CYP1A1/genética , Pessoa de Meia-Idade , Metabolismo Energético , Modelos Animais de Doenças
6.
Gene ; 918: 148476, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38657876

RESUMO

AIMS: To investigate the association between mitochondrial events and immune response in periodontitis and related regulatory genes. MAIN METHODS: Gene expression profiles in gingival tissues were retrieved from the Gene Expression Omnibus. Mitochondria-immune response-related differentially expressed genes (MIR-DEGs) between the healthy and periodontitis samples were determined. WGCNA, GO, and KEGG were used to investigate the function and the enriched pathways of MIR-DEGs. The correlation between MIR-DEGs expression and clinical probing pocket depth was analyzed. The MIR-DEGs were further identified and verified in animal samples. A periodontitis model was established in C57BL/6 mice with silk ligation. Micro-computed tomography was used to assess alveolar bone loss. Western blot, quantitative real-time polymerase chain reaction, and immunohistochemical analyses further validated the differential expression of the MIR-DEGs. KEY FINDINGS: A total of ten MIR-DEGs (CYP24A1, PRDX4, GLDC, PDK1, BCL2A1, CBR3, ARMCX3, BNIP3, IFI27, and UNG) were identified, the expression of which could effectively distinguish patients with periodontitis from the healthy controls. Enhanced immune response was detected in the periodontitis group with that in the healthy controls, especially in B cells. PDK1 was a critical MIR-DEG correlated with B cell immune response and clinical periodontal probing pocket depth. Both animal and clinical periodontal samples presented higher gene and protein expression of PDK1 than the control samples. Additionally, PDK1 colocalized with B cells in both animal and clinical periodontal tissues. SIGNIFICANCE: Mitochondria participate in the regulation of the immune response in periodontitis. PDK1 may be the key mitochondria-related gene regulating B-cell immune response in periodontitis.


Assuntos
Camundongos Endogâmicos C57BL , MicroRNAs , Mitocôndrias , Periodontite , Animais , Periodontite/genética , Periodontite/imunologia , Periodontite/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Humanos , Gengiva/metabolismo , Gengiva/patologia , Piruvato Desidrogenase Quinase de Transferência de Acetil/genética , Piruvato Desidrogenase Quinase de Transferência de Acetil/metabolismo , Masculino , Linfócitos B/metabolismo , Linfócitos B/imunologia , Perfilação da Expressão Gênica , Feminino , Transcriptoma , Serina-Treonina Quinase 3 , Regulação da Expressão Gênica
7.
Mol Med ; 30(1): 56, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38671369

RESUMO

BACKGROUND: Ginsenoside Rh2 (G-Rh2), a steroidal compound extracted from roots of ginseng, has been extensively studied in tumor therapy. However, its specific regulatory mechanism in non-small cell lung cancer (NSCLC) is not well understood. Pyruvate dehydrogenase kinase 4 (PDK4), a central regulator of cellular energy metabolism, is highly expressed in various malignant tumors. We investigated the impact of G-Rh2 on the malignant progression of NSCLC and how it regulated PDK4 to influence tumor aerobic glycolysis and mitochondrial function. METHOD: We examined the inhibitory effect of G-Rh2 on NSCLC through I proliferation assay, migration assay and flow cytometry in vitro. Subsequently, we verified the ability of G-Rh2 to inhibit tumor growth and metastasis by constructing subcutaneous tumor and metastasis models in nude mice. Proteomics analysis was conducted to analyze the action pathways of G-Rh2. Additionally, we assessed glycolysis and mitochondrial function using seahorse, PET-CT, Western blot, and RT-qPCR. RESULT: Treatment with G-Rh2 significantly inhibited tumor proliferation and migration ability both in vitro and in vivo. Furthermore, G-Rh2 inhibited the tumor's aerobic glycolytic capacity, including glucose uptake and lactate production, through the HIF1-α/PDK4 pathway. Overexpression of PDK4 demonstrated that G-Rh2 targeted the inhibition of PDK4 expression, thereby restoring mitochondrial function, promoting reactive oxygen species (ROS) accumulation, and inducing apoptosis. When combined with sodium dichloroacetate, a PDK inhibitor, it complemented the inhibitory capacity of PDKs, acting synergistically as a detoxifier. CONCLUSION: G-Rh2 could target and down-regulate the expression of HIF-1α, resulting in decreased expression of glycolytic enzymes and inhibition of aerobic glycolysis in tumors. Additionally, by directly targeting mitochondrial PDK, it elevated mitochondrial oxidative phosphorylation and enhanced ROS accumulation, thereby promoting tumor cells to undergo normal apoptotic processes.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Ginsenosídeos , Subunidade alfa do Fator 1 Induzível por Hipóxia , Neoplasias Pulmonares , Fosforilação Oxidativa , Piruvato Desidrogenase Quinase de Transferência de Acetil , Ginsenosídeos/farmacologia , Ginsenosídeos/uso terapêutico , Humanos , Animais , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/genética , Camundongos , Linhagem Celular Tumoral , Piruvato Desidrogenase Quinase de Transferência de Acetil/metabolismo , Fosforilação Oxidativa/efeitos dos fármacos , Glicólise/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Camundongos Nus , Movimento Celular/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos
8.
Metabolism ; 155: 155832, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38438106

RESUMO

Interleukin (IL)-6 has anti- and pro-inflammatory functions, controlled by IL-6 classic and trans-signaling, respectively. Differences in the downstream signaling mechanism between IL-6 classic and trans-signaling have not been identified. Here, we report that IL-6 activates glycolysis to regulate the inflammatory response. IL-6 regulates glucose metabolism by forming a complex containing signal-transducing activators of transcription 3 (STAT3), hexokinase 2 (HK2), and voltage-dependent anion channel 1 (VDAC1). The IL-6 classic signaling directs glucose flux to oxidative phosphorylation (OxPhos), while IL-6 trans-signaling directs glucose flux to anaerobic glycolysis. Classic IL-6 signaling promotes STAT3 translocation into mitochondria to interact with pyruvate dehydrogenase kinase-1 (PDK1), leading to pyruvate dehydrogenase α (PDHA) dissociation from PDK1. As a result, PDHA is dephosphorylated, and STAT3 is phosphorylated at Ser727. By contrast, IL-6 trans-signaling promotes the interaction of sirtuin 2 (SIRT2) and lactate dehydrogenase A (LDHA), leading to the dissociation of STAT3 from SIRT2. As a result, LDHA is deacetylated, and STAT3 is acetylated and phosphorylated at Tyr705. IL-6 classic signaling promotes the differentiation of regulatory T cells via the PDK1/STAT3/PDHA axis, whereas IL-6 trans-signaling promotes the differentiation of Th17 cells via the SIRT2/STAT3/LDHA axis. Conclusion: IL-6 classic signaling generates anti-inflammatory functions by shifting energy metabolism to OxPhos, while IL-6 trans-signaling generates pro-inflammatory functions by shifting energy metabolism to anaerobic glycolysis.


Assuntos
Glucose , Interleucina-6 , Piruvato Desidrogenase Quinase de Transferência de Acetil , Fator de Transcrição STAT3 , Transdução de Sinais , Interleucina-6/metabolismo , Glucose/metabolismo , Animais , Transdução de Sinais/fisiologia , Fator de Transcrição STAT3/metabolismo , Camundongos , Piruvato Desidrogenase Quinase de Transferência de Acetil/metabolismo , Glicólise/fisiologia , Humanos , Inflamação/metabolismo , Fosforilação Oxidativa , Hexoquinase/metabolismo , Fosforilação , Camundongos Endogâmicos C57BL , Reprogramação Metabólica
9.
Environ Toxicol ; 39(6): 3304-3313, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38433477

RESUMO

The sepsis-associated acute kidney injury (Sa-AKI) is closely related to high mortality rates worldwide. Injury to the renal proximal tubular epithelial cells (RPTECs), caused by pathological conditions, is a major cause of acute kidney injury (AKI). The lncRNA NORAD has been reported to be positively associated with kidney cancers. However, the biological roles and underlying mechanisms of NORAD in RPTECs during AKI are still unclear. In this study, we found that NORAD was significantly downregulated in RPTECs from AKI tissues. Overexpression of NORAD alleviated RPTECs injury induced by lipopolysaccharide (LPS). Additionally, glucose metabolism was significantly impaired during AKI, and LPS treatment inhibited glucose metabolism in RPTECs. We demonstrated that NORAD rescued the LPS-induced inhibition of glucose metabolism in RPTECs. Furthermore, miRNA-155-5p was significantly upregulated in RPTECs from AKI. Through bioinformatics analysis, RNA pull-down, RNA IP, and luciferase assays, we showed that NORAD directly associated with miR-155-5p to downregulate its expression. Moreover, overexpression of miR-155-5p inhibited glucose metabolism by directly targeting the 3'UTR of the glucose metabolism enzyme, pyruvate dehydrogenase kinase 1 (PDK1). Finally, rescue experiments validated that NORAD's protective effect on RPTECs injury was mediated through modulation of the miR-155-5p-PDK1-glucose metabolism pathway. In summary, these results reveal that lncRNA NORAD can alleviate RPTECs dysfunction by targeting the miR-155-5p-PDK1 axis, suggesting that NORAD has the potential to contribute to the development of therapeutic approaches against Sa-AKI.


Assuntos
Injúria Renal Aguda , Células Epiteliais , Túbulos Renais Proximais , MicroRNAs , Piruvato Desidrogenase Quinase de Transferência de Acetil , RNA Longo não Codificante , Sepse , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/genética , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Túbulos Renais Proximais/metabolismo , Sepse/complicações , Sepse/metabolismo , Células Epiteliais/metabolismo , Piruvato Desidrogenase Quinase de Transferência de Acetil/metabolismo , Animais , Humanos , Glucose/metabolismo , Lipopolissacarídeos , Masculino
10.
Mol Carcinog ; 63(5): 897-911, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38353358

RESUMO

Increasing evidence has demonstrated that glutaminase (GLS) as a key mitochondrial enzyme plays a pivotal role in glutaminolysis, which widely participates in glutamine metabolism serving as main energy sources and building blocks for tumor growth. However, the roles and molecular mechanisms of GLS in esophageal squamous cell carcinoma (ESCC) remains unknown. Here, we found that GLS was highly expressed in ESCC tissues and cells. GLS inhibitor CB-839 significantly suppressed cell proliferation, colony formation, migration and invasion of ESCC cells, whereas GLS overexpression displayed the opposite effects. In addition, CB-839 markedly suppressed glucose consumption and lactate production, coupled with the downregulation of glycolysis-related proteins HK2, PFKM, PKM2 and LDHA, whereas GLS overexpression exhibited the adverse results. In vivo animal experiment revealed that CB-839 dramatically suppressed tumor growth, whereas GLS overexpression promoted tumor growth in ESCC cells xenografted nude mice. Mechanistically, GLS was localized in mitochondria of ESCC cells, which interacted with PDK1 protein. CB-839 attenuated the interaction of GLS and PDK1 in ESCC cells by suppressing PDK1 expression, which further evoked the downregulation of p-PDHA1 (s293), however, GLS overexpression markedly enhanced the level of p-PDHA1 (s293). These findings suggest that interaction of GLS with PDK1 accelerates the glycolysis of ESCC cells by inactivating PDH enzyme, and thus targeting GLS may be a novel therapeutic approach for ESCC patients.


Assuntos
Benzenoacetamidas , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Glutaminase , Glicólise , Piruvato Desidrogenase Quinase de Transferência de Acetil , Tiadiazóis , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/metabolismo , Carcinoma de Células Escamosas do Esôfago/patologia , Regulação Neoplásica da Expressão Gênica , Glutaminase/genética , Glutaminase/metabolismo , Glicólise/genética , Camundongos Nus , Piruvato Desidrogenase Quinase de Transferência de Acetil/genética , Piruvato Desidrogenase Quinase de Transferência de Acetil/metabolismo
11.
Bioorg Chem ; 144: 107160, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38301426

RESUMO

Metabolism is reprogrammed in a variety of cancer cells to ensure their rapid proliferation. Cancer cells prefer to utilize glycolysis to produce energy as well as to provide large amounts of precursors for their division. In this process, cancer cells inhibit the activity of pyruvate dehydrogenase complex (PDC) by upregulating the expression of pyruvate dehydrogenase kinases (PDKs). Inhibiting the activity of PDKs in cancer cells can effectively block this metabolic transition in cancer cells, while also activating mitochondrial oxidative metabolism and promoting apoptosis of cancer cells. To this day, the study of PDKs inhibitors has become one of the research hotspots in the field of medicinal chemistry. Novel structures targeting PDKs are constantly being discovered, and some inhibitors have entered the clinical research stage. Here, we reviewed the research progress of PDKs inhibitors in recent years and classified them according to the PDKs binding sites they acted on, aiming to summarize the structural characteristics of inhibitors acting on different binding sites and explore their clinical application value. Finally, the shortcomings of some PDKs inhibitors and the further development direction of PDKs inhibitors are discussed.


Assuntos
Proteínas Serina-Treonina Quinases , Complexo Piruvato Desidrogenase , Piruvato Desidrogenase Quinase de Transferência de Acetil/metabolismo , Complexo Piruvato Desidrogenase/metabolismo , Glicólise , Sítios de Ligação
12.
Int J Biol Macromol ; 262(Pt 1): 129970, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38325689

RESUMO

In humans and animals, the pyruvate dehydrogenase kinase (PDK) family proteins (PDKs 1-4) are excessively activated in metabolic disorders such as obesity, diabetes, and cancer, inhibiting the activity of pyruvate dehydrogenase (PDH) which plays a crucial role in energy and fatty acid metabolism and impairing its function. Intervention and regulation of PDH activity have become important research approaches for the treatment of various metabolic disorders. In this study, a small molecule (g25) targeting PDKs and activating PDH, was identified through multi-level computational screening methods. In vivo and in vitro experiments have shown that g25 activated the activity of PDH and reduced plasma lactate and triglyceride level. Besides, g25 significantly decreased hepatic fat deposition in a diet-induced obesity mouse model. Furthermore, g25 enhanced the tumor-inhibiting activity of cisplatin when used in combination. Molecular dynamics simulations and in vitro kinase assay also revealed the specificity of g25 towards PDK2. Overall, these findings emphasize the importance of targeting the PDK/PDH axis to regulate PDH enzyme activity in the treatment of metabolic disorders, providing directions for future related research. This study provides a possible lead compound for the PDK/PDH axis related diseases and offers insights into the regulatory mechanisms of this pathway in diseases.


Assuntos
Doenças Metabólicas , Neoplasias , Animais , Camundongos , Humanos , Piruvato Desidrogenase Quinase de Transferência de Acetil/metabolismo , Complexo Piruvato Desidrogenase/metabolismo , Fosforilação , Doenças Metabólicas/tratamento farmacológico , Obesidade
13.
Glia ; 72(5): 999-1011, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38372421

RESUMO

Amyotrophic lateral sclerosis (ALS) is characterized by progressive motor neuron (MN) degeneration. Various studies using cellular and animal models of ALS indicate that there is a complex interplay between MN and neighboring non-neuronal cells, such as astrocytes, resulting in noncell autonomous neurodegeneration. Astrocytes in ALS exhibit a lower ability to support MN survival than nondisease-associated ones, which is strongly correlated with low-mitochondrial respiratory activity. Indeed, pharmacological inhibition of pyruvate dehydrogenase kinase (PDK) led to an increase in the mitochondrial oxidative phosphorylation pathway as the primary source of cell energy in SOD1G93A astrocytes and restored the survival of MN. Among the four PDK isoforms, PDK2 is ubiquitously expressed in astrocytes and presents low expression levels in neurons. Herein, we hypothesize whether selective knockdown of PDK2 in astrocytes may increase mitochondrial activity and, in turn, reduce SOD1G93A-associated toxicity. To assess this, cultured neonatal SOD1G93A rat astrocytes were incubated with specific PDK2 siRNA. This treatment resulted in a reduction of the enzyme expression with a concomitant decrease in the phosphorylation rate of the pyruvate dehydrogenase complex. In addition, PDK2-silenced SOD1G93A astrocytes exhibited restored mitochondrial bioenergetics parameters, adopting a more complex mitochondrial network. This treatment also decreased lipid droplet content in SOD1G93A astrocytes, suggesting a switch in energetic metabolism. Significantly, PDK2 knockdown increased the ability of SOD1G93A astrocytes to support MN survival, further supporting the major role of astrocyte mitochondrial respiratory activity in astrocyte-MN interactions. These results suggest that PDK2 silencing could be a cell-specific therapeutic tool to slow the progression of ALS.


Assuntos
Esclerose Lateral Amiotrófica , Astrócitos , Piruvato Desidrogenase Quinase de Transferência de Acetil , Animais , Ratos , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Astrócitos/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Neurônios Motores/metabolismo , Piruvato Desidrogenase Quinase de Transferência de Acetil/genética , Piruvato Desidrogenase Quinase de Transferência de Acetil/metabolismo , Respiração , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo
14.
J Biol Chem ; 300(2): 105637, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38199564

RESUMO

Life adapts to daily environmental changes through circadian rhythms, exhibiting spontaneous oscillations of biological processes. These daily functional oscillations must match the metabolic requirements responding to the time of the day. We focus on the molecular mechanism of how the circadian clock regulates glucose, the primary resource for energy production and other biosynthetic pathways. The complex regulation of the circadian rhythm includes many proteins that control this process at the transcriptional and translational levels and by protein-protein interactions. We have investigated the action of one of these proteins, cryptochrome (CRY), whose elevated mRNA and protein levels repress the function of an activator in the transcription-translation feedback loop, and this activator causes elevated Cry1 mRNA. We used a genome-edited cell line model to investigate downstream genes affected explicitly by the repressor CRY. We found that CRY can repress glycolytic genes, particularly that of the gatekeeper, pyruvate dehydrogenase kinase 1 (Pdk1), decreasing lactate accumulation and glucose utilization. CRY1-mediated decrease of Pdk1 expression can also be observed in a breast cancer cell line MDA-MB-231, whose glycolysis is associated with Pdk1 expression. We also found that exogenous expression of CRY1 in the MDA-MB-231 decreases glucose usage and growth rate. Furthermore, reduced CRY1 levels and the increased phosphorylation of PDK1 substrate were observed when cells were grown in suspension compared to cells grown in adhesion. Our data supports a model that the transcription-translation feedback loop can regulate the glucose metabolic pathway through Pdk1 gene expression according to the time of the day.


Assuntos
Relógios Circadianos , Ritmo Circadiano , Criptocromos , Piruvato Desidrogenase Quinase de Transferência de Acetil , Linhagem Celular , Relógios Circadianos/fisiologia , Criptocromos/metabolismo , RNA Mensageiro/genética , Humanos , Piruvato Desidrogenase Quinase de Transferência de Acetil/metabolismo
15.
J Infect Dis ; 229(4): 1178-1188, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37624974

RESUMO

BACKGROUND: Sepsis-induced cardiomyopathy (SIC) is a cardiac dysfunction caused by sepsis, with mitochondrial dysfunction being a critical contributor. Pyruvate dehydrogenase kinase 4 (PDK4) is a kinase of pyruvate dehydrogenase with multifaceted actions in mitochondrial metabolism. However, its role in SIC remains unknown. METHODS: Serum PDK4 levels were measured and analyzed in 27 children with SIC, 30 children with sepsis, and 29 healthy children. In addition, for mice exhibiting SIC, the effects of PDK4 knockdown or inhibition on the function and structure of the myocardium and mitochondria were assessed. RESULTS: The findings from the analysis of children with SIC revealed that PDK4 was significantly elevated and correlated with disease severity and organ injury. Nonsurvivors displayed higher serum PDK4 levels than survivors. Furthermore, mice with SIC benefited from PDK4 knockdown or inhibition, showing improved myocardial contractile function, reduced myocardial injury, and decreased mitochondrial structural injury and dysfunction. In addition, inhibition of PDK4 decreased the inhibitory phosphorylation of PDHE1α (pyruvate dehydrogenase complex E1 subunit α) and improved abnormal pyruvate metabolism and mitochondrial dysfunction. CONCLUSIONS: PDK4 is a potential biomarker for the diagnosis and prognosis of SIC. In experimental SIC, PDK4 promoted mitochondrial dysfunction with increased phosphorylation of PDHE1α and abnormal pyruvate metabolism.


Assuntos
Cardiomiopatias , Doenças Mitocondriais , Proteínas Quinases , Sepse , Animais , Criança , Humanos , Camundongos , Cardiomiopatias/etiologia , Cardiomiopatias/metabolismo , Mitocôndrias/metabolismo , Doenças Mitocondriais/metabolismo , Miocárdio/metabolismo , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Piruvato Desidrogenase Quinase de Transferência de Acetil/metabolismo , Piruvatos/metabolismo , Sepse/complicações , Sepse/metabolismo
16.
Acta Biochim Biophys Sin (Shanghai) ; 56(1): 44-53, 2024 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-37905340

RESUMO

The incidence and related death of hepatocellular carcinoma (HCC) have increased over the past decades. However, the molecular mechanisms underlying HCC pathogenesis are not fully understood. Long noncoding RNA (lncRNA) RP11-495P10.1 has been proven to be closely associated with the progression of prostate cancer, but its role and specific mechanism in HCC are still unknown. Here, we identify that RP11-495P10.1 is highly expressed in HCC tissues and cells and contributes to the proliferation of HCC cells. Moreover, this study demonstrates that RP11-495P10.1 affects the proliferation of HCC by negatively regulating the expression of nuclear receptor subfamily 4 group a member 3 (NR4A3). Glycometabolism reprogramming is one of the main characteristics of tumor cells. In this study, we discover that RP11-495P10.1 regulates glycometabolism reprogramming by changing the expression of pyruvate dehydrogenase kinase 1 (PDK1) and pyruvate dehydrogenase (PDH), thus contributing to the proliferation of HCC cells. Furthermore, knockdown of RP11-495P10.1 increases enrichment of H3K27Ac in the promoter of NR4A3 by promoting the activity of PDH and the production of acetyl-CoA, which leads to the increased transcription of NR4A3. Altogether, RP11-495P10.1 promotes HCC cell proliferation by regulating the reprogramming of glucose metabolism and acetylation of the NR4A3 promoter via the PDK1/PDH axis, which provides an lncRNA-oriented therapeutic strategy for the diagnosis and treatment of HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , RNA Longo não Codificante , Receptores de Esteroides , Humanos , Masculino , Acetilação , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Proteínas de Ligação a DNA/genética , Regulação Neoplásica da Expressão Gênica , Glucose , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Receptores de Esteroides/genética , Receptores de Esteroides/metabolismo , Receptores dos Hormônios Tireóideos/genética , Receptores dos Hormônios Tireóideos/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Piruvato Desidrogenase Quinase de Transferência de Acetil/metabolismo , Complexo Piruvato Desidrogenase/metabolismo
17.
Eur J Med Chem ; 264: 116008, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38056298

RESUMO

Proliferating cancer cells are characterized by the Warburg effect, a metabolic alteration in which ATP is generated from cytoplasmic glycolysis instead of oxidative phosphorylation. The pyruvate dehydrogenase complex/pyruvate dehydrogenase kinase (PDC/PDK) axis plays a crucial role in this effect and has been identified as a potential target for anticancer drug development. Herein, we present the discovery and pharmacological evaluation of potent PDK inhibitors targeting the PDK/PDC axis. We successfully identified 6 compounds from a small molecule library through a structure-based virtual screening campaign and evaluated their enzymatic inhibitory potencies for PDK1-4. Our results indicated that compound 1 exhibited submicromolar inhibitory activities against PDK1-3 (IC50 = 109.3, 135.8, and 458.7 nM, respectively), but is insensitive to PDK4 (IC50 = 8.67 µM). Furthermore, compound 1 inhibited the proliferation of A549 cells with an EC50 value of 10.7 µM. In addition, compound 1 induced cell apoptosis, arrested the cell cycle at the S phase, and reduced cell invasion and migration, while showing low in vivo toxicity at a high dose. Based on these observations, it can be concluded that compound 1 is a promising anti-PDK1-3 lead that merits further investigation.


Assuntos
Proteínas Serina-Treonina Quinases , Complexo Piruvato Desidrogenase , Piruvato Desidrogenase Quinase de Transferência de Acetil/metabolismo , Complexo Piruvato Desidrogenase/metabolismo , Fosforilação Oxidativa , Divisão Celular
18.
Cell Death Dis ; 14(11): 722, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37935660

RESUMO

Hyperglycemia-induced aberrant glucose metabolism is a causative factor of neurodegeneration and cognitive impairment in diabetes mellitus (DM) patients. The pyruvate dehydrogenase kinase (PDK)-lactic acid axis is regarded as a critical link between metabolic reprogramming and the pathogenic process of neurological disorders. However, its role in diabetic neuropathy remains unclear. Here, we found that PDK1 and phosphorylation of pyruvate dehydrogenase (PDH) were obviously increased in high glucose (HG)-stimulated primary neurons and Neuro-2a cell line. Acetyl-coA, a central metabolic intermediate, might enhance PDK1 expression via histone H3K9 acetylation modification in HG condition. The epigenetic regulation of PDK1 expression provided an available negative feedback pattern in response to HG environment-triggered mitochondrial metabolic overload. However, neuronal PDK1 was decreased in the hippocampus of streptozotocin (STZ)-induced diabetic mice. Our data showed that the expression of PDK1 also depended on the hypoxia-inducible factor-1 (HIF-1) transcriptional activation under the HG condition. However, HIF-1 was significantly reduced in the hippocampus of diabetic mice, which might explain the opposite expression of PDK1 in vivo. Importantly, overexpression of PDK1 reduced HG-induced reactive oxygen species (ROS) generation and neuronal apoptosis. Enhancing PDK1 expression in the hippocampus ameliorated STZ-induced cognitive impairment and neuronal degeneration in mice. Together, our study demonstrated that both acetyl-coA-induced histone acetylation and HIF-1 are necessary to direct PDK1 expression, and enhancing PDK1 may have a protective effect on cognitive recovery in diabetic mice. Schematic representation of the protective effect of PDK1 on hyperglycemia-induced neuronal injury and memory loss. High glucose enhanced the expression of PDK1 in an acetyl-coA-dependent histone acetylation modification to avoid mitochondrial metabolic overload and ROS release. However, the decrease of HIF-1 may impair the upregulation of PDK1 under hyperglycemia condition. Overexpression of PDK1 prevented hyperglycemia-induced hippocampal neuronal injury and memory loss in diabetic mice.


Assuntos
Diabetes Mellitus Experimental , Hiperglicemia , Humanos , Camundongos , Animais , Piruvato Desidrogenase Quinase de Transferência de Acetil/metabolismo , Histonas/metabolismo , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Acetilcoenzima A/metabolismo , Epigênese Genética , Modelos Animais de Doenças , Neurônios/metabolismo , Transtornos da Memória , Glucose/toxicidade
19.
Cancer Lett ; 577: 216425, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37805163

RESUMO

Lung adenocarcinoma (LUAD) is one of the most prevalent and aggressive types of lung cancer. Metabolic reprogramming plays a critical role in the development and progression of LUAD. Pyruvate dehydrogenase kinase 1 (PDK1) and lactate dehydrogenase A (LDHA) are two key enzymes involved in glucose metabolism, whilst their aberrant expressions are often associated with tumorigenesis. Herein, we investigated the anticancer effects of combined inhibition of PDK1 and LDHA in LUAD in vitro and in vivo and its underlying mechanisms of action. The combination of a PDK1 inhibitor, 64, and a LDHA inhibitor, NHI-Glc-2, led to a synergistic growth inhibition in 3 different LUAD cell lines and more than additively suppressed tumor growth in the LUAD xenograft H1975 model. This combination also inhibited cellular migration and colony formation, while it induced a metabolic shift from glycolysis to oxidative phosphorylation (OXPHOS) resulting in mitochondrial depolarization and apoptosis in LUAD cells. These effects were related to modulation of multiple cell signaling pathways, including AMPK, RAS/ERK, and AKT/mTOR. Our findings demonstrate that simultaneous inhibition of multiple glycolytic enzymes (PDK1 and LDHA) is a promising novel therapeutic approach for LUAD.


Assuntos
Adenocarcinoma de Pulmão , Lactato Desidrogenase 5 , Neoplasias Pulmonares , Piruvato Desidrogenase Quinase de Transferência de Acetil , Humanos , Adenocarcinoma de Pulmão/tratamento farmacológico , Morte Celular , Linhagem Celular Tumoral , Proliferação de Células , Glicólise , L-Lactato Desidrogenase , Lactato Desidrogenase 5/antagonistas & inibidores , Lactato Desidrogenase 5/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Piruvato Desidrogenase Quinase de Transferência de Acetil/antagonistas & inibidores , Piruvato Desidrogenase Quinase de Transferência de Acetil/metabolismo , Transdução de Sinais
20.
Biochem J ; 480(19): 1503-1532, 2023 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-37792325

RESUMO

The protein kinase PDK1 phosphorylates at least 24 distinct substrates, all of which belong to the AGC protein kinase group. Some substrates, such as conventional PKCs, undergo phosphorylation by PDK1 during their synthesis and subsequently get activated by DAG and Calcium. On the other hand, other substrates, including members of the Akt/PKB, S6K, SGK, and RSK families, undergo phosphorylation and activation downstream of PI3-kinase signaling. This review presents two accepted molecular mechanisms that determine the precise and timely phosphorylation of different substrates by PDK1. The first mechanism involves the colocalization of PDK1 with Akt/PKB in the presence of PIP3. The second mechanism involves the regulated docking interaction between the hydrophobic motif (HM) of substrates and the PIF-pocket of PDK1. This interaction, in trans, is equivalent to the molecular mechanism that governs the activity of AGC kinases through their HMs intramolecularly. PDK1 has been instrumental in illustrating the bi-directional allosteric communication between the PIF-pocket and the ATP-binding site and the potential of the system for drug discovery. PDK1's interaction with substrates is not solely regulated by the substrates themselves. Recent research indicates that full-length PDK1 can adopt various conformations based on the positioning of the PH domain relative to the catalytic domain. These distinct conformations of full-length PDK1 can influence the interaction and phosphorylation of substrates. Finally, we critically discuss recent findings proposing that PIP3 can directly regulate the activity of PDK1, which contradicts extensive in vitro and in vivo studies conducted over the years.


Assuntos
Piruvato Desidrogenase Quinase de Transferência de Acetil , Humanos , Sítios de Ligação , Fosfatidilinositol 3-Quinase , Fosforilação , Proteínas Proto-Oncogênicas c-akt , Piruvato Desidrogenase Quinase de Transferência de Acetil/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...