Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Fish Dis ; 47(6): e13913, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38421380

RESUMO

Piscirickettsiosis is the main cause of mortality in salmonids of commercial importance in Chile, which is caused by Piscirickettsia salmonis, a Gram-negative, γ-proteobacteria that can produce biofilm as one of its virulence factors. The Chilean salmon industry uses large amounts of antibiotics to control piscirickettsiosis outbreaks, which has raised concern about its environmental impact and the potential to induce antibiotic resistance. Thus, the use of phytogenic feed additives (PFA) with antibacterial activity emerges as an interesting alternative to antimicrobials. Our study describes the antimicrobial action of an Andrographis paniculate-extracted PFA on P. salmonis planktonic growth and biofilm formation. We observed complete inhibition of planktonic and biofilm growth with 500 and 400 µg/mL of PFA for P. salmonis LF-89 and EM-90-like strains, respectively. Furthermore, 500 µg/mL of PFA was bactericidal for both evaluated bacterial strains. Sub-inhibitory doses of PFA increase the transcript levels of stress (groEL), biofilm (pslD), and efflux pump (acrB) genes for both P. salmonis strains in planktonic and sessile conditions. In conclusion, our results demonstrate the antibacterial effect of PFA against P. salmonis in vitro, highlighting the potential of PFA as an alternative to control Piscirickettsiosis.


Assuntos
Ração Animal , Biofilmes , Doenças dos Peixes , Piscirickettsia , Infecções por Piscirickettsiaceae , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Piscirickettsia/efeitos dos fármacos , Piscirickettsia/fisiologia , Doenças dos Peixes/microbiologia , Infecções por Piscirickettsiaceae/veterinária , Infecções por Piscirickettsiaceae/microbiologia , Animais , Ração Animal/análise , Antibacterianos/farmacologia , Suplementos Nutricionais/análise , Extratos Vegetais/farmacologia , Dieta/veterinária , Chile
2.
Fish Shellfish Immunol ; 142: 109127, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37813155

RESUMO

Piscirickettsia salmonis, an intracellular bacterium in salmon aquaculture, is a big challenge because it is responsible for 54.2% of Atlantic salmon mortalities. In recent years, the high relevance of Alternative Splicing (AS) as a molecular mechanism associated with infectious conditions and host-pathogen interaction processes, especially in host immune activation, has been observed. Several studies have highlighted the role of AS in the host's immune response during viral, bacterial, and endoparasite infection. In the present study, we evaluated AS transcriptome profiles during P. salmonis infection in the two most used study models, SHK-1 cell line and salmon head kidney tissue. First, the SHK-1 cell line was exposed to P. salmonis infection at 0-, 7-, and 14-days post-infection (dpi). Following, total RNA was extracted for Illumina sequencing. On the other hand, RNA-Seq datasets of Atlantic salmon head kidney infected with the same P. salmonis strayingwase used. For both study models, the highest number of differentially alternative splicing (DAS) events was observed at 7 dpi, 16,830 DAS events derived from 9213 DAS genes in SHK-1 cells, and 13,820 DAS events from 7684 DAS genes in salmon HK. Alternative first exon (AF) was the most abundant AS type in the three infection times analyzed, representing 31% in SHK-1 cells and 228.6 in salmon HK; meanwhile, mutually exclusive exon (MX) was the least abundant. Notably, functional annotation of DAS genes in SHK-1 cells infected with P. salmonis showed a high presence of genes related to nucleotide metabolism. In contrast, the salmon head kidney exhibited many GO terms associated with immune response. Our findings reported the role of AS during P. salmonis infection in Atlantic salmon. These studies would contribute to a better understanding of the molecular bases that support the pathogen-host interaction, evidencing the contribution of AS regulating the transcriptional host response.


Assuntos
Doenças dos Peixes , Piscirickettsia , Infecções por Piscirickettsiaceae , Salmo salar , Animais , Transcriptoma , Salmo salar/genética , Rim Cefálico , Processamento Alternativo , Piscirickettsia/fisiologia , Linhagem Celular , Infecções por Piscirickettsiaceae/genética , Infecções por Piscirickettsiaceae/veterinária
3.
Fish Shellfish Immunol ; 139: 108887, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37290611

RESUMO

Piscirickettsiosis outbreaks due to Piscirickettsia salmonis occur globally in the Chilean salmon aquaculture generating significant monetary losses in the industry. P. salmonis secretes outer membrane vesicles (OMVs) which are naturally non-replicating and highly immunogenic spherical nanoparticles. P. salmonis OMVs has been shown to induce immune response in zebrafish; however, the immune response induced by these vesicles in salmonids has not been evaluated. In this study, we inoculated Atlantic salmon with 10 and 30 µg doses of P. salmonis OMVs and took samples for 12 days. qPCR analysis indicated an inflammatory response. Thus, the inflammatory genes evaluated were up- or down-regulated at several times in liver, head kidney and spleen. In addition, the liver was the organ most immune-induced, mainly in the 30 µg-dose. Interestingly, co-expression of pro- and anti-inflammatory cytokines was evidenced by the prominent expression of il-10 at day 1 in spleen and also in head kidney on days 3, 6 and 12, while il-10 and tgf-ß were up-regulated on days 3, 6 and 12 in liver. Importantly, we detected the production of IgM against proteins of P. salmonis in the serum collected from immunized fish after 14 days. Thus, 40 and 400 µg OMVs induced the production of highest IgM levels; however, no statistical difference in the immunoglobulin levels produced by these OMVs doses were detected. The current study provides evidence that OMVs released by P. salmonis induced a pro-inflammatory responses and IgM production in S. salar, while regulatory genes were induced in order to regulate their effects and achieve the balance of the inflammatory response.


Assuntos
Doenças dos Peixes , Piscirickettsia , Infecções por Piscirickettsiaceae , Salmo salar , Animais , Salmo salar/genética , Interleucina-10 , Peixe-Zebra , Piscirickettsia/fisiologia , Imunoglobulina M , Infecções por Piscirickettsiaceae/veterinária
4.
Fish Shellfish Immunol ; 136: 108711, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37004895

RESUMO

The salmonid rickettsial syndrome (SRS) is a systemic bacterial infection caused by Piscirickettsia salmonis that generates significant economic losses in Atlantic salmon (Salmo salar) aquaculture. Despite this disease's relevance, the mechanisms involved in resistance against P. salmonis infection are not entirely understood. Thus, we aimed at studying the pathways explaining SRS resistance using different approaches. First, we determined the heritability using pedigree data from a challenge test. Secondly, a genome-wide association analysis was performed following a complete transcriptomic profile of fish from genetically susceptible and resistant families within the challenge infection with P. salmonis. We found differentially expressed transcripts related to immune response, pathogen recognition, and several new pathways related to extracellular matrix remodelling and intracellular invasion. The resistant background showed a constrained inflammatory response, mediated by the Arp2/3 complex actin cytoskeleton remodelling polymerization pathway, probably leading to bacterial clearance. A series of biomarkers of SRS resistance, such as the beta-enolase (ENO-ß), Tubulin G1 (TUBG1), Plasmin (PLG) and ARP2/3 Complex Subunit 4 (ARPC4) genes showed consistent overexpression in resistant individuals, showing promise as biomarkers for SRS resistance. All these results together with the differential expression of several long non-coding RNAs show the complexity of the host-pathogen interaction of S. salar and P. salmonis. These results provide valuable information on new models describing host-pathogen interaction and its role in SRS resistance.


Assuntos
Doenças dos Peixes , Piscirickettsia , Infecções por Piscirickettsiaceae , Salmo salar , Animais , Salmo salar/genética , Estudo de Associação Genômica Ampla , Piscirickettsia/fisiologia , Transcriptoma , Interações Hospedeiro-Patógeno , Citoesqueleto
5.
Mar Biotechnol (NY) ; 23(4): 602-614, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34390423

RESUMO

Piscirickettsiosis is the most important bacterial disease in the Chilean salmon industry, which has borne major economic losses due to failure to control it. Cells use extracellular vesicles (EVs) as an inter-cellular communicators to deliver several factors (e.g., microRNAs) that may regulate the responses of other cells. However, there is limited knowledge about the identification and characterization of EV-miRNAs in salmonids or the effect of infections on these. In this study, Illumina sequencing technology was used to identify Coho salmon plasma EV-miRNAs upon Piscirickettsia salmonis infection at four different time points. A total of 118 novels and 188 known EV-miRNAs, including key immune teleost miRNAs families (e.g., miR-146, miR-122), were identified. A total of 245 EV-miRNAs were detected as differentially expressed (FDR < 5%) in terms of control, with a clear down-regulation pattern throughout the disease. KEGG enrichment results of EV-miRNAs target genes showed that they were grouped mainly in cellular, stress, inflammation and immune responses. Therefore, it is hypothesized that P. salmonis could potentially benefit from unbalanced modulation response of Coho salmon EV-miRNAs in order to promote a hyper-inflammatory and compromised immune response through the suppression of different key immune host miRNAs during the course of the infection, as indicated by the results of this study.


Assuntos
Doenças dos Peixes/microbiologia , MicroRNAs/metabolismo , Oncorhynchus kisutch/metabolismo , Infecções por Piscirickettsiaceae/imunologia , Animais , Vesículas Extracelulares/metabolismo , Doenças dos Peixes/imunologia , Regulação da Expressão Gênica , Inflamação , Oncorhynchus kisutch/genética , Oncorhynchus kisutch/imunologia , Piscirickettsia/fisiologia
6.
Dev Comp Immunol ; 124: 104182, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34166719

RESUMO

Chemokines such as IL-8 are part of an important group of proinflammatory response molecules, as well as cell recruitment. However, it has been described in both higher vertebrates and fish that IL-8 has an additional functional role by acting as an antimicrobial effector, either directly or by cleavage of a peptide derived from its C-terminal end. Nevertheless, it is still unknown whether this fragment is released in the context of infection by bacterial pathogens and if it could be immunodetected in tissues of infected salmonids. Therefore, the objective of this research was to demonstrate that the C-terminal end of IL-8 from Oncorhynchus mykiss is cleaved, retaining its antibacterial properties, and that is detectable in tissues of infected rainbow trout. SDS-PAGE and mass spectrometry demonstrated the cleavage of a fragment of about 2 kDa when the recombinant IL-8 was subjected to acidic conditions. By chemical synthesis, it was possible to synthesize this fragment called omIL-8α80-97 peptide, which has antibacterial activity against Gram-negative and Gram-positive bacteria at concentrations over 10 µM. Besides, by fluorescence microscopy, it was possible to locate the omIL-8α80-97 peptide both on the cell surface and in the cytoplasm of the bacteria, as well as inside the monocyte/macrophage-like cell. Finally, by indirect ELISA, Western blot, and mass spectrometry, the presence of the fragment derived from the C-terminal end of IL-8 was detected in the spleen of trout infected with Piscirickettsia salmonis. The results reported in this work present the first evidence about the immunodetection of an antibacterial, and probably cell-penetrating peptide cleaved from the C-terminal end of IL-8 in monocyte/macrophage-like cell and tissue of infected rainbow trout.


Assuntos
Peptídeos Antimicrobianos/metabolismo , Infecções Bacterianas/veterinária , Doenças dos Peixes/imunologia , Interleucina-8/metabolismo , Oncorhynchus mykiss/imunologia , Aeromonas salmonicida/efeitos dos fármacos , Aeromonas salmonicida/fisiologia , Animais , Peptídeos Antimicrobianos/síntese química , Peptídeos Antimicrobianos/farmacologia , Infecções Bacterianas/imunologia , Hidrólise , Imunidade Inata , Macrófagos/metabolismo , Macrófagos/microbiologia , Piscirickettsia/fisiologia , Proteínas Recombinantes/metabolismo , Baço/imunologia , Distribuição Tecidual/imunologia
7.
Dev Comp Immunol ; 123: 104125, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34087290

RESUMO

The intraperitoneal route is favored for administration of inactivated and attenuated vaccines in Atlantic salmon. Nevertheless, the immune responses in the teleost peritoneal cavity (PerC) are still incompletely defined. In this study, we investigated the B cell responses after intraperitoneal Piscirickettsia salmonis (P. salmonis) challenge of Atlantic salmon, focusing on the local PerC response versus responses in the lymphatic organs: spleen and head kidney. We observed a major increase of leukocytes, total IgM antibody secreting cells (ASC), and P. salmonis-specific ASC in the PerC at 3- and 6-weeks post infection (wpi). The increase in ASC frequency was more prominent in the spleen and PerC compared to the head kidney during the observed 6 wpi. The serum antibody response included P. salmonis-specific antibodies and non-specific antibodies recognizing the non-related bacterial pathogen Yersinia ruckeri and the model antigen TNP-KLH. Finally, we present evidence that supports a putative role for the adipose tissue in the PerC immune response.


Assuntos
Células Produtoras de Anticorpos/imunologia , Subpopulações de Linfócitos B/imunologia , Doenças dos Peixes/imunologia , Cavidade Peritoneal/fisiologia , Piscirickettsia/fisiologia , Infecções por Piscirickettsiaceae/imunologia , Salmo salar/imunologia , Tecido Adiposo/imunologia , Animais , Anticorpos Antibacterianos/sangue , Reações Cruzadas , Proteínas de Peixes/metabolismo , Imunidade Humoral , Imunoglobulina M/metabolismo , Yersinia ruckeri/imunologia
8.
Artigo em Inglês | MEDLINE | ID: mdl-34087760

RESUMO

Skeletal muscle is the most abundant tissue in teleosts and is essential for movement and metabolism. Recently, it has been described that skeletal muscle can express and secrete immune-related molecules during pathogen infection. However, the role of this tissue during infection is poorly understood. To determine the immunocompetence of fish skeletal muscle, juvenile rainbow trout (Oncorhynchus mykiss) were challenged with Piscirickettsia salmonis strain LF-89. P. salmonis is the etiological agent of piscirickettsiosis, a severe disease that has caused major economic losses in the aquaculture industry. This gram-negative bacterium produces a chronic systemic infection that involves several organs and tissues in salmonids. Using high-throughput RNA-seq, we found that 60 transcripts were upregulated in skeletal muscle, mostly associated with inflammatory response and positive regulation of interleukin-8 production. Conversely, 141 transcripts were downregulated in association with muscle filament sliding and actin filament-based movement. To validate these results, we performed in vitro experiments using rainbow trout myotubes. In myotubes coincubated with P. salmonis strain LF-89 at an MOI of 50, we found increased expression of the proinflammatory cytokine il1b and the pattern recognition receptor tlr5s 8 and 12 h after infection. These results demonstrated that fish skeletal muscle is an immunologically active organ that can implement an early immunological response against P. salmonis.


Assuntos
Doenças dos Peixes/imunologia , Inflamação/imunologia , Músculo Esquelético/imunologia , Oncorhynchus mykiss/imunologia , Piscirickettsia/fisiologia , Infecções por Piscirickettsiaceae/imunologia , Transcriptoma , Animais , Aquicultura , Doenças dos Peixes/genética , Doenças dos Peixes/microbiologia , Perfilação da Expressão Gênica , Inflamação/genética , Inflamação/microbiologia , Músculo Esquelético/metabolismo , Músculo Esquelético/microbiologia , Oncorhynchus mykiss/genética , Oncorhynchus mykiss/microbiologia , Infecções por Piscirickettsiaceae/microbiologia
9.
Vet Res ; 52(1): 64, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33933136

RESUMO

Salmonid Rickettsial Septicaemia (SRS), caused by Piscirickettsia salmonis, is the most important infectious disease in the Chilean salmon farming industry. An opportunity to control this disease is to use functional micronutrients to modulate host mechanisms of response to the infection. Since P. salmonis may affect the host antioxidant system in salmonids, particularly that dependent on selenium (Se), we hypothesized that fish's dietary selenium supplementation could improve the response to the bacterial infection. To address this, we defined a non-antibiotic, non-cytotoxic concentration of selenium to evaluate its effect on the response to in vitro infections of SHK-1 cells with P. salmonis. The results indicated that selenium supplementation reduced the cytopathic effect, intracellular bacterial load, and cellular mortality of SHK-1 by increasing the abundance and activity of host glutathione peroxidase. We then prepared diets supplemented with selenium up to 1, 5, and 10 mg/kg to feed juvenile trout for 8 weeks. At the end of this feeding period, we obtained their blood plasma and evaluated its ability to protect SHK-1 cells from infection with P. salmonis in ex vivo assays. These results recapitulated the observed ability of selenium to protect against infection with P. salmonis by increasing the concentration of selenium and the antioxidant capacity in fish's plasma. To the best of our knowledge, this is the first report of the protective capacity of selenium against P. salmonis infection in salmonids, becoming a potential effective host-directed dietary therapy for SRS and other infectious diseases in animals at a non-antibiotic concentration.


Assuntos
Antioxidantes/metabolismo , Resistência à Doença , Doenças dos Peixes/microbiologia , Oncorhynchus mykiss/imunologia , Infecções por Piscirickettsiaceae/veterinária , Selênio/metabolismo , Ração Animal/análise , Animais , Dieta/veterinária , Suplementos Nutricionais/análise , Relação Dose-Resposta a Droga , Piscirickettsia/fisiologia , Infecções por Piscirickettsiaceae/microbiologia , Plasma/química , Distribuição Aleatória , Selênio/administração & dosagem
11.
Dev Comp Immunol ; 114: 103865, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32918929

RESUMO

The nucleotide binding oligomerization domain like receptors, or NOD like receptors (NLRs), are intracellular receptors responsible for recognizing pathogens in vertebrates. Several NLR mammalian models have been characterized and analyzed but few studies have been performed with teleost species. In this study, we analyzed the nucleotide sequence of six mRNA variants of NLRC3 in Atlantic salmon (SsNLRC3), and we deduced the amino acid sequence coding for two different isoforms with a total length of 1135 amino acids and 1093 amino acids. We analyzed the phylogeny of all variants, including a Piscirickettsia salmonis infection in Atlantic salmon. All variants and their expression pattern during infection were analyzed using real-time qPCR. One of the analyzed variants was over-expressed during the early stages of Piscirickettsia salmonis infection, and we were able to identify two different SsNLRC3 isoforms. Lastly, we observed that an alteration in the amino acid sequence of one of the isoforms can directly affect the pathogen recognition function.


Assuntos
Doenças dos Peixes/metabolismo , Proteínas NLR/genética , Piscirickettsia/fisiologia , Infecções por Piscirickettsiaceae/metabolismo , Isoformas de Proteínas/genética , RNA Mensageiro/genética , Salmo salar/imunologia , Animais , Clonagem Molecular , Doenças dos Peixes/imunologia , Variação Genética , Imunidade Inata , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas NLR/metabolismo , Filogenia , Infecções por Piscirickettsiaceae/imunologia , Análise de Sequência , Transcriptoma , Proteínas de Peixe-Zebra/genética
12.
Transbound Emerg Dis ; 68(3): 1586-1600, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-32945136

RESUMO

This study aimed at estimating parameters representing between-farm transmission of Salmonid Rickettsial Septicaemia (SRS) in Chile, and developing and validating simulation models to predict weekly spread of SRS between farms in Los Lagos (Region 10), using InterSpread Plus. The model parameters were estimated by analyses of the historical SRS outbreak data. The models incorporated time and distance-dependent transmission kernels, representing the probabilities of waterborne spread of SRS between farms. Seven candidate transmission kernels were estimated, with varying maximum distance of between-farm SRS spread (15-60 km). Farms were categorized by size (small; medium; large) and species (Coho salmon; Atlantic salmon; rainbow trout). The time that it took a farm to recover from infection was parameterized to be shortest for small Coho farms (median: 7 weeks), followed by medium and large Coho farms (median: 25 weeks), Atlantic salmon farms (median: 42 weeks, any size) and rainbow trout farms (median: 43 weeks, any size). The relative infectiousness parameters of rainbow trout farms were 1.5-6.3 times that of Coho or Atlantic salmon, or those of large farms was 1.3-4.2 times that of small or medium farms. The models predicted SRS prevalence in Region 10 between 2013 and 2015 (79 weeks) with 76.5%-93.0% overall accuracy. The model with a transmission kernel of <20 km (P20) achieved a maximum overall accuracy (93.0%). Within each neighbourhood, the accuracy of P20 varied between 32.4% and 88.1%; 13/20 neighbourhoods had a reasonable temporal agreement between the simulated and actual dynamics of SRS (within 5th-95th percentiles), but 5/20 neighbourhoods underestimated and 2/20 overestimated the SRS spread. The model could be used for evaluation of semi-global control policies in Region 10, while addition of other factors such as seasonality, ocean currents, and movement of infected fish may improve the model performance at a finer scale.


Assuntos
Doenças dos Peixes/transmissão , Oncorhynchus kisutch , Oncorhynchus mykiss , Piscirickettsia/fisiologia , Infecções por Piscirickettsiaceae/veterinária , Salmo salar , Animais , Aquicultura , Chile , Simulação por Computador , Modelos Teóricos , Infecções por Piscirickettsiaceae/transmissão , Água do Mar
13.
Dev Comp Immunol ; 117: 103988, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33359361

RESUMO

Flagellin is the major component of the flagellum, and a ligand for Toll-like receptor 5. As reported, recombinant flagellin (rFLA) from Vibrio anguillarum and its D1 domain (rND1) are able to promote in vitro an upregulation of pro-inflammatory genes in gilthead seabream (Sparus aurata) and rainbow trout (Oncorhynchus mykiss) macrophages. This study evaluated the in vitro and in vivo stimulatory/adjuvant effect for rFLA and rND1 during P. salmonis vaccination in Atlantic salmon (Salmo salar). We demonstrated that rFLA and rND1 are molecules able to generate an acute upregulation of pro-inflammatory cytokines (IL-1ß, IL-8, IL-12ß), allowing the expression of genes associated with T-cell activation (IL-2, CD4, CD8ß), and differentiation (IFNγ, IL-4/13, T-bet, Eomes, GATA3), in a differential manner, tissue/time dependent way. Altogether, our results suggest that rFLA and rND1 are valid candidates to be used as an immuno-stimulant or adjuvants with existing vaccines in farmed salmon.


Assuntos
Vacinas Bacterianas/imunologia , Citocinas/imunologia , Flagelina/imunologia , Piscirickettsia/imunologia , Salmo salar/imunologia , Vibrio/imunologia , Animais , Vacinas Bacterianas/administração & dosagem , Sítios de Ligação/genética , Sítios de Ligação/imunologia , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Linhagem Celular , Células Cultivadas , Citocinas/genética , Citocinas/metabolismo , Doenças dos Peixes/imunologia , Doenças dos Peixes/metabolismo , Doenças dos Peixes/microbiologia , Flagelina/genética , Flagelina/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/imunologia , Interações Hospedeiro-Patógeno/imunologia , Mediadores da Inflamação/imunologia , Mediadores da Inflamação/metabolismo , Leucócitos/efeitos dos fármacos , Leucócitos/imunologia , Leucócitos/metabolismo , Tecido Linfoide/efeitos dos fármacos , Tecido Linfoide/imunologia , Tecido Linfoide/metabolismo , Piscirickettsia/fisiologia , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia , Salmo salar/metabolismo , Salmo salar/microbiologia , Vacinação/métodos , Vibrio/genética , Vibrio/metabolismo
14.
Vet Res ; 51(1): 134, 2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-33115510

RESUMO

Salmonid Rickettsial Septicaemia (SRS), caused by Piscirickettsia salmonis, is a severe bacterial disease in the Chilean salmon farming industry. Vaccines and antibiotics are the current strategies to fight SRS; however, the high frequency of new epizootic events confirms the need to develop new strategies to combat this disease. An innovative opportunity is perturbing the host pathways used by the microorganisms to replicate inside host cells through host-directed antimicrobial drugs (HDAD). Iron is a critical nutrient for P. salmonis infection; hence, the use of iron-chelators becomes an excellent alternative to be used as HDAD. The aim of this work was to use the iron chelator Deferiprone (DFP) as HDAD to treat SRS. Here, we describe the protective effect of the iron chelator DFP over P. salmonis infections at non-antibiotic concentrations, in bacterial challenges both in vitro and in vivo. At the cellular level, our results indicate that DFP reduced the intracellular iron content by 33.1% and P. salmonis relative load during bacterial infections by 78%. These findings were recapitulated in fish, where DFP reduced the mortality of rainbow trout challenged with P. salmonis in 34.9% compared to the non-treated group. This is the first report of the protective capacity of an iron chelator against infection in fish, becoming a potential effective host-directed therapy for SRS and other animals against ferrophilic pathogens.


Assuntos
Doenças dos Peixes/prevenção & controle , Ferro/farmacologia , Oncorhynchus mykiss , Piscirickettsia/fisiologia , Infecções por Piscirickettsiaceae/veterinária , Salmo salar , Sepse/veterinária , Fenômenos Fisiológicos da Nutrição Animal , Animais , Linhagem Celular , Doenças dos Peixes/imunologia , Doenças dos Peixes/microbiologia , Ferro/química , Infecções por Piscirickettsiaceae/imunologia , Infecções por Piscirickettsiaceae/microbiologia , Infecções por Piscirickettsiaceae/prevenção & controle , Sepse/imunologia , Sepse/microbiologia , Sepse/prevenção & controle
15.
Dev Comp Immunol ; 113: 103806, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32739503

RESUMO

C-Type Lectin Receptors (CTLR) are involved in the activation of innate and adaptative immune responses. Among these receptors, the Dendritic Cell-Specific ICAM-3-Grabbing nonintegrin (DC-SIGN/CD209) has become a hot topic due to its ability to bind and facilitate the infections processes of several pathogens. Although well characterized in mammals, little documentation exists about the receptor in salmonid fishes. Here, we report the sequence and expression analysis of eight DC-SIGN-like genes in Salmo salar. Each receptor displays structural similarities to DC-SIGN molecules described in mammals, including internalization motifs, a neck region with heptad repeats, and a Ca+2-dependent carbohydrate recognition domain. The receptors are expressed in multiple tissues of fish, and fish cell lines, with differential expression upon infection with viral and bacterial pathogens. The identification of DC-SIGN-like receptors in Salmo salar provides new information regarding the structure of the immune system of salmon, potential markers for cell subsets, as well as insights into DC-SIGN conservation across species.


Assuntos
Moléculas de Adesão Celular/genética , Proteínas de Peixes/genética , Isavirus/fisiologia , Lectinas Tipo C/genética , Infecções por Orthomyxoviridae/imunologia , Piscirickettsia/fisiologia , Infecções por Piscirickettsiaceae/imunologia , Receptores de Superfície Celular/genética , Salmo salar/imunologia , Animais , Biomarcadores/metabolismo , Moléculas de Adesão Celular/metabolismo , Linhagem Celular , Clonagem Molecular , Proteínas de Peixes/metabolismo , Regulação da Expressão Gênica , Imunidade , Lectinas Tipo C/metabolismo , Receptores de Superfície Celular/metabolismo , Transcriptoma
16.
Dev Comp Immunol ; 111: 103746, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32445651

RESUMO

Interferon-induced proteins with tetratricopeptide repeats (IFITs) are involved in antiviral defense. Members of this protein family contain distinctive multiple structural motifs comprising tetratricopeptides that are tandemly arrayed or dispersed along the polypeptide. IFIT-encoding genes are upregulated by type I interferons (IFNs) and other stimuli. IFIT proteins inhibit virus replication by binding to and regulating the functions of cellular and viral RNA and proteins. In teleost fish, knowledge about genes and functions of IFITs is currently limited. In the present work, we describe an IFIT5 orthologue in Atlantic salmon (SsaIFIT5) with characteristic tetratricopeptide repeat motifs. We show here that the gene encoding SsaIFIT5 (SsaIfit5) was ubiquitously expressed in various salmon tissues, while bacterial and viral challenge of live fish and in vitro stimulation of cells with recombinant IFNs and pathogen mimics triggered its transcription. The profound expression in response to various immune stimulation could be ascribed to the identified IFN response elements and binding sites for various immune-relevant transcription factors in the putative promoter of the SsaIfit5 gene. Our results establish SsaIfit5 as an IFN-stimulated gene in A. salmon and strongly suggest a phylogenetically conserved role of the IFIT5 protein in antimicrobial responses in vertebrates.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Infecções por Alphavirus/imunologia , Alphavirus/fisiologia , Proteínas de Peixes/genética , Piscirickettsia/fisiologia , Infecções por Piscirickettsiaceae/imunologia , Salmo salar/imunologia , Animais , Células Cultivadas , Clonagem Molecular , Regulação da Expressão Gênica , Imunidade Inata , Interferons , Proteínas de Neoplasias/genética , Moléculas com Motivos Associados a Patógenos/imunologia , Filogenia , RNA Viral/imunologia , Transcriptoma
17.
J Fish Dis ; 43(1): 111-127, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31709576

RESUMO

Pathogen interactions with cultured fish populations are well studied, but their effects on native fishes have not been characterized. In Chile, the disease caused by bacterial species Piscirickettsia salmonis represents one of the main issues and is considered to be one of the important pathogens in the field of aquaculture. They have been found to infect native fish. Therefore, it is necessary to understand the impact of P. salmonis on native species of local commercial value, as well as the potential impact associated with the emergence of antibiotic-resistant strains of P. salmonis. Due to this purpose, the native fish Eleginops maclovinus was used in our study. Fish were randomly distributed in tanks and intraperitoneally inoculated with two strains of P. salmonis. No mortality was recorded during the experiment. Cortisol, glucose and total α-amino acid levels increased in fish injected with AUSTRAL-005 strain compared to sham-injected and LF-89-inoculated fish. Moreover, results showed an increase in the activity of carbohydrates and lipids metabolism in liver; and an increase in the carbohydrates, lipids and total α-amino acid metabolism in muscle after injection with AUSTRAL-005. Our results suggest that P. salmonis modulates the physiology of E. maclovinus and the physiological impact increase in the presence of the antibiotic-resistant strain AUSTRAL-005.


Assuntos
Doenças dos Peixes/microbiologia , Perciformes , Piscirickettsia/fisiologia , Infecções por Piscirickettsiaceae/veterinária , Transcrição Gênica , Animais , Regiões Antárticas , Chile , Infecções por Piscirickettsiaceae/microbiologia
18.
Fish Shellfish Immunol ; 82: 492-503, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30165153

RESUMO

Eleginops maclovinus is a eurythermic fish that under natural conditions lives in environments with temperatures ranging from 4 to 18 °C and can be usually captured near salmon farming areas. The aim of this study was to evaluate the effect of temperature over the innate and adaptive immune response of E. maclovinus challenged with Piscirickettsia salmonis following different treatments: C (control injection with culture medium at 12 °C), C+ (bacterial injection at 12 °C), 18 °C c/A + B (injection with culture medium in acclimation at 18 °C), 18 °C c/A + B (bacterial injection in acclimation at 18 °C), 18 °C s/A + M (injection with culture medium without acclimation at 18 °C) and 18 °C s/A + B (bacterial injection without acclimation at 18 °C). Each injection had 100 µL of culture medium or with 100 µL at a concentration 1 × 108 of live bacteria, sampling six fish per group at 4, 8, 12, 16 and 20 days post-injection (dpi). Expression of the mRNA related with the innate immune response gene (TLR1, TLR5, TLR8, NLRC3, NLRC5, MyD88 and IL-1ß) as well as the adaptive immune response gene (MHCI, MHCII, IgMs and IgD) were measured in spleen and head kidney. Gene expression profiles were treatment-type and time dependent. Levels of Immunoglobulin M (IgM) increased in challenged groups with P. salmonis from day 8-20 post challenge, which suggest activation of B cells IgM + through P. salmonis epitope detection. Additionally, a rise in temperature from 12 °C (C+) to 18 °C (with/without acclimation) also resulted in antibody increment detected in serum with significant differences between "18 °C c/A + B" and "18 °C s/A + B" groups. This is the first study that evaluates the effect of temperature changes and mRNA expression related with immune system gene over time on E. maclovinus, a native wild life fish that cohabits in the salmon farming environment.


Assuntos
Imunidade Adaptativa/genética , Doenças dos Peixes/imunologia , Imunidade Inata/genética , Perciformes/genética , Perciformes/imunologia , Infecções por Piscirickettsiaceae/veterinária , Transcriptoma/imunologia , Animais , Regiões Antárticas , Doenças dos Peixes/microbiologia , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Piscirickettsia/fisiologia , Infecções por Piscirickettsiaceae/imunologia , Infecções por Piscirickettsiaceae/microbiologia , Temperatura
19.
Fish Shellfish Immunol ; 75: 139-148, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29421586

RESUMO

Eleginops maclovinus is an endemic fish to Chile that lives in proximity to salmonid culture centers, feeding off of uneaten pellet and salmonid feces. Occurring in the natural environment, this interaction between native and farmed fish could result in the horizontal transmission of pathogens affecting the aquaculture industry. The aim of this study was to evaluate the innate and adaptive immune responses of E. maclovinus challenged with P. salmonis. Treatment injections (in duplicate) were as follows: control (100 µL of culture medium), wild type LF-89 strain (100 µL, 1 × 108 live bacteria), and antibiotic resistant strain Austral-005 (100 µL, 1 × 108 live bacteria). The fish were sampled at various time-points during the 35-day experimental period. The gene expression of TLRs (1, 5, and 8), NLRCs (3 and 5), C3, IL-1ß, MHCII, and IgMs were significantly modulated during the experimental period in both the spleen and gut (excepting TLR1 and TLR8 spleen expressions), with tissue-specific expression profiles and punctual differences between the injected strains. Anti-P. salmonis antibodies increased in E. maclovinus serum from day 14-28 for the LF-89 strain and from day 14-35 for the Austral-005 strain. These results suggest temporal activation of the innate and adaptive immune responses in E. maclovinus tissues when injected by distinct P. salmonis strains. The Austral-005 strain did not always cause the greatest increases/decreases in the number of transcripts, so the magnitude of the observed immune response (mRNA) may not be related to antibiotic resistance. This is the first immunological study to relate a pathogen widely studied in salmonids with a native fish.


Assuntos
Imunidade Adaptativa , Doenças dos Peixes/imunologia , Imunidade Inata , Perciformes/imunologia , Piscirickettsia/fisiologia , Infecções por Piscirickettsiaceae/veterinária , Animais , Regiões Antárticas , Chile , Trato Gastrointestinal/imunologia , Trato Gastrointestinal/microbiologia , Piscirickettsia/genética , Infecções por Piscirickettsiaceae/imunologia , Distribuição Aleatória , Baço/imunologia , Baço/microbiologia , Fatores de Tempo
20.
G3 (Bethesda) ; 8(4): 1183-1194, 2018 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-29440129

RESUMO

Piscirickettsia salmonis is one of the main infectious diseases affecting coho salmon (Oncorhynchus kisutch) farming, and current treatments have been ineffective for the control of this disease. Genetic improvement for P. salmonis resistance has been proposed as a feasible alternative for the control of this infectious disease in farmed fish. Genotyping by sequencing (GBS) strategies allow genotyping of hundreds of individuals with thousands of single nucleotide polymorphisms (SNPs), which can be used to perform genome wide association studies (GWAS) and predict genetic values using genome-wide information. We used double-digest restriction-site associated DNA (ddRAD) sequencing to dissect the genetic architecture of resistance against P. salmonis in a farmed coho salmon population and to identify molecular markers associated with the trait. We also evaluated genomic selection (GS) models in order to determine the potential to accelerate the genetic improvement of this trait by means of using genome-wide molecular information. A total of 764 individuals from 33 full-sib families (17 highly resistant and 16 highly susceptible) were experimentally challenged against P. salmonis and their genotypes were assayed using ddRAD sequencing. A total of 9,389 SNPs markers were identified in the population. These markers were used to test genomic selection models and compare different GWAS methodologies for resistance measured as day of death (DD) and binary survival (BIN). Genomic selection models showed higher accuracies than the traditional pedigree-based best linear unbiased prediction (PBLUP) method, for both DD and BIN. The models showed an improvement of up to 95% and 155% respectively over PBLUP. One SNP related with B-cell development was identified as a potential functional candidate associated with resistance to P. salmonis defined as DD.


Assuntos
DNA/genética , Resistência à Doença/genética , Estudo de Associação Genômica Ampla , Genômica , Oncorhynchus kisutch/genética , Oncorhynchus kisutch/microbiologia , Piscirickettsia/fisiologia , Mapeamento por Restrição/métodos , Animais , Cruzamento , Feminino , Doenças dos Peixes/genética , Doenças dos Peixes/microbiologia , Marcadores Genéticos , Estimativa de Kaplan-Meier , Masculino , Linhagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...