Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 176
Filtrar
1.
Stem Cell Res ; 76: 103341, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38382214

RESUMO

Loss-of-function mutations in the PKP2 gene are associated with arrhythmogenic right ventricular cardiomyopathy (ARVC), a rare cardiac disease associated with a poor prognosis. The search for therapeutics and a better understanding of the molecular mechanisms of the disease require the development of cellular modelling. Using CRISPR/Cas9, we generated a hiPSC line with heterozygous 7-bp deletion in exon 10 of PKP2 (p.H695VfsX5). We demonstrated that hiPSCs were fully pluripotent and showed a high rate of differentiation into cardiomyocytes (iPS-CM). We also showed that PKP2 protein was expressed at the plasma membrane, with an overall decreased expression in iPS-CM indicating haploinsufficiency.


Assuntos
Mutação da Fase de Leitura , Células-Tronco Pluripotentes Induzidas , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Sistemas CRISPR-Cas/genética , Mutação , Éxons/genética , Placofilinas/genética , Placofilinas/metabolismo
2.
Mol Cell Proteomics ; 23(3): 100735, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38342409

RESUMO

Desmosomes are multiprotein adhesion complexes that link intermediate filaments to the plasma membrane, ensuring the mechanical integrity of cells across tissues, but how they participate in the wider signaling network to exert their full function is unclear. To investigate this, we carried out protein proximity mapping using biotinylation (BioID). The combined interactomes of the essential desmosomal proteins desmocollin 2a, plakoglobin, and plakophilin 2a (Pkp2a) in Madin-Darby canine kidney epithelial cells were mapped and their differences and commonalities characterized as desmosome matured from Ca2+ dependence to the mature, Ca2+-independent, hyper-adhesive state, which predominates in tissues. Results suggest that individual desmosomal proteins have distinct roles in connecting to cellular signaling pathways and that these roles alter substantially when cells change their adhesion state. The data provide further support for a dualistic concept of desmosomes in which the properties of Pkp2a differ from those of the other, more stable proteins. This body of data provides an invaluable resource for the analysis of desmosome function.


Assuntos
Desmossomos , Placofilinas , Animais , Cães , Desmossomos/metabolismo , Membrana Celular/metabolismo , Placofilinas/metabolismo , Células Madin Darby de Rim Canino , Transdução de Sinais , Adesão Celular , Desmoplaquinas/metabolismo
3.
Environ Toxicol ; 39(2): 915-926, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37966033

RESUMO

The incidence rate of melanoma varies across regions, with Europe, the United States, and Australia having 10-25, 20-30, and 50-60 cases per 1 00 000 people. In China, patients with melanoma exhibit different clinical manifestations, pathogenesis, and outcomes. Current treatments include surgery, adjuvant therapy, and immune checkpoint inhibitors. Nonetheless, complications may arise during treatment. Melanoma development is heavily reliant on cell adhesion molecules (CAMs), and studying these molecules could provide new research directions for metastasis and progression. CAMs include the integrin, immunoglobulin, selectin, and cadherin families, and they affect multiple processes, such as maintenance, morphogenesis, and migration of adherens junction. In this study, a cell adhesion-related risk prognostic signature was constructed using bioinformatics methods, and survival analysis was performed. Plakophilin 1 (PKP1) was observed to be crucial to the immune microenvironment and has significant effects on melanoma cell proliferation, migration, invasion, and the cell cycle. This signature demonstrates high reliability and has potential for clinical applications.


Assuntos
Melanoma , Humanos , Melanoma/patologia , Adesão Celular , Placofilinas/metabolismo , Reprodutibilidade dos Testes , Caderinas/metabolismo , Moléculas de Adesão Celular , Microambiente Tumoral
4.
Cancer Sci ; 115(1): 17-23, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38048779

RESUMO

Plakophilin 3 (PKP3), a component of desmosome, is aberrantly expressed in many kinds of human diseases, especially in cancers. Through direct interaction, PKP3 binds with a series of desmosomal proteins, such as desmoglein, desmocollin, plakoglobin, and desmoplakin, to initiate desmosome aggregation, then promotes its stability. As PKP3 is mostly expressed in the skin, loss of PKP3 promotes the development of several skin diseases, such as paraneoplastic pemphigus, pemphigus vulgaris, and hypertrophic scar. Moreover, accumulated clinical data indicate that PKP3 dysregulates in diverse cancers, including breast, ovarian, colon, and lung cancers. Numerous lines of evidence have shown that PKP3 plays important roles in multiple cellular processes during cancer progression, including metastasis, invasion, tumor formation, autophagy, and proliferation. This review examines the diverse functions of PKP3 in regulating tumor formation and development in various types of cancers and summarizes its detailed mechanisms in the occurrence of skin diseases.


Assuntos
Neoplasias , Placofilinas , Dermatopatias , Humanos , Desmossomos/metabolismo , Neoplasias/metabolismo , Placofilinas/genética , Placofilinas/metabolismo
5.
Nat Commun ; 14(1): 6461, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37833253

RESUMO

The most prevalent genetic form of inherited arrhythmogenic cardiomyopathy (ACM) is caused by mutations in desmosomal plakophilin-2 (PKP2). By studying pathogenic deletion mutations in the desmosomal protein PKP2, here we identify a general mechanism by which PKP2 delocalization restricts actomyosin network organization and cardiac sarcomeric contraction in this untreatable disease. Computational modeling of PKP2 variants reveals that the carboxy-terminal (CT) domain is required for N-terminal domain stabilization, which determines PKP2 cortical localization and function. In mutant PKP2 cells the expression of the interacting protein MYH10 rescues actomyosin disorganization. Conversely, dominant-negative MYH10 mutant expression mimics the pathogenic CT-deletion PKP2 mutant causing actin network abnormalities and right ventricle systolic dysfunction. A chemical activator of non-muscle myosins, 4-hydroxyacetophenone (4-HAP), also restores normal contractility. Our findings demonstrate that activation of MYH10 corrects the deleterious effect of PKP2 mutant over systolic cardiac contraction, with potential implications for ACM therapy.


Assuntos
Displasia Arritmogênica Ventricular Direita , Cardiomiopatias , Humanos , Displasia Arritmogênica Ventricular Direita/genética , Displasia Arritmogênica Ventricular Direita/metabolismo , Actomiosina/genética , Mutação , Cardiomiopatias/genética , Placofilinas/genética , Placofilinas/metabolismo
6.
Stem Cell Res ; 71: 103157, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37393721

RESUMO

The arrhythmogenic cardiomyopathy (ACM) is an inherited heart muscle disease characterized by the progressive replacement of contractile myocardium by fibro-fatty adipose tissue, that generates ventricular arrhythmias and sudden death in patients. The ACM has a genetic origin with alterations in desmosomal genes with the most commonly mutated being the PKP2 gene. We generated two CRISPR/Cas9 edited iPSCs lines, one iPSC line with a point mutation in PKP2 reported in patients with ACM and another iPSC line with a premature stop codon to knock-out the same gene.


Assuntos
Displasia Arritmogênica Ventricular Direita , Cardiomiopatias , Células-Tronco Pluripotentes Induzidas , Humanos , Mutação Puntual , Células-Tronco Pluripotentes Induzidas/metabolismo , Displasia Arritmogênica Ventricular Direita/genética , Sistemas CRISPR-Cas/genética , Cardiomiopatias/genética , Mutação/genética , Placofilinas/genética , Placofilinas/metabolismo
7.
J Ovarian Res ; 16(1): 134, 2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37420272

RESUMO

BACKGROUND/AIM: Cangfu Daotan Wan (CFDTW) has been widely used for polycystic ovary syndrome (PCOS) patients in the type of stagnation of phlegm and dampness. In this study, we aimed to evaluate the mechanism underlying the therapeutic effect of CFDTW on PCOS with phlegm-dampness syndrome (PDS). METHODS: In silico analysis was adopted to identify CFDTW potential targets and the downstream pathways in the treatment of PCOS. Expression of PKP3 was examined in the ovarian granulosa cells from PCOS patients with PDS and rat PCOS models induced by dehydroepiandrosterone (DHEA). PKP3/ERCC1 was overexpressed or underexpressed or combined with CFDTW treatment in ovarian granulosa cells to assay the effect of CFDTW on ovarian granulosa cell functions via the PKP3/MAPK/ERCC1 axis. RESULTS: Clinical samples and ovarian granulosa cells of rat models were characterized by hypomethylated PKP3 promoter and upregulated PKP3 expression. CFDTW reduced PKP3 expression by enhancing the methylation of PKP3 promoter, leading to proliferation of ovarian granulosa cells, increasing S and G2/M phase-arrested cells, and arresting their apoptosis. PKP3 augmented ERCC1 expression by activating the MAPK pathway. In addition, CFDTW facilitated the proliferation of ovarian granulosa cells and repressed their apoptosis by regulating PKP3/MAPK/ERCC1 axis. CONCLUSION: Taken together, this study illuminates how CFDTW confers therapeutic effects on PCOS patients with PDS, which may offer a novel theranostic marker in PCOS.


Assuntos
Medicamentos de Ervas Chinesas , Síndrome do Ovário Policístico , Animais , Feminino , Humanos , Ratos , Apoptose , Proteínas de Ligação a DNA/metabolismo , Medicamentos de Ervas Chinesas/uso terapêutico , Endonucleases/metabolismo , Células da Granulosa/metabolismo , Placofilinas/metabolismo , Síndrome do Ovário Policístico/tratamento farmacológico
8.
Int J Mol Sci ; 24(11)2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37298410

RESUMO

Plakophilin-3 is a ubiquitously expressed protein found widely in epithelial cells and is a critical component of desmosomes. The plakophilin-3 carboxy-terminal domain harbors nine armadillo repeat motifs with largely unknown functions. Here, we report the 5 Å cryogenic electron microscopy (cryoEM) structure of the armadillo repeat motif domain of plakophilin-3, one of the smaller cryoEM structures reported to date. We find that this domain is a monomer or homodimer in solution. In addition, using an in vitro actin co-sedimentation assay, we show that the armadillo repeat domain of plakophilin-3 directly interacts with F-actin. This feature, through direct interactions with actin filaments, could be responsible for the observed association of extra-desmosomal plakophilin-3 with the actin cytoskeleton directly attached to the adherens junctions in A431 epithelial cells. Further, we demonstrate, through lipid binding analyses, that plakophilin-3 can effectively be recruited to the plasma membrane through phosphatidylinositol-4,5-bisphosphate-mediated interactions. Collectively, we report on novel properties of plakophilin-3, which may be conserved throughout the plakophilin protein family and may be behind the roles of these proteins in cell-cell adhesion.


Assuntos
Actinas , Placofilinas , Citoesqueleto de Actina , Actinas/metabolismo , Desmossomos/metabolismo , Placofilinas/metabolismo
9.
Sci Transl Med ; 15(688): eadd4248, 2023 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-36947592

RESUMO

Arrhythmogenic cardiomyopathy (ACM) is an inherited progressive cardiac disease. Many patients with ACM harbor mutations in desmosomal genes, predominantly in plakophilin-2 (PKP2). Although the genetic basis of ACM is well characterized, the underlying disease-driving mechanisms remain unresolved. Explanted hearts from patients with ACM had less PKP2 compared with healthy hearts, which correlated with reduced expression of desmosomal and adherens junction (AJ) proteins. These proteins were also disorganized in areas of fibrotic remodeling. In vitro data from human-induced pluripotent stem cell-derived cardiomyocytes and microtissues carrying the heterozygous PKP2 c.2013delC pathogenic mutation also displayed impaired contractility. Knockin mice carrying the equivalent heterozygous Pkp2 c.1755delA mutation recapitulated changes in desmosomal and AJ proteins and displayed cardiac dysfunction and fibrosis with age. Global proteomics analysis of 4-month-old heterozygous Pkp2 c.1755delA hearts indicated involvement of the ubiquitin-proteasome system (UPS) in ACM pathogenesis. Inhibition of the UPS in mutant mice increased area composita proteins and improved calcium dynamics in isolated cardiomyocytes. Additional proteomics analyses identified lysine ubiquitination sites on the desmosomal proteins, which were more ubiquitinated in mutant mice. In summary, we show that a plakophilin-2 mutation can lead to decreased desmosomal and AJ protein expression through a UPS-dependent mechanism, which preceded cardiac remodeling. These findings suggest that targeting protein degradation and improving desmosomal protein stability may be a potential therapeutic strategy for the treatment of ACM.


Assuntos
Cardiomiopatias , Placofilinas , Humanos , Camundongos , Animais , Lactente , Proteólise , Placofilinas/genética , Placofilinas/metabolismo , Miócitos Cardíacos/metabolismo , Mutação/genética , Cardiomiopatias/genética
10.
Cell Rep ; 42(1): 112031, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36689330

RESUMO

Plakophilin 3 (PKP3) is a component of desmosomes and is frequently overexpressed in cancer. Using keratinocytes either lacking or overexpressing PKP3, we identify a signaling axis from ERK to the retinoblastoma (RB) protein and the E2F1 transcription factor that is controlled by PKP3. RB and E2F1 are key components controlling G1/S transition in the cell cycle. We show that PKP3 stimulates the activity of ERK and its target RSK1. This inhibits expression of the transcription factor RUNX3, a positive regulator of the CDK inhibitor CDKN1A/p21, which is also downregulated by PKP3. Elevated CDKN1A prevents RB phosphorylation and E2F1 target gene expression, leading to delayed S phase entry and reduced proliferation in PKP3-depleted cells. Elevated PKP3 expression not only increases ERK activity but also captures phosphorylated RB (phospho-RB) in the cytoplasm to promote E2F1 activity and cell-cycle progression. These data identify a mechanism by which PKP3 promotes proliferation and acts as an oncogene.


Assuntos
Placofilinas , Proteína do Retinoblastoma , Animais , Camundongos , Divisão Celular , Citoplasma/metabolismo , Fator de Transcrição E2F1/metabolismo , Receptores ErbB/metabolismo , Fosforilação , Placofilinas/genética , Placofilinas/metabolismo , Proteína do Retinoblastoma/metabolismo , Fase S , Transdução de Sinais
11.
Tissue Barriers ; 11(4): 2138061, 2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-36280901

RESUMO

Previous data provided evidence for a critical role of desmosomes to stabilize intestinal epithelial barrier (IEB) function. These studies suggest that desmosomes not only contribute to intercellular adhesion but also play a role as signaling hubs. The contribution of desmosomal plaque proteins plakophilins (PKP) in the intestinal epithelium remains unexplored. The intestinal expression of PKP2 and PKP3 was verified in human gut specimens, human intestinal organoids as well as in Caco2 cells whereas PKP1 was not detected. Knock-down of PKP2 using siRNA in Caco2 cells resulted in loss of intercellular adhesion and attenuated epithelial barrier. This was paralleled by changes of the whole desmosomal complex, including loss of desmoglein2, desmocollin2, plakoglobin and desmoplakin. In addition, tight junction proteins claudin1 and claudin4 were reduced following the loss of PKP2. Interestingly, siRNA-induced loss of PKP3 did not change intercellular adhesion and barrier function in Caco2 cells, while siRNA-induced loss of both PKP2 and PKP3 augmented the changes observed for reduced PKP2 alone. Moreover, loss of PKP2 and PKP2/3, but not PKP3, resulted in reduced activity levels of protein kinase C (PKC). Restoration of PKC activity using Phorbol 12-myristate 13-acetate (PMA) rescued loss of intestinal barrier function and attenuated the reduced expression patterns of claudin1 and claudin4. Immunostaining, proximity ligation assays and co-immunoprecipitation revealed a direct interaction between PKP2 and PKC. In summary, our in vitro data suggest that PKP2 plays a critical role for intestinal barrier function by providing a signaling hub for PKC-mediated expression of tight junction proteins claudin1 and claudin4.


Assuntos
Desmossomos , Placofilinas , Humanos , Células CACO-2 , Moléculas de Adesão Celular/metabolismo , Claudina-4/metabolismo , Desmossomos/metabolismo , Placofilinas/genética , Placofilinas/metabolismo , Proteína Quinase C/metabolismo , RNA Interferente Pequeno/metabolismo
12.
FEBS J ; 290(7): 1907-1919, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36380691

RESUMO

Plakophilin (PKP1) 1 is a member of the arm-repeat family of catenins and acts as a structural component of desmosomes, which are important stabilizers of cell-cell adhesion. Besides this, PKP1 also occurs in a non-junctional, cytoplasmic form contributing to post-transcriptional regulation of gene expression. Moreover, PKP1 is expressed in the prostate epithelium but its expression is frequently downregulated in prostate cancers with a more aggressive phenotype. This observation may imply a tumour-suppressive role of PKP1. We found that, in prostatic adenocarcinomas with PKP1 deficiency, the occurrence of T-cells, B-cells, macrophages and neutrophils were significantly increased. In a PKP1-deficient prostatic cancer cell line expressing IL8, these levels were statistically meaningfully reduced upon PKP1 re-expression. When analysing prostatic PKP1 knockdown cell lines, the mRNA and protein levels of additional cytokines, namely CXCL1 and IL6, were upregulated. The effect was rescued upon re-expression of a PKP1 RNAi-resistant form. The corresponding mRNAs were co-precipitated with cytoplasmic PKP1, indicating that they are components of PKP1-containing mRNA ribonucleoprotein particles. Moreover, the mRNA half-lives of CXCL1, IL8 and IL6 were significantly increased in PKP1-deficient cells, showing that these mRNAs were stabilized by PKP1. In an in vitro migration assay, the higher cytokine concentrations led to higher migration rates of THP1 and PBMC cells. This finding implies that PKP1 loss of expression in vivo correlates with the recruitment of immune cells into the tumour area to set up a tumour-specific environment. One may speculate that this newly established tumour environment has tumour-suppressive characteristics and thereby accelerates tumour progression and metastasis.


Assuntos
Placofilinas , Neoplasias da Próstata , Humanos , Masculino , Citocinas/genética , Citocinas/metabolismo , Interleucina-6/genética , Interleucina-8/genética , Interleucina-8/metabolismo , Leucócitos Mononucleares/metabolismo , Placofilinas/genética , Placofilinas/metabolismo , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , RNA Mensageiro/genética , Regulação para Cima
13.
Acta Physiol (Oxf) ; 236(3): e13881, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36039679

RESUMO

AIM: Cardiac autonomic nervous system (ANS) dysregulation is a hallmark of several cardiovascular diseases. Adrenergic signaling enhanced cardiomyocyte cohesion via PKA-mediated plakoglobin phosphorylation at serine 665, referred to as positive adhesiotropy. This study investigated cholinergic regulation of cardiomyocyte cohesion using muscarinic receptor agonist carbachol (CCH). METHODS: Dissociation assays, Western blot analysis, immunostaining, atomic force microscopy (AFM), immunoprecipitation, transmission electron microscopy (TEM), triton assays, and siRNA knockdown of genes were performed in either HL-1 cells or plakoglobin (PG) wild type (Jup+/+ ) and knockout (Jup-/- ) mice, which served as a model for arrhythmogenic cardiomyopathy. RESULTS: In HL-1 cells grown in norepinephrine (NE)-containing medium for baseline adrenergic stimulation, and murine cardiac slice cultures from Jup+/+ and Jup-/- mice CCH treatment impaired cardiomyocyte cohesion. Immunostainings and AFM experiments revealed that CCH reduced desmoglein 2 (DSG2) localization and binding at cell borders. Furthermore, CCH reduced intercalated disc plaque thickness in both Jup+/+ and Jup-/- mice, evidenced by TEM analysis. Immunoprecipitation experiments in HL-1 cells revealed no changes in DSG2 interaction with desmoplakin (DP), plakophilin 2 (PKP2), PG, and desmin (DES) after CCH treatment. However, knockdown of any of the above proteins abolished CCH-mediated loss of cardiomyocyte cohesion. Furthermore, in HL-1 cells, CCH inhibited adrenergic-stimulated ERK phosphorylation but not PG phosphorylation at serine 665. In addition, CCH activated the AKT/GSK-3ß axis in the presence of NE. CONCLUSION: Our results demonstrate that cholinergic signaling antagonizes the positive effect of adrenergic signaling on cardiomyocyte cohesion and thus causes negative adhesiotropy independent of PG phosphorylation.


Assuntos
Desmogleína 2 , Miócitos Cardíacos , Camundongos , Animais , Miócitos Cardíacos/metabolismo , Desmogleína 2/genética , Desmogleína 2/metabolismo , gama Catenina/metabolismo , gama Catenina/farmacologia , Glicogênio Sintase Quinase 3 beta/metabolismo , Desmoplaquinas/metabolismo , Carbacol/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Placofilinas/metabolismo , RNA Interferente Pequeno/metabolismo , Desmina/metabolismo , Desmina/farmacologia , Colinérgicos/metabolismo , Colinérgicos/farmacologia , Receptores Muscarínicos/metabolismo , Adrenérgicos/farmacologia , Norepinefrina/metabolismo , Serina/metabolismo
14.
Circulation ; 146(11): 851-867, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-35959657

RESUMO

BACKGROUND: Arrhythmogenic right ventricular cardiomyopathy (ARVC) is characterized by high propensity to life-threatening arrhythmias and progressive loss of heart muscle. More than 40% of reported genetic variants linked to ARVC reside in the PKP2 gene, which encodes the PKP2 protein (plakophilin-2). METHODS: We describe a comprehensive characterization of the ARVC molecular landscape as determined by high-resolution mass spectrometry, RNA sequencing, and transmission electron microscopy of right ventricular biopsy samples obtained from patients with ARVC with PKP2 mutations and left ventricular ejection fraction >45%. Samples from healthy relatives served as controls. The observations led to experimental work using multiple imaging and biochemical techniques in mice with a cardiac-specific deletion of Pkp2 studied at a time of preserved left ventricular ejection fraction and in human induced pluripotent stem cell-derived PKP2-deficient myocytes. RESULTS: Samples from patients with ARVC present a loss of nuclear envelope integrity, molecular signatures indicative of increased DNA damage, and a deficit in transcripts coding for proteins in the electron transport chain. Mice with a cardiac-specific deletion of Pkp2 also present a loss of nuclear envelope integrity, which leads to DNA damage and subsequent excess oxidant production (O2.- and H2O2), the latter increased further under mechanical stress (isoproterenol or exercise). Increased oxidant production and DNA damage is recapitulated in human induced pluripotent stem cell-derived PKP2-deficient myocytes. Furthermore, PKP2-deficient cells release H2O2 into the extracellular environment, causing DNA damage and increased oxidant production in neighboring myocytes in a paracrine manner. Treatment with honokiol increases SIRT3 (mitochondrial nicotinamide adenine dinucleotide-dependent protein deacetylase sirtuin-3) activity, reduces oxidant levels and DNA damage in vitro and in vivo, reduces collagen abundance in the right ventricular free wall, and has a protective effect on right ventricular function. CONCLUSIONS: Loss of nuclear envelope integrity and subsequent DNA damage is a key substrate in the molecular pathology of ARVC. We show transcriptional downregulation of proteins of the electron transcript chain as an early event in the molecular pathophysiology of the disease (before loss of left ventricular ejection fraction <45%), which associates with increased oxidant production (O2.- and H2O2). We propose therapies that limit oxidant formation as a possible intervention to restrict DNA damage in ARVC.


Assuntos
Displasia Arritmogênica Ventricular Direita , Células-Tronco Pluripotentes Induzidas , Placofilinas , Adulto , Animais , Displasia Arritmogênica Ventricular Direita/patologia , Dano ao DNA , Humanos , Peróxido de Hidrogênio , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Mutação , Miócitos Cardíacos/metabolismo , Membrana Nuclear/metabolismo , Membrana Nuclear/patologia , Oxidantes/metabolismo , Placofilinas/genética , Placofilinas/metabolismo , Volume Sistólico , Função Ventricular Esquerda
15.
Hum Mutat ; 43(9): 1333-1342, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35819174

RESUMO

Arrhythmogenic cardiomyopathy with right dominant form (ACR) is a rare heritable cardiac cardiomyopathy disorder associated with sudden cardiac death. Pathogenic variants (PVs) in desmosomal genes have been causally related to ACR in 40% of cases. Other genes encoding nondesmosomal proteins have been described in ACR, but their contribution in this pathology is still debated. A panel of 71 genes associated with inherited cardiopathies was screened in an ACR population of 172 probands and 856 individuals from the general population. PVs and uncertain significance variants (VUS) have been identified in 36% and 18.6% of patients, respectively. Among the cardiopathy-associated genes, burden tests show a significant enrichment in PV and VUS only for desmosomal genes PKP2 (plakophilin-2), DSP (desmoplakin), DSC2 (desmocollin-2), and DSG2 (desmoglein-2). Importantly, VUS may account for 15% of ACR cases and should then be considered for molecular diagnosis. Among the other genes, no evidence of enrichment was detected, suggesting an extreme caution in the interpretation of these genetic variations without associated functional or segregation data. Genotype-phenotype correlation points to (1) a more severe and earlier onset of the disease in PV and VUS carriers, underlying the importance to carry out presymptomatic diagnosis in relatives and (2) to a more prevalent left ventricular dysfunction in DSP variant carriers.


Assuntos
Displasia Arritmogênica Ventricular Direita , Displasia Arritmogênica Ventricular Direita/diagnóstico , Displasia Arritmogênica Ventricular Direita/genética , Displasia Arritmogênica Ventricular Direita/metabolismo , Desmossomos/genética , Desmossomos/metabolismo , Estudos de Associação Genética , Heterozigoto , Humanos , Placofilinas/genética , Placofilinas/metabolismo
16.
Biochem Biophys Res Commun ; 620: 1-7, 2022 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-35772211

RESUMO

Loss of the desmosomal plaque protein plakophilin3 (PKP3) leads to increased tumor progression and metastasis. As metastatic tumors are often resistant to therapy, we wished to determine whether PKP3 loss led to increased radioresistance. PKP3 knockdown cells showed increased resistance to radiation in vitro and in vivo. The increase in resistance was accompanied by an increased ability to clear reactive oxygen species (ROS) and increased autophagy. The increase in autophagy was required for radioresistance and ROS clearance as inhibiting autophagy using either chloroquine or knocking down ATG3 re-sensitized the PKP3 knockdown clones to radiotherapy. These experiments suggest that autophagy inhibitors could target therapy-resistant PKP3 deficient tumors.


Assuntos
Neoplasias , Placofilinas , Autofagia/genética , Linhagem Celular Tumoral , Células Clonais/metabolismo , Humanos , Neoplasias/metabolismo , Placofilinas/genética , Placofilinas/metabolismo , Espécies Reativas de Oxigênio
17.
Int J Mol Sci ; 23(10)2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35628349

RESUMO

Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a hereditary disease of the heart muscle. Clinical challenges remain, however, in identifying patients with ARVC in the early or concealed stages with subtle clinical manifestations. Therefore, we wanted to identify potential targets by immunohistochemical (IHC) analysis in comparison with controls. Pathogenic mutations were identified in 11 of 37 autopsied patients with ARVC. As observed from IHC analysis of the RV, expression of αT-catenin and plakophilin-2 is significantly decreased in autopsied patients with ARVC as compared to controls, and the decreased expression is consistent in patients with and without pathogenic mutations. Furthermore, ARVC specimens demonstrated a reduced localization of αT-catenin, desmocollin-2, desmoglein-2, desmoplakin, and plakophilin-2 on intercalated discs. These findings have been validated by comparing RV specimens obtained via endomyocardial biopsy between patients with ARVC and those without. The pathogenic mutation was present in 3 of 5 clinical patients with ARVC. In HL-1 myocytes, siRNA was used to knockdown CTNNA3, and western blotting analysis demonstrated that the decline in αT-catenin expression was accompanied by a significant decline in the expression of plakophilin-2. The aforementioned effect was directed towards protein degradation rather than mRNA stability. Plakophilin-2 expression decreases concurrently with the decline in CTNNA3 expression. Therefore, the expression of αT-catenin and plakophilin-2 could be potential surrogates for the diagnosis of ARVC.


Assuntos
Displasia Arritmogênica Ventricular Direita , Cateninas , Placofilinas , Displasia Arritmogênica Ventricular Direita/diagnóstico , Displasia Arritmogênica Ventricular Direita/genética , Displasia Arritmogênica Ventricular Direita/metabolismo , Displasia Arritmogênica Ventricular Direita/patologia , Cateninas/metabolismo , Moléculas de Adesão Celular/metabolismo , Humanos , Imuno-Histoquímica , Mutação , Miocárdio/metabolismo , Miocárdio/patologia , Placofilinas/biossíntese , Placofilinas/genética , Placofilinas/metabolismo
18.
Cell Oncol (Dordr) ; 45(2): 323-332, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35182388

RESUMO

PURPOSE: Plakophilin 1 (PKP1) is well-known as an important component of the desmosome, a cell structure specialized in spot-like cell-to-cell adhesion. Although desmosomes have generally been associated with tumor suppressor functions, we recently found that PKP1 is recurrently overexpressed in squamous cell lung cancer (SqCLC) to exert an oncogenic role by enhancing the translation of MYC (c-Myc), a major oncogene. In this study, we aim to further characterize the functional relationship between PKP1 and MYC. METHODS: To determine the functional relationship between PKP1 and MYC, we performed correlation analyses between PKP1 and MYC mRNA expression levels, gain/loss of function models, chromatin immunoprecipitation (ChIP) and promoter mutagenesis followed by luciferase assays. RESULTS: We found a significant correlation between the mRNA levels of MYC and PKP1 in SqCLC primary tumor samples. In addition, we found that MYC is a direct transcription factor of PKP1 and binds to specific sequences within its promoter. In agreement with this, we found that MYC knockdown reduced PKP1 protein expression in different SqCLC models, which may explain the PKP1-MYC correlation that we found. Conversely, we found that PKP1 knockdown reduced MYC protein expression, while PKP1 overexpression enhanced MYC expression in these models. CONCLUSIONS: Based on these results, we propose a feedforward functional relationship in which PKP1 enhances MYC translation in conjunction with the translation initiation complex by binding to the 5'-UTR of MYC mRNA, whereas MYC promotes PKP1 transcription by binding to its promoter. These results suggest that PKP1 may serve as a therapeutic target for SqCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Carcinoma de Células Escamosas , Neoplasias Pulmonares , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma de Células Escamosas/genética , Linhagem Celular Tumoral , Células Epiteliais/patologia , Humanos , Neoplasias Pulmonares/patologia , Placofilinas/genética , Placofilinas/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , RNA Mensageiro/genética
19.
Stem Cell Reports ; 17(2): 337-351, 2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35063130

RESUMO

Loss-of-function mutations in PKP2, which encodes plakophilin-2, cause arrhythmogenic cardiomyopathy (AC). Restoration of deficient molecules can serve as upstream therapy, thereby requiring a human model that recapitulates disease pathology and provides distinct readouts in phenotypic analysis for proof of concept for gene replacement therapy. Here, we generated isogenic induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) with precisely adjusted expression of plakophilin-2 from a patient with AC carrying a heterozygous frameshift PKP2 mutation. After monolayer differentiation, plakophilin-2 deficiency led to reduced contractility, disrupted intercalated disc structures, and impaired desmosome assembly in iPSC-CMs. Allele-specific fluorescent labeling of endogenous DSG2 encoding desmoglein-2 in the generated isogenic lines enabled real-time desmosome-imaging under an adjusted dose of plakophilin-2. Adeno-associated virus-mediated gene replacement of PKP2 recovered contractility and restored desmosome assembly, which was sequentially captured by desmosome-imaging in plakophilin-2-deficient iPSC-CMs. Our isogenic set of iPSC-CMs recapitulates AC pathology and provides a rapid and convenient cellular platform for therapeutic development.


Assuntos
Arritmias Cardíacas/patologia , Desmossomos/fisiologia , Contração Miocárdica/fisiologia , Placofilinas/metabolismo , Arritmias Cardíacas/genética , Sistemas CRISPR-Cas/genética , Diferenciação Celular , Feminino , Edição de Genes , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Heterozigoto , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Masculino , Modelos Biológicos , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Linhagem , Placofilinas/genética
20.
Eur Heart J ; 43(12): 1251-1264, 2022 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-34932122

RESUMO

AIMS: Exercise increases arrhythmia risk and cardiomyopathy progression in arrhythmogenic right ventricular cardiomyopathy (ARVC) patients, but the mechanisms remain unknown. We investigated transcriptomic changes caused by endurance training in mice deficient in plakophilin-2 (PKP2cKO), a desmosomal protein important for intercalated disc formation, commonly mutated in ARVC and controls. METHODS AND RESULTS: Exercise alone caused transcriptional downregulation of genes coding intercalated disk proteins. The changes converged with those in sedentary and in exercised PKP2cKO mice. PKP2 loss caused cardiac contractile deficit, decreased muscle mass and increased functional/transcriptomic signatures of apoptosis, despite increased fractional shortening and calcium transient amplitude in single myocytes. Exercise accelerated cardiac dysfunction, an effect dampened by pre-training animals prior to PKP2-KO. Consistent with PKP2-dependent muscle mass deficit, cardiac dimensions in human athletes carrying PKP2 mutations were reduced, compared to matched controls. CONCLUSIONS: We speculate that exercise challenges a cardiomyocyte "desmosomal reserve" which, if impaired genetically (e.g., PKP2 loss), accelerates progression of cardiomyopathy.


Assuntos
Displasia Arritmogênica Ventricular Direita , Condicionamento Físico Animal , Placofilinas , Animais , Displasia Arritmogênica Ventricular Direita/genética , Humanos , Camundongos , Camundongos Knockout , Mutação , Miocárdio/metabolismo , Miócitos Cardíacos/fisiologia , Placofilinas/genética , Placofilinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...