Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 12(4): e0174816, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28419173

RESUMO

The recently described epizoic sponge-sponge symbioses between Xestospongia deweerdtae and two species of Plakortis present an unusual series of sponge interactions. Sponges from the genus Plakortis are fierce allelopathic competitors, rich in cytotoxic secondary metabolites, and yet X. deweerdtae flourishes as an epizoic encrustation on Plakortis deweerdtaephila and Plakortis symbiotica. Our objective in this study was to evaluate the hypothesis that X. deweerdtae grows epizoic to these two species of Plakortis due to a shared chemical defense against predators. We collected free-living individuals of X. deweerdtae and symbiotic pairs from a wide geographical range to generate crude organic extracts and a series of polarity fractions from sponge extract. We tested the deterrency of these extracts against three common coral reef predators: the bluehead wrasse, Thalassoma bifasciatum, the Caribbean sharpnose puffer, Canthigaster rostrata, and the white spotwrist hermit crab, Pagurus criniticornis. While the chemical defenses of P. deweerdtaephila and P. symbiotica are more potent than those of X. deweerdtae, all of the sponge species we tested significantly deterred feeding in all three generalist predators. The free-living form of X. deweerdtae is mostly defended across the region, with a few exceptions. The associated form of X. deweerdtae is always defended, and both species of Plakortis are very strongly defended, with puffers refusing to consume extract-treated pellets until the extract was diluted to 1/256× concentration. Using diode-array high performance liquid chromatography (HPLC) coupled with high-resolution mass spectrometry (LC-MS/IT-TOF), we found two secondary metabolites from P. deweerdtaephila, probably the cyclic endoperoxides plakinic acid I and plakinic acid K, in low concentrations in the associated-but not the free-living-form of X. deweerdtae, suggesting a possible translocation of defensive chemicals from the basibiont to the epibiont. Comparing the immense deterrency of Plakortis spp. extracts to the extracts of X. deweerdtae gives the impression that there may be some sharing of chemical defenses: one partner in the symbiosis is clearly more defended than the other and a small amount of its defensive chemistry may translocate to the partner. However, X. deweerdtae effectively deters predators with its own defensive chemistry. Multiple lines of evidence provide no support for the shared chemical defense hypothesis. Given the diversity of other potential food resources available to predators on coral reefs, it is improbable that the evolution of these specialized sponge-sponge symbioses has been driven by predation pressure.


Assuntos
Peixes/fisiologia , Plakortis/fisiologia , Comportamento Predatório/fisiologia , Simbiose , Xestospongia/fisiologia , Acetatos/administração & dosagem , Acetatos/análise , Acetatos/isolamento & purificação , Animais , Região do Caribe , Cromatografia Líquida de Alta Pressão , Recifes de Corais , Ecossistema , Comportamento Alimentar/fisiologia , Geografia , Espectrometria de Massas , Estrutura Molecular , Peróxidos/administração & dosagem , Peróxidos/análise , Peróxidos/isolamento & purificação , Plakortis/química , Plakortis/metabolismo , Xestospongia/química , Xestospongia/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...