Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biol Lett ; 18(8): 20220106, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35920027

RESUMO

Carnivorous pitcher plants capture insects in cup-shaped leaves that function as motionless pitfall traps. Nepenthes gracilis evolved a unique 'springboard' trapping mechanism that exploits the impact energy of falling raindrops to actuate a fast pivoting motion of the canopy-like pitcher lid. We superimposed multiple computed micro-tomography images of the same pitcher to reveal distinct deformation patterns in lid-trapping N. gracilis and closely related pitfall-trapping N. rafflesiana. We found prominent differences between downward and upward lid displacement in N. gracilis only. Downward displacement was characterized by bending in two distinct deformation zones whist upward displacement was accomplished by evenly distributed straightening of the entire upper rear section of the pitcher. This suggests an anisotropic impact response, which may help to maximize initial jerk forces for prey capture, as well as the subsequent damping of the oscillation. Our results point to a key role of pitcher geometry for effective 'springboard' trapping in N. gracilis.


Assuntos
Planta Carnívora , Insetos , Animais , Planta Carnívora/anatomia & histologia , Planta Carnívora/fisiologia , Insetos/fisiologia , Folhas de Planta/fisiologia
2.
Am J Bot ; 108(12): 2356-2370, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34648183

RESUMO

PREMISE: Among the sophisticated trap types in carnivorous plants, the underground eel traps of corkskrew plants (Genlisea spp., Lentibulariaceae) are probably the least understood in terms of their functional principle. Here, we provide a detailed analysis of structural and hydraulic features of G. hispidula traps, contributing to the ongoing debate on whether these traps can actively generate water streams to promote prey capture. METHODS: Anatomical and hydraulic traits of detached traps, including inner trap diameters, chamber line element, hair length, glandular pattern, and hydraulic conductivity, were investigated quantitatively using light and electron microscopy, x-ray microtomography, and hydraulic measurements. RESULTS: Hydraulic resistivity in the neck of the trap, from the trap mouth toward the vesicle (digestive chamber) was 10 times lower than in the opposite direction. The comparison of measured and theoretical flow rates suggests that the retrorse hairs inside trap necks also provide considerable resistance against movement of matter toward the vesicle. Hairs showed a gradient in length along the neck, with the shortest hairs near the vesicle. Co-occurrence of quadrifid and bifid glands was limited to a small part of the neck, with quadrifids near the vesicle and bifids toward the trap mouth. CONCLUSIONS: The combination of structural gradients with hydraulic anisotropy suggests the trap is a highly fine-tuned system based on likely trade-offs between efficient prey movement in the trap interior toward the vesicle, prey retention, and spatial digestion capacities and is not counter to the generation of water streams.


Assuntos
Planta Carnívora , Lamiales , Anisotropia , Planta Carnívora/anatomia & histologia , Lamiales/anatomia & histologia
3.
Int J Mol Sci ; 21(14)2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32708125

RESUMO

Carnivorous plants from the Lentibulariaceae form a variety of standard and novel vegetative organs and survive unfavorable environmental conditions. Within Genlisea, only G. tuberosa, from the Brazilian Cerrado, formed tubers, while Utricularia menziesii is the only member of the genus to form seasonally dormant tubers. We aimed to examine and compare the tuber structure of two taxonomically and phylogenetically divergent terrestrial carnivorous plants: Genlisea tuberosa and Utricularia menziesii. Additionally, we analyzed tubers of U. mannii. We constructed phylogenetic trees using chloroplast genes matK/trnK and rbcL and used studied characters for ancestral state reconstruction. All examined species contained mainly starch as histologically observable reserves. The ancestral state reconstruction showed that specialized organs such as turions evolved once and tubers at least 12 times from stolons in Lentibulariaceae. Different from other clades, tubers probably evolved from thick stolons for sect. Orchidioides and both structures are primarily water storage structures. In contrast to species from section Orchidioides, G. tuberosa, U. menziesii and U. mannii form starchy tubers. In G. tuberosa and U. menziesii, underground tubers provide a perennating bud bank that protects the species in their fire-prone and seasonally desiccating environments.


Assuntos
Planta Carnívora/anatomia & histologia , Planta Carnívora/genética , Cloroplastos/genética , Lamiales/genética , Tubérculos/anatomia & histologia , Estresse Fisiológico/fisiologia , Planta Carnívora/citologia , Planta Carnívora/ultraestrutura , Lamiales/anatomia & histologia , Lamiales/citologia , Lamiales/ultraestrutura , Microscopia Eletrônica de Varredura , Filogenia , Tubérculos/citologia , Tubérculos/genética , Tubérculos/ultraestrutura , Amido/metabolismo , Estresse Fisiológico/genética , Água/metabolismo
4.
Microscopy (Oxf) ; 69(4): 214-226, 2020 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-32328650

RESUMO

The aquatic carnivorous plant Aldrovanda vesiculosa L. is critically endangered worldwide; its peculiar lifestyle raises many questions and poses problems both intriguing on their own and relevant to conservation. While establishing a culture system for its propagation and restoring its natural habitat in Hozoji pond in Saitama, Japan, we conducted ultrastructural observations to examine the various aspects of Aldrovanda's way of life. Electron microscopic observation in combination with cryo-techniques produced novel information which could not be obtained by other methods. Some of the results are: phosphorous is stored in petiole cells of turions during winter; mucilaginous guides are provided for pollen tubes in parietal placental ovaries; storage of potassium in the vicinity of the midrib of carnivorous leaves may contribute to the rapid closing of the carnivorous leaves; dynamic sequential changes of the ultrastructure of digestive glands are involved in the synthesis and secretion of digestive enzymes, including protease and acid phosphatase. These results should contribute significantly to our understanding of Aldrovanda and the detailed mechanisms of its life.


Assuntos
Planta Carnívora/fisiologia , Planta Carnívora/ultraestrutura , Droseraceae/fisiologia , Droseraceae/ultraestrutura , Microscopia Eletrônica/métodos , Planta Carnívora/anatomia & histologia , Microscopia Crioeletrônica/métodos , Droseraceae/anatomia & histologia , Japão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA