Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.352
Filtrar
1.
J Plant Res ; 137(3): 343-357, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38693461

RESUMO

Phosphorus (P) is an essential macronutrient for plant life and growth. P is primarily acquired in the form of inorganic phosphate (Pi) from soil. To cope with Pi deficiency, plants have evolved an elaborate system to improve Pi acquisition and utilization through an array of developmental and physiological changes, termed Pi starvation response (PSR). Plants also assemble and manage mutualistic microbes to enhance Pi uptake, through integrating PSR and immunity signaling. A trade-off between plant growth and defense favors the notion that plants lower a cellular state of immunity to accommodate host-beneficial microbes for nutrition and growth at the cost of infection risk. However, the existing data indicate that plants selectively activate defense responses against pathogens, but do not or less against non-pathogens, even under nutrient deficiency. In this review, we highlight recent advances in the principles and mechanisms with which plants balance immunity and growth-related processes to optimize their adaptation to Pi deficiency.


Assuntos
Fosfatos , Imunidade Vegetal , Fosfatos/deficiência , Fosfatos/metabolismo , Plantas/imunologia , Plantas/microbiologia , Plantas/metabolismo , Transdução de Sinais
2.
Cell ; 187(9): 2095-2116, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38670067

RESUMO

Plant diseases cause famines, drive human migration, and present challenges to agricultural sustainability as pathogen ranges shift under climate change. Plant breeders discovered Mendelian genetic loci conferring disease resistance to specific pathogen isolates over 100 years ago. Subsequent breeding for disease resistance underpins modern agriculture and, along with the emergence and focus on model plants for genetics and genomics research, has provided rich resources for molecular biological exploration over the last 50 years. These studies led to the identification of extracellular and intracellular receptors that convert recognition of extracellular microbe-encoded molecular patterns or intracellular pathogen-delivered virulence effectors into defense activation. These receptor systems, and downstream responses, define plant immune systems that have evolved since the migration of plants to land ∼500 million years ago. Our current understanding of plant immune systems provides the platform for development of rational resistance enhancement to control the many diseases that continue to plague crop production.


Assuntos
Resistência à Doença , Doenças das Plantas , Imunidade Vegetal , Plantas , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Imunidade Vegetal/genética , Plantas/imunologia , Plantas/genética , Resistência à Doença/genética , Humanos
3.
Mol Plant ; 17(5): 699-724, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38594902

RESUMO

Beyond their function as structural barriers, plant cell walls are essential elements for the adaptation of plants to environmental conditions. Cell walls are dynamic structures whose composition and integrity can be altered in response to environmental challenges and developmental cues. These wall changes are perceived by plant sensors/receptors to trigger adaptative responses during development and upon stress perception. Plant cell wall damage caused by pathogen infection, wounding, or other stresses leads to the release of wall molecules, such as carbohydrates (glycans), that function as damage-associated molecular patterns (DAMPs). DAMPs are perceived by the extracellular ectodomains (ECDs) of pattern recognition receptors (PRRs) to activate pattern-triggered immunity (PTI) and disease resistance. Similarly, glycans released from the walls and extracellular layers of microorganisms interacting with plants are recognized as microbe-associated molecular patterns (MAMPs) by specific ECD-PRRs triggering PTI responses. The number of oligosaccharides DAMPs/MAMPs identified that are perceived by plants has increased in recent years. However, the structural mechanisms underlying glycan recognition by plant PRRs remain limited. Currently, this knowledge is mainly focused on receptors of the LysM-PRR family, which are involved in the perception of various molecules, such as chitooligosaccharides from fungi and lipo-chitooligosaccharides (i.e., Nod/MYC factors from bacteria and mycorrhiza, respectively) that trigger differential physiological responses. Nevertheless, additional families of plant PRRs have recently been implicated in oligosaccharide/polysaccharide recognition. These include receptor kinases (RKs) with leucine-rich repeat and Malectin domains in their ECDs (LRR-MAL RKs), Catharanthus roseus RECEPTOR-LIKE KINASE 1-LIKE group (CrRLK1L) with Malectin-like domains in their ECDs, as well as wall-associated kinases, lectin-RKs, and LRR-extensins. The characterization of structural basis of glycans recognition by these new plant receptors will shed light on their similarities with those of mammalians involved in glycan perception. The gained knowledge holds the potential to facilitate the development of sustainable, glycan-based crop protection solutions.


Assuntos
Parede Celular , Resistência à Doença , Parede Celular/metabolismo , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Receptores de Reconhecimento de Padrão/metabolismo , Plantas/metabolismo , Plantas/microbiologia , Plantas/imunologia , Imunidade Vegetal/fisiologia
4.
J Plant Res ; 137(3): 297-306, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38517656

RESUMO

Adapting to varying phosphate levels in the environment is vital for plant growth. The PHR1 phosphate starvation response transcription factor family, along with SPX inhibitors, plays a pivotal role in plant phosphate responses. However, this regulatory hub intricately links with diverse biotic and abiotic signaling pathways, as outlined in this review. Understanding these intricate networks is crucial, not only on a fundamental level but also for practical applications, such as enhancing sustainable agriculture and optimizing fertilizer efficiency. This comprehensive review explores the multifaceted connections between phosphate homeostasis and environmental stressors, including various biotic factors, such as symbiotic mycorrhizal associations and beneficial root-colonizing fungi. The complex coordination between phosphate starvation responses and the immune system are explored, and the relationship between phosphate and nitrate regulation in agriculture are discussed. Overall, this review highlights the complex interactions governing phosphate homeostasis in plants, emphasizing its importance for sustainable agriculture and nutrient management to contribute to environmental conservation.


Assuntos
Homeostase , Fosfatos , Estresse Fisiológico , Fosfatos/metabolismo , Plantas/microbiologia , Plantas/metabolismo , Plantas/imunologia , Micorrizas/fisiologia , Simbiose , Transdução de Sinais , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética
5.
J Cell Biol ; 223(6)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38551496

RESUMO

Phytopathogens cause plant diseases that threaten food security. Unlike mammals, plants lack an adaptive immune system and rely on their innate immune system to recognize and respond to pathogens. Plant response to a pathogen attack requires precise coordination of intracellular traffic and signaling. Spatial and/or temporal defects in coordinating signals and cargo can lead to detrimental effects on cell development. The role of intracellular traffic comes into a critical focus when the cell sustains biotic stress. In this review, we discuss the current understanding of the post-immune activation logistics of plant defense. Specifically, we focus on packaging and shipping of defense-related cargo, rerouting of intracellular traffic, the players enabling defense-related traffic, and pathogen-mediated subversion of these pathways. We highlight the roles of the cytoskeleton, cytoskeleton-organelle bridging proteins, and secretory vesicles in maintaining pathways of exocytic defense, acting as sentinels during pathogen attack, and the necessary elements for building the cell wall as a barrier to pathogens. We also identify points of convergence between mammalian and plant trafficking pathways during defense and highlight plant unique responses to illustrate evolutionary adaptations that plants have undergone to resist biotic stress.


Assuntos
Imunidade Inata , Plantas , Animais , Citoesqueleto/metabolismo , Mamíferos , Organelas/metabolismo , Plantas/imunologia , Plantas/metabolismo , Transdução de Sinais
7.
Plant Cell ; 36(5): 1465-1481, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38262477

RESUMO

Plant diseases are a constant and serious threat to agriculture and ecological biodiversity. Plants possess a sophisticated innate immunity system capable of detecting and responding to pathogen infection to prevent disease. Our understanding of this system has grown enormously over the past century. Early genetic descriptions of plant disease resistance and pathogen virulence were embodied in the gene-for-gene hypothesis, while physiological studies identified pathogen-derived elicitors that could trigger defense responses in plant cells and tissues. Molecular studies of these phenomena have now coalesced into an integrated model of plant immunity involving cell surface and intracellular detection of specific pathogen-derived molecules and proteins culminating in the induction of various cellular responses. Extracellular and intracellular receptors engage distinct signaling processes but converge on many similar outputs with substantial evidence now for integration of these pathways into interdependent networks controlling disease outcomes. Many of the molecular details of pathogen recognition and signaling processes are now known, providing opportunities for bioengineering to enhance plant protection from disease. Here we provide an overview of the current understanding of the main principles of plant immunity, with an emphasis on the key scientific milestones leading to these insights.


Assuntos
Doenças das Plantas , Imunidade Vegetal , Transdução de Sinais , Imunidade Vegetal/genética , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Interações Hospedeiro-Patógeno/imunologia , Plantas/imunologia , Plantas/microbiologia , Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
8.
Plant Cell ; 36(5): 1451-1464, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38163634

RESUMO

As the most widely used herbal medicine in human history and a major defence hormone in plants against a broad spectrum of pathogens and abiotic stresses, salicylic acid (SA) has attracted major research interest. With applications of modern technologies over the past 30 years, studies of the effects of SA on plant growth, development, and defence have revealed many new research frontiers and continue to deliver surprises. In this review, we provide an update on recent advances in our understanding of SA metabolism, perception, and signal transduction mechanisms in plant immunity. An overarching theme emerges that SA executes its many functions through intricate regulation at multiple steps: SA biosynthesis is regulated both locally and systemically, while its perception occurs through multiple cellular targets, including metabolic enzymes, redox regulators, transcription cofactors, and, most recently, an RNA-binding protein. Moreover, SA orchestrates a complex series of post-translational modifications of downstream signaling components and promotes the formation of biomolecular condensates that function as cellular signalling hubs. SA also impacts wider cellular functions through crosstalk with other plant hormones. Looking into the future, we propose new areas for exploration of SA functions, which will undoubtedly uncover more surprises for many years to come.


Assuntos
Imunidade Vegetal , Ácido Salicílico , Transdução de Sinais , Ácido Salicílico/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Plantas/imunologia , Plantas/metabolismo , Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética
10.
FEBS J ; 290(13): 3311-3335, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-35668694

RESUMO

The ever-growing world population, increasingly frequent extreme weather events and conditions, emergence of novel devastating crop pathogens and the social strive for quality food products represent a huge challenge for current and future agricultural production systems. To address these challenges and find realistic solutions, it is becoming more important by the day to understand the complex interactions between plants and the environment, mainly the associated organisms, but in particular pathogens. In the past several years, research in the fields of plant pathology and plant-microbe interactions has enabled tremendous progress in understanding how certain receptor-based plant innate immune systems function to successfully prevent infections and diseases. In this review, we highlight and discuss some of these new ground-breaking discoveries and point out strategies of how pathogens counteract the function of important core convergence hubs of the plant immune system. For practical reasons, we specifically place emphasis on potential applications that can be detracted by such discoveries and what challenges the future of agriculture has to face, but also how these challenges could be tackled.


Assuntos
Proteínas NLR , Proteínas de Plantas , Plantas , Receptores de Reconhecimento de Padrão , Plantas/imunologia , Plantas/metabolismo , Receptores de Reconhecimento de Padrão/metabolismo , Transdução de Sinais , Proteínas NLR/metabolismo , Proteínas de Plantas/metabolismo , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Agricultura
11.
Viruses ; 14(2)2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35215763

RESUMO

Plants in nature are under the persistent intimidation of severe microbial diseases, threatening a sustainable food production system. Plant-bacterial pathogens are a major concern in the contemporary era, resulting in reduced plant growth and productivity. Plant antibiotics and chemical-based bactericides have been extensively used to evade plant bacterial diseases. To counteract this pressure, bacteria have evolved an array of resistance mechanisms, including innate and adaptive immune systems. The emergence of resistant bacteria and detrimental consequences of antimicrobial compounds on the environment and human health, accentuates the development of an alternative disease evacuation strategy. The phage cocktail therapy is a multidimensional approach effectively employed for the biocontrol of diverse resistant bacterial infections without affecting the fauna and flora. Phages engage a diverse set of counter defense strategies to undermine wide-ranging anti-phage defense mechanisms of bacterial pathogens. Microbial ecology, evolution, and dynamics of the interactions between phage and plant-bacterial pathogens lead to the engineering of robust phage cocktail therapeutics for the mitigation of devastating phytobacterial diseases. In this review, we highlight the concrete and fundamental determinants in the development and application of phage cocktails and their underlying mechanism, combating resistant plant-bacterial pathogens. Additionally, we provide recent advances in the use of phage cocktail therapy against phytobacteria for the biocontrol of devastating plant diseases.


Assuntos
Antibacterianos/farmacologia , Bactérias/virologia , Bacteriófagos/fisiologia , Agentes de Controle Biológico/farmacologia , Terapia por Fagos , Doenças das Plantas/prevenção & controle , Plantas/microbiologia , Bactérias/efeitos dos fármacos , Resistência à Doença , Interações Hospedeiro-Patógeno , Doenças das Plantas/microbiologia , Plantas/imunologia
12.
Biosci Biotechnol Biochem ; 86(4): 490-501, 2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35040954

RESUMO

The first layer of active plant immunity relies upon the recognition of pathogen-associated molecular patterns (PAMPs), and the induction of PTI. Flagellin is the major protein component of the bacterial flagellum. Flagellin-derived peptide fragments such as CD2-1, flg22, and flgII-28 function as PAMPs in most higher plants. To determine the distribution of CD2-1, flg22, and flgII-28 recognition systems within plant species, the inducibility of PTI by CD2-1, flg22, and flgII-28 in 8 plant species, including monocotyledonous and dicotyledonous plants, was investigated. CD2-1 caused PTI responses in Oryza sativa, Brachypodium distachyon, and Asparagus persicus; flg22 caused PTI responses in Phyllostachys nigra, A. persicus, Arabidopsis thaliana, Nicotiana tabacum, Solanum lycopersicum, and Lotus japonicus; and flgII-28 caused PTI responses only in S. lycopersicum. Furthermore, quantitative analysis of FLS2 receptor revealed that the responsiveness of flg22 in plants was dependent on the expression level of the receptor.


Assuntos
Flagelina , Imunidade Vegetal , Plantas/imunologia , Flagelina/genética , Flagelina/metabolismo , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/microbiologia
13.
Plant J ; 109(2): 447-470, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34399442

RESUMO

The plant immune system has been explored essentially through the study of qualitative resistance, a simple form of immunity, and from a reductionist point of view. The recent identification of genes conferring quantitative disease resistance revealed a large array of functions, suggesting more complex mechanisms. In addition, thanks to the advent of high-throughput analyses and system approaches, our view of the immune system has become more integrative, revealing that plant immunity should rather be seen as a distributed and highly connected molecular network including diverse functions to optimize expression of plant defenses to pathogens. Here, we review the recent progress made to understand the network complexity of regulatory pathways leading to plant immunity, from pathogen perception, through signaling pathways and finally to immune responses. We also analyze the topological organization of these networks and their emergent properties, crucial to predict novel immune functions and test them experimentally. Finally, we report how these networks might be regulated by environmental clues. Although system approaches remain extremely scarce in this area of research, a growing body of evidence indicates that the plant response to combined biotic and abiotic stresses cannot be inferred from responses to individual stresses. A view of possible research avenues in this nascent biology domain is finally proposed.


Assuntos
Redes Reguladoras de Genes , Interações Hospedeiro-Patógeno , Doenças das Plantas/imunologia , Imunidade Vegetal/genética , Plantas/imunologia , Transdução de Sinais , Agricultura , Mudança Climática , Resistência à Doença , Meio Ambiente , Plantas/genética , Estresse Fisiológico
14.
Front Immunol ; 12: 771065, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34938291

RESUMO

Unlike animals, plants do not have specialized immune cells and lack an adaptive immune system. Instead, plant cells rely on their unique innate immune system to defend against pathogens and coordinate beneficial interactions with commensal and symbiotic microbes. One of the major convergent points for plant immune signaling is the nucleus, where transcriptome reprogramming is initiated to orchestrate defense responses. Mechanisms that regulate selective transport of nuclear signaling cargo and chromatin activity at the nuclear boundary play a pivotal role in immune activation. This review summarizes the current knowledge of how nuclear membrane-associated core protein and protein complexes, including the nuclear pore complex, nuclear transport receptors, and the nucleoskeleton participate in plant innate immune activation and pathogen resistance. We also discuss the role of their functional counterparts in regulating innate immunity in animals and highlight potential common mechanisms that contribute to nuclear membrane-centered immune regulation in higher eukaryotes.


Assuntos
Imunidade Inata/imunologia , Membrana Nuclear/imunologia , Complexo de Proteínas Formadoras de Poros Nucleares/imunologia , Imunidade Vegetal/imunologia , Proteínas de Plantas/imunologia , Plantas/imunologia , Transporte Ativo do Núcleo Celular/imunologia , Núcleo Celular/imunologia , Núcleo Celular/metabolismo , Modelos Imunológicos , Poro Nuclear/imunologia , Poro Nuclear/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Transdução de Sinais/imunologia
15.
Int J Mol Sci ; 22(21)2021 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-34769374

RESUMO

Plants employ a diversified array of defense activities when they encounter stress. Continuous activation of defense pathways that were induced by mutation or altered expression of disease resistance genes and mRNA surveillance mechanisms develop abnormal phenotypes. These plants show continuous defense genes' expression, reduced growth, and also manifest tissue damage by apoptosis. These macroscopic abrasions appear even in the absence of the pathogen and can be attributed to a condition known as autoimmunity. The question is whether it is possible to develop an autoimmune mutant that does not fetch yield and growth penalty and provides enhanced protection against various biotic and abiotic stresses via secondary metabolic pathways' engineering. This review is a discussion about the common stress-fighting mechanisms, how the concept of cross-tolerance instigates propitious or protective autoimmunity, and how it can be achieved by engineering secondary metabolic pathways.


Assuntos
Autoimunidade/imunologia , Resistência à Doença/imunologia , Secas , Engenharia Metabólica , Plantas/imunologia , Metabolismo Secundário , Estresse Fisiológico , Plantas/metabolismo
17.
Biomolecules ; 11(8)2021 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-34439788

RESUMO

Plants are constantly threatened by pathogens, so have evolved complex defence signalling networks to overcome pathogen attacks. Post-translational modifications (PTMs) are fundamental to plant immunity, allowing rapid and dynamic responses at the appropriate time. PTM regulation is essential; pathogen effectors often disrupt PTMs in an attempt to evade immune responses. Here, we cover the mechanisms of disease resistance to pathogens, and how growth is balanced with defence, with a focus on the essential roles of PTMs. Alteration of defence-related PTMs has the potential to fine-tune molecular interactions to produce disease-resistant crops, without trade-offs in growth and fitness.


Assuntos
Interações Hospedeiro-Patógeno/imunologia , Doenças das Plantas/imunologia , Proteínas de Plantas/imunologia , Plantas/imunologia , Processamento de Proteína Pós-Traducional , Resistência à Doença/genética , Interações Hospedeiro-Patógeno/genética , Fosforilação , Doenças das Plantas/microbiologia , Doenças das Plantas/virologia , Imunidade Vegetal/genética , Proteínas de Plantas/classificação , Proteínas de Plantas/genética , Plantas/metabolismo , Plantas/microbiologia , Plantas/virologia , Transdução de Sinais , Sumoilação , Ubiquitinação
18.
Plant J ; 108(3): 617-631, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34369010

RESUMO

Plants interact with other organisms employing volatile organic compounds (VOCs). The largest group of plant-released VOCs are terpenes, comprised of isoprene, monoterpenes, and sesquiterpenes. Mono- and sesquiterpenes are well-known communication compounds in plant-insect interactions, whereas the smallest, most commonly emitted terpene, isoprene, is rather assigned a function in combating abiotic stresses. Recently, it has become evident that different volatile terpenes also act as plant-to-plant signaling cues. Upon being perceived, specific volatile terpenes can sensitize distinct signaling pathways in receiver plant cells, which in turn trigger plant innate immune responses. This vastly extends the range of action of volatile terpenes, which not only protect plants from various biotic and abiotic stresses, but also convey information about environmental constraints within and between plants. As a result, plant-insect and plant-pathogen interactions, which are believed to influence each other through phytohormone crosstalk, are likely equally sensitive to reciprocal regulation via volatile terpene cues. Here, we review the current knowledge of terpenes as volatile semiochemicals and discuss why and how volatile terpenes make good signaling cues. We discuss how volatile terpenes may be perceived by plants, what are possible downstream signaling events in receiver plants, and how responses to different terpene cues might interact to orchestrate the net plant response to multiple stresses. Finally, we discuss how the signal can be further transmitted to the community level leading to a mutually beneficial community-scale response or distinct signaling with near kin.


Assuntos
Plantas/metabolismo , Terpenos/química , Terpenos/metabolismo , Compostos Orgânicos Voláteis/metabolismo , Células Vegetais/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Imunidade Vegetal , Plantas/imunologia , Transdução de Sinais/fisiologia , Especificidade da Espécie , Compostos Orgânicos Voláteis/química
19.
Int J Mol Sci ; 22(15)2021 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-34361093

RESUMO

Zinc-finger proteins, a superfamily of proteins with a typical structural domain that coordinates a zinc ion and binds nucleic acids, participate in the regulation of growth, development, and stress adaptation in plants. Most zinc fingers are C2H2-type or CCCC-type, named after the configuration of cysteine (C) and histidine (H); the less-common CCCH zinc-finger proteins are important in the regulation of plant stress responses. In this review, we introduce the domain structures, classification, and subcellular localization of CCCH zinc-finger proteins in plants and discuss their functions in transcriptional and post-transcriptional regulation via interactions with DNA, RNA, and other proteins. We describe the functions of CCCH zinc-finger proteins in plant development and tolerance to abiotic stresses such as salt, drought, flooding, cold temperatures and oxidative stress. Finally, we summarize the signal transduction pathways and regulatory networks of CCCH zinc-finger proteins in their responses to abiotic stress. CCCH zinc-finger proteins regulate the adaptation of plants to abiotic stress in various ways, but the specific molecular mechanisms need to be further explored, along with other mechanisms such as cytoplasm-to-nucleus shuttling and post-transcriptional regulation. Unraveling the molecular mechanisms by which CCCH zinc-finger proteins improve stress tolerance will facilitate the breeding and genetic engineering of crops with improved traits.


Assuntos
Adaptação Fisiológica , Regulação da Expressão Gênica de Plantas , Desenvolvimento Vegetal , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Estresse Fisiológico , Dedos de Zinco , Secas , Proteínas de Plantas/genética , Plantas/genética , Plantas/imunologia
20.
Int J Mol Sci ; 22(16)2021 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-34445728

RESUMO

Phytopathogens, such as biotrophs, hemibiotrophs and necrotrophs, pose serious stress on the development of their host plants, compromising their yields. Plants are in constant interaction with such phytopathogens and hence are vulnerable to their attack. In order to counter these attacks, plants need to develop immunity against them. Consequently, plants have developed strategies of recognizing and countering pathogenesis through pattern-triggered immunity (PTI) and effector-triggered immunity (ETI). Pathogen perception and surveillance is mediated through receptor proteins that trigger signal transduction, initiated in the cytoplasm or at the plasma membrane (PM) surfaces. Plant hosts possess microbe-associated molecular patterns (P/MAMPs), which trigger a complex set of mechanisms through the pattern recognition receptors (PRRs) and resistance (R) genes. These interactions lead to the stimulation of cytoplasmic kinases by many phosphorylating proteins that may also be transcription factors. Furthermore, phytohormones, such as salicylic acid, jasmonic acid and ethylene, are also effective in triggering defense responses. Closure of stomata, limiting the transfer of nutrients through apoplast and symplastic movements, production of antimicrobial compounds, programmed cell death (PCD) are some of the primary defense-related mechanisms. The current article highlights the molecular processes involved in plant innate immunity (PII) and discusses the most recent and plausible scientific interventions that could be useful in augmenting PII.


Assuntos
Interações Hospedeiro-Patógeno , Imunidade Inata , Plantas/imunologia , Transdução de Sinais , Cromatina/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...