Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 840
Filtrar
1.
Shokuhin Eiseigaku Zasshi ; 65(2): 25-30, 2024.
Artigo em Japonês | MEDLINE | ID: mdl-38658344

RESUMO

Processed foods containing soybean or maize are subject to labeling regulations pertinent to genetically modified (GM) foods in Japan. To confirm the reliability of the labeling procedure of GM foods, the Japanese standard analytical methods (standard methods) using real-time PCR technique have been established. Although certain DNA extraction protocols are stipulated as standard in these methods, the use of other protocols confirmed to be equivalent to the existing ones was permitted. In this study, the equivalence testing of the techniques employed for DNA extraction from processed foods containing soybean or corn was conducted. In this study, the equivalence testing of the techniques employed for DNA extraction from processed foods containing soybean or maize was conducted. The silica membrane-based DNA extraction kits, GM quicker 4 and DNeasy Plant Maxi Kit (Maxi Kit), as an existing method were compared. GM quicker 4 was considered to be equivalent to or better than Maxi Kit.


Assuntos
DNA de Plantas , Alimentos Geneticamente Modificados , Glycine max , Zea mays , DNA de Plantas/isolamento & purificação , DNA de Plantas/genética , Análise de Alimentos/métodos , Rotulagem de Alimentos , Alimento Processado , Glycine max/química , Glycine max/genética , Japão , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/química , Reação em Cadeia da Polimerase em Tempo Real , Zea mays/química , Zea mays/genética
2.
J Agric Food Chem ; 72(19): 11195-11204, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38564697

RESUMO

Genetically modified crops (GMCs) have been discussed due to unknown safety, and thus, it is imperative to develop an effective detection technology. CRISPR/Cas is deemed a burgeoning technology for nucleic acid detection. Herein, we developed a novel detection method for the first time, which combined thermostable Cas12b with loop-mediated isothermal amplification (LAMP), to detect genetically modified (GM) soybeans in a customized one-pot vessel. In our method, LAMP-specific primers were used to amplify the cauliflower mosaic virus 35S promoter (CaMV35S) of the GM soybean samples. The corresponding amplicons activated the trans-cleavage activity of Cas12b, which resulted in the change of fluorescence intensity. The proposed bioassay was capable of detecting synthetic plasmid DNA samples down to 10 copies/µL, and as few as 0.05% transgenic contents could be detected in less than 40 min. This work presented an original detection method for GMCs, which performed rapid, on-site, and deployable detection.


Assuntos
Glycine max , Técnicas de Amplificação de Ácido Nucleico , Plantas Geneticamente Modificadas , Técnicas de Amplificação de Ácido Nucleico/métodos , Técnicas de Amplificação de Ácido Nucleico/instrumentação , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/química , Glycine max/genética , Glycine max/química , Bioensaio/métodos , Sistemas CRISPR-Cas , Caulimovirus/genética , Proteínas de Bactérias/genética
3.
Nutr Res ; 121: 67-81, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38043437

RESUMO

Rice is the primary staple food for half of the world's population but is low in lysine content. Previously, we developed transgenic rice with enhanced free lysine content in rice seeds (lysine-rich rice), which was shown safe for consumption and improved the growth in rats. However, the effects of lysine-rich rice on skeletal growth and development remained unknown. In this study, we hypothesized that lysine-rich rice improved skeletal growth and development in weaning rats. Male weaning Sprague-Dawley rats received lysine-rich rice (HFL) diet, wild-type rice (WT) diet, or wild-type rice with various contents of lysine supplementation diet for 70 days. Bone microarchitectures were examined by microcomputed tomography, bone strength was investigated by mechanical test, and dynamics of bone growth were examined by histomorphometric analysis. In addition, we explored the molecular mechanism of lysine and skeletal growth through biochemical testing of growth hormone, bone turnover marker, and amino acid content of rat serum analysis, as well as in a cell culture system. Results indicated that the HFL diet improved rats' bone growth, strength, and microarchitecture compared with the WT diet group. In addition, the HFL diet increased the serum essential amino acids, growth hormone (insulin-like growth factor-1), and bone formation marker concentrations. The cell culture model showed that lysine deficiency reduced insulin-like growth factor-1 and Osterix expression, Akt/mammalian target of rapamycin signaling, and matrix mineralization, and inhibited osteoblast differentiation associated with bone growth. Our findings showed that lysine-rich rice improved skeletal growth and development in weaning rats. A further increase of rice lysine content is highly desirable to fully optimize bone growth and development.


Assuntos
Lisina , Oryza , Ratos , Masculino , Animais , Ratos Sprague-Dawley , Oryza/genética , Oryza/metabolismo , Plantas Geneticamente Modificadas/química , Plantas Geneticamente Modificadas/metabolismo , Microtomografia por Raio-X , Peso Corporal , Hormônio do Crescimento/metabolismo , Mamíferos/metabolismo
4.
J Environ Sci (China) ; 135: 669-680, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37778837

RESUMO

The co-occurrence of glyphosate (GLP) and aminomethylphosphonic acid (AMPA) in contaminated water, soil, sediment and plants is a cause for concern due to potential threats to the ecosystem and human health. A major route of exposure is through contact with contaminated soil and consumption of crops containing GLP and AMPA residues. However, clay-based sorption strategies for mixtures of GLP and AMPA in soil, plants and garden produce have been very limited. In this study, in vitro soil and in vivo genetically modified corn models were used to establish the proof of concept that the inclusion of clay sorbents in contaminated soils will reduce the bioavailability of GLP and AMPA in soils and their adverse effects on plant growth. Effects of chemical concentration (1-10 mg/kg), sorbent dose (0.5%-3% in soil and 0.5%-1% in plants) and duration (up to 28 days) on sorption kinetics were studied. The time course results showed a continuous GLP degradation to AMPA. The inclusion of calcium montmorillonite (CM) and acid processed montmorillonite (APM) clays at all doses significantly and consistently reduced the bioavailability of both chemicals from soils to plant roots and leaves in a dose- and time-dependent manner without detectable dissociation. Plants treated with 0.5% and 1% APM inclusion showed the highest growth rate (p ≤ 0.05) and lowest chemical bioavailability with up to 76% reduction in roots and 57% reduction in leaves. Results indicated that montmorillonite clays could be added as soil supplements to reduce hazardous mixtures of GLP and AMPA in soils and plants.


Assuntos
Bentonita , Bioacumulação , Herbicidas , Organofosfonatos , Poluentes do Solo , Zea mays , Humanos , Bentonita/química , Argila/química , Ecossistema , Herbicidas/análise , Herbicidas/química , Herbicidas/farmacocinética , Solo/química , Poluentes do Solo/análise , Poluentes do Solo/farmacocinética , Zea mays/química , Zea mays/fisiologia , Organofosfonatos/análise , Organofosfonatos/química , Organofosfonatos/farmacocinética , Plantas Geneticamente Modificadas/química , Plantas Geneticamente Modificadas/fisiologia , Bioacumulação/fisiologia , Glifosato
5.
Pest Manag Sci ; 79(8): 2902-2911, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36947641

RESUMO

BACKGROUND: The potential risk of insecticidal proteins produced by genetically engineered (GE) plants to nontarget organisms have long been an ecotoxicological concern. Apanteles chilonis, an important endoparasitoid of rice pest Chilo suppressalis, potentially is exposed to Bacillus thuringiensis (Bt) endotoxins through a food chain of transgenic Bt rice - C. suppressalis - A. chilonis, and thus, a rigorous risk assessment is urgently needed. Here, we combined a tri-trophic bioassay system with high-dose exposure approach using C. suppressalis hemolymph as the carrier of insecticidal protein to evaluate the biosafety of Cry1Ca to A. chilonis. RESULTS: Cry1Ca protein could be transmitted and retained along the food chain and remains bioactive in the hemolymph of C. suppressalis during the pre-adult duration of A. chilonis. No significant differences in pre-adult period, male and female longevity, adult fecundity and weight, emergence rate nor sex ratio were observed when A. chilonis parasitized C. suppressalis feeding on cry1Ca rice compared with control treatment. However, the pupal period and weight were significantly prolonged and decreased. When A. chilonis parasitized C. suppressalis injected with a high dosage of Cry1Ca protein, no adverse effects on the life-history parameters, peroxidase (POD), superoxide dismutase (SOD) or glutathione reductase (GR) of A. chilonis were observed, demonstrating that the host quality mediates adverse effects during the food chain. CONCLUSIONS: We confirmed that Cry1Ca posed no ecological risk to the nontarget endoparasitoid A. chilonis. This study may serve as an example for future risk assessment of transgenic crops to nontarget endoparasitoids. © 2023 Society of Chemical Industry.


Assuntos
Bacillus thuringiensis , Inseticidas , Mariposas , Oryza , Animais , Larva , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/química , Cadeia Alimentar , Proteínas de Bactérias/genética , Proteínas de Bactérias/farmacologia , Mariposas/genética , Endotoxinas/genética , Endotoxinas/farmacologia , Inseticidas/farmacologia , Bacillus thuringiensis/genética , Oryza/genética , Oryza/química , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/farmacologia
6.
Plant Physiol Biochem ; 193: 124-138, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36356544

RESUMO

L-Ascorbic acid (AsA), a strong antioxidant, serves as an enzyme cofactor and redox status marker, modulating a plethora of biological processes. As tomato commercial varieties and hybrids possess relatively low amounts of AsA, the improvement of fruit AsA represents a strategic goal for enhanced human health. Previously, we have suggested that GDP-L-Galactose phosphorylase (GGP) and L-galactose-1-phosphate phosphatase (GPP) can serve as possible targets for AsA manipulation in tomato (Solanum lycopersicon L.) fruit. To this end, we produced and evaluated T3 transgenic tomato plants carrying these two genes under the control of CaMV-35S and two fruit specific promoters, PPC2 and PG-GGPI. The transgenic lines had elevated levels of AsA, with the PG-GGP1 line containing 3-fold more AsA than WT, without affecting fruit characteristics. Following RNA-Seq analysis, 164 and 13 DEGs were up- or down-regulated, respectively, between PG-GGP1 and WT pink fruits. PG-GGP1 fruit had a distinct number of up-regulated transcripts associated with cell wall modification, ethylene biosynthesis and signaling, pollen fertility and carotenoid metabolism. The elevated AsA accumulation resulted in the up regulation of AsA associated transcripts and alternative biosynthetic pathways suggesting that the entire metabolic pathway was influenced, probably via master regulation. We show here that AsA-fortification of tomato ripe fruit via GGP1 overexpression under the action of a fruit specific promoter PG affects fruit development and ripening, reduces ethylene production, and increased the levels of sugars, and carotenoids, supporting a robust database to further explore the role of AsA induced genes for agronomically important traits, breeding programs and precision gene editing approaches.


Assuntos
Valor Nutritivo , Solanum lycopersicum , Ácido Ascórbico/química , Etilenos/química , Frutas/química , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/química , Solanum lycopersicum/genética , Fosfatos/química , Monoéster Fosfórico Hidrolases/genética , Melhoramento Vegetal , Plantas Geneticamente Modificadas/química
7.
Nano Lett ; 22(7): 2611-2617, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35362986

RESUMO

Protein detection is a universal tool critical to many applications in medicine, agriculture, and biotechnology. We developed a novel protein detection method combining light transmission spectroscopy and particle-size analysis of gold nanospheres monovalently functionalized with polyclonal antibodies and applied it to an emerging challenge for such technologies─the monitoring of environmental proteins (eProteins) present in natural aquatic systems. These are an underreported source of pollution and include the pseudopersistent Cry toxins that enter aquatic ecosystems from surrounding genetically engineered crops. The assay is capable of detecting proteins in complex matrices, such as water samples collected in the field, making it a competitive assay for eProtein detection. It is sensitive, reaching 1.25 ng mL-1, and we demonstrate its application to the detection of Cry1Ab from subsurface tile-drain and streamwater samples from agricultural waterways. The assay can also be quickly adapted for other protein detection applications in the future.


Assuntos
Ouro , Nanopartículas Metálicas , Proteínas de Bactérias/genética , Ecossistema , Ouro/química , Proteínas Hemolisinas/análise , Nanopartículas Metálicas/química , Plantas Geneticamente Modificadas/química , Plantas Geneticamente Modificadas/metabolismo , Análise Espectral
8.
J Sci Food Agric ; 102(13): 5883-5890, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35426948

RESUMO

BACKGROUND: Potato tubers from genetically modified plants overexpressing the StDREB1 or the VvWRKY2 transcription factors that exhibited improved tolerance to salt and resistance to Fusarium solani infection were characterized and evaluated for safety in a 30 day rat feeding study. Male Wistar rats were split into four groups and provided with a diet composed of 33% (w/w) of either one of the two genetically modified potatoes (GMPs), 33% of the commercial Spunta variety (Sp), or a control group fed with the basal rats' diet. The influence of the GMPs on rat behavior and overall health parameters was evaluated and compared with that of commercial potato (i.e. the Sp group) and control diet. RESULTS: Small differences were noticed in the chemical composition of the different tubers, but all the diets were adjusted to an identical caloric level. Results showed no sign of toxic or detrimental effects on the rats' overall health as a result of these diets. The rats fed with the GMPs meal showed hematological and biochemical compositions of the plasma comparable to the control groups. No histopathological damage nor any structural disorganization, severe congestion, or acute inflammation were noticed in the rats' tissues. CONCLUSION: Under these study conditions, the GMP diets did not induce any apparent or significant adverse effects on rats after 30 days of dietary administration in comparison with rats fed diets with the corresponding non-transgenic diet and the standard diet group. These two GMPs were therefore considered to be as safe as their commercial comparator. © 2022 Society of Chemical Industry.


Assuntos
Alimentos Geneticamente Modificados , Solanum tuberosum , Animais , Alimentos Geneticamente Modificados/toxicidade , Refeições , Plantas Geneticamente Modificadas/química , Ratos , Ratos Wistar , Solanum tuberosum/química , Solanum tuberosum/genética , Fatores de Transcrição/genética
9.
MAbs ; 14(1): 2013594, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35000569

RESUMO

The ongoing SARS-CoV-2 coronavirus pandemic of 2020-2021 underscores the need for manufacturing platforms that can rapidly produce monoclonal antibody (mAb) therapies. As reported here, a platform based on Nicotiana benthamiana produced mAb therapeutics with high batch-to-batch reproducibility and flexibility, enabling production of 19 different mAbs of sufficient purity and safety for clinical application(s). With a single manufacturing run, impurities were effectively removed for a representative mAb product (the ZMapp component c4G7). Our results show for the first time the reproducibility of the platform for production of multiple batches of clinical-grade mAb, manufactured under current Good Manufacturing Practices, from Nicotiana benthamiana. The flexibility of the system was confirmed by the results of release testing of 19 different mAbs generated with the platform. The process from plant infection to product can be completed within 10 days. Therefore, with a constant supply of plants, response to the outbreak of an infectious disease could be initiated within a matter of weeks. Thus, these data demonstrated that this platform represents a reproducible, flexible system for rapid production of mAb therapeutics to support clinical development.


Assuntos
Anticorpos Monoclonais , Anticorpos Antivirais , COVID-19/imunologia , Nicotiana , Plantas Geneticamente Modificadas , SARS-CoV-2/imunologia , Anticorpos Monoclonais/biossíntese , Anticorpos Monoclonais/química , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/biossíntese , Anticorpos Antivirais/química , Anticorpos Antivirais/genética , Anticorpos Antivirais/imunologia , Humanos , Plantas Geneticamente Modificadas/química , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/imunologia , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Nicotiana/química , Nicotiana/genética , Nicotiana/crescimento & desenvolvimento , Nicotiana/imunologia , Tratamento Farmacológico da COVID-19
10.
Food Chem Toxicol ; 160: 112776, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34953966

RESUMO

BT799 was Bacillus thuringiensis-genetic modified (GM) maize, and Sprague-Dawley (SD) rats were treated with different diet formulations containing BT799 maize grain (33% and 66%) or its non-transgenic Zhengdan 958 (ZD958, 33% and 66%). The feeding lasted for 10 (P)/14 (F1 and F2) weeks. The reproductive capacity and pathological responses were detected in each generation of rats fed with BT799 and ZD958. During the growth and development of parental rats, each group showed the same trend in body weight gain and food intake, with a few fluctuations at individual time points. No statistically significant difference was observed in reproductive data (copulation index, fertility index, and live birth rate) of rats fed with transgenic maize compared with non-transgenic maize. We observed some apparent changes in reproductive data (sperm numbers and motility) and pathological responses (organ relative weights, hematological parameters, serum chemistry parameters, and sex hormone levels) among rats fed with BT799 maize grain. However, these differences were within the laboratory's historical normal range of control SD rats and not maize grain dose-dependent. These changes were not considered to be adverse or toxic. No significant difference in macroscopic or histological adverse effects was observed between rats consuming transgenic BT799 diet and non-transgenic diet. In conclusion, the long-term intake of BT799 maize was as safe as the corresponding non-transgenic maize for three-generation SD rats.


Assuntos
Ração Animal/análise , Inocuidade dos Alimentos , Alimentos Geneticamente Modificados , Plantas Geneticamente Modificadas/metabolismo , Ratos Sprague-Dawley/fisiologia , Zea mays/metabolismo , Animais , Peso Corporal , Ingestão de Alimentos , Masculino , Plantas Geneticamente Modificadas/química , Plantas Geneticamente Modificadas/genética , Ratos , Ratos Sprague-Dawley/crescimento & desenvolvimento , Reprodução , Contagem de Espermatozoides , Motilidade dos Espermatozoides , Espermatozoides/fisiologia , Zea mays/química , Zea mays/genética
11.
Recent Pat Anticancer Drug Discov ; 16(4): 460-468, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34911411

RESUMO

BACKGROUND: Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR- associated9 (Cas9) endonuclease system is a facile, highly efficient and selective site-directed mutagenesis tool for RNA-guided genome-editing. CRISPR/Cas9 genome-editing strategy uses designed guide-RNAs that recognizes a 3 base-pair protospacer adjacent motif (PAM) sequence in the target-DNA. CRISPR/Cas-editing tools have mainly been employed in crop plants in relation to yield and stress tolerance. However, the immense potential of this technology has not yet been fully utilized in medicinal plants in deciphering or modulating secondary metabolic pathways producing therapeutically active phytochemicals against cancer and other diseases. OBJECTIVE: The present review elucidates the use of CRISPR-Cas9 as a promising genome-editing tool in plants and plant-derived natural products with anticancer and other therapeutic applications. It also includes recent patents on the therapeutic applications of CRISPR-CAS systems implicated to cancer and other human medical conditions. METHODS: Popular search engines, such as PubMed, Scopus, Google Scholar, Google Patents, Medline, ScienceDirect, SpringerLink, EMBASE, Mendeley, etc., were searched in order to retrieve literature using relevant keywords viz. CRISPER/Cas, plant natural product research, anticancer, therapeutics, etc., either singly or in various combinations. RESULTS: Retrieved citations and further cross-referencing among the literature have resulted in a total number of 71 publications and 3 patents are being cited in this work. Information presented in this review aims to support further biotechnological and clinical strategies to be carried using CRISPER/ Cas mediated optimization of plant natural products against cancer and an array of other human medical conditions. CONCLUSION: Off late, knock-in and knock-out, point mutation, controlled tuning of gene-expression and targeted mutagenesis have enabled the versatile CRISPR/Cas-editing device to engineer medicinal plants' genomes. In addition, by combining CRISPR/Cas-editing tool with next-generation sequencing (NGS) and various tools of system biology, many medicinal plants have been engineered genetically to optimize the production of valuable bioactive compounds of industrial significance.


Assuntos
Sistemas CRISPR-Cas/genética , Preparações de Plantas/farmacologia , Plantas Medicinais/química , Antineoplásicos Fitogênicos/isolamento & purificação , Antineoplásicos Fitogênicos/farmacologia , Produtos Biológicos/isolamento & purificação , Produtos Biológicos/farmacologia , Edição de Genes , Genoma de Planta , Humanos , Patentes como Assunto , Preparações de Plantas/isolamento & purificação , Plantas Geneticamente Modificadas/química , Plantas Geneticamente Modificadas/genética , Plantas Medicinais/genética
12.
Molecules ; 26(17)2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34500582

RESUMO

Salvia corrugata Vahl. is an interesting source of abietane and abeo-abietane compounds that showed antibacterial, antitumor, and cytotoxic activities. The aim of the study was to obtain transformed roots of S. corrugata and to evaluate the production of terpenoids in comparison with in vivo root production. Hairy roots were initiated from leaf explants by infection with ATCC 15834 Agrobacterium rhizogenes onto hormone-free Murashige and Skoog (MS) solid medium. Transformation was confirmed by polymerase chain reaction analysis of rolC and virC1 genes. The biomass production was obtained in hormone-free liquid MS medium using Temporary Immersion System bioreactor RITA®. The chromatographic separation of the methanolic extract of the untransformed roots afforded horminone, ferruginol, 7-O-acetylhorminone and 7-O-methylhorminone. Agastol and ferruginol were isolated and quantified from the hairy roots. The amount of these metabolites indicated that the hairy roots of S. corrugata can be considered a source of these compounds.


Assuntos
Abietanos/química , Diterpenos/química , Raízes de Plantas/química , Salvia/química , Agrobacterium/química , Agrobacterium/genética , Biomassa , Reatores Biológicos , Meios de Cultura/química , Raízes de Plantas/genética , Plantas Geneticamente Modificadas/química , Plantas Geneticamente Modificadas/genética , Salvia/genética , Transformação Genética/genética
13.
Toxins (Basel) ; 13(9)2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34564622

RESUMO

Evolution of resistance by pests can reduce the benefits of crops genetically engineered to produce insecticidal proteins from Bacillus thuringiensis (Bt). Because of the widespread resistance of Helicoverpa zea to crystalline (Cry) Bt toxins in the United States, the vegetative insecticidal protein Vip3Aa is the only Bt toxin produced by Bt corn and cotton that remains effective against some populations of this polyphagous lepidopteran pest. Here we evaluated H. zea resistance to Vip3Aa using diet bioassays to test 42,218 larvae from three lab strains and 71 strains derived from the field during 2016 to 2020 in Arkansas, Louisiana, Mississippi, Tennessee, and Texas. Relative to the least susceptible of the three lab strains tested (BZ), susceptibility to Vip3Aa of the field-derived strains decreased significantly from 2016 to 2020. Relative to another lab strain (TM), 7 of 16 strains derived from the field in 2019 were significantly resistant to Vip3Aa, with up to 13-fold resistance. Susceptibility to Vip3Aa was significantly lower for strains derived from Vip3Aa plants than non-Vip3Aa plants, providing direct evidence of resistance evolving in response to selection by Vip3Aa plants in the field. Together with previously reported data, the results here convey an early warning of field-evolved resistance to Vip3Aa in H. zea that supports calls for urgent action to preserve the efficacy of this toxin.


Assuntos
Toxinas de Bacillus thuringiensis , Proteínas de Bactérias , Controle de Insetos , Resistência a Inseticidas , Mariposas , Controle Biológico de Vetores , Animais , Larva , Mariposas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/química
14.
Commun Biol ; 4(1): 964, 2021 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-34385580

RESUMO

Production of biopharmaceuticals relies on the expression of mammalian cDNAs in host organisms. Here we show that the expression of a human cDNA in the moss Physcomitrium patens generates the expected full-length and four additional transcripts due to unexpected splicing. This mRNA splicing results in non-functional protein isoforms, cellular misallocation of the proteins and low product yields. We integrated these results together with the results of our analysis of all 32,926 protein-encoding Physcomitrella genes and their 87,533 annotated transcripts in a web application, physCO, for automatized optimization. A thus optimized cDNA results in about twelve times more protein, which correctly localizes to the ER. An analysis of codon preferences of different production hosts suggests that similar effects occur also in non-plant hosts. We anticipate that the use of our methodology will prevent so far undetected mRNA heterosplicing resulting in maximized functional protein amounts for basic biology and biotechnology.


Assuntos
Bryopsida/genética , DNA Complementar/genética , Plantas Geneticamente Modificadas/genética , Splicing de RNA , RNA Mensageiro/química , Bryopsida/química , DNA Complementar/química , Humanos , Plantas Geneticamente Modificadas/química , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , RNA Mensageiro/genética
15.
Food Chem Toxicol ; 153: 112310, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34062222

RESUMO

To study reproductive toxicity of gene modified wheat generated by introducing DREB3 (drought response element binding protein 3) gene, Wistar rats of were allocated into 3 groups and fed with DREB3 gene modified wheat mixture diet (GM group), non-gene modified wheat mixture diet (Non-GM group) and AIN-93 diet (Control group) from parental generation (F0) to the second offspring (F2). GM wheat and Non-GM wheat, Jimai22, were both formulated into diets at a ratio of 69.55% according to AIN93 diet for rodent animals. Compared with non-GM group, no biologically related differences were observed in GM group rats with respect to reproductive performance such as fertility rate, gestation rate, mean duration, hormone level, reproductive organ pathology and developmental parameters such as body weight, body length, food consumption, neuropathy, behavior, immunotoxicity, hematology and serum chemistry. In conclusion, no adverse effect were found relevant to GM wheat in the two generation reproduction toxicity study, indicating the GM wheat is a safe alternative for its counterpart wheat regarding to reproduction toxicity.


Assuntos
Ração Animal/toxicidade , Alimentos Geneticamente Modificados/toxicidade , Plantas Geneticamente Modificadas/química , Reprodução/efeitos dos fármacos , Triticum/química , Animais , Comportamento Animal/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Proteínas de Ligação a DNA/genética , Feminino , Masculino , Tamanho do Órgão/efeitos dos fármacos , Plantas Geneticamente Modificadas/genética , Ratos Wistar , Proteínas de Soja/genética , Glycine max/genética , Fatores de Transcrição/genética , Triticum/genética
16.
Chem Biodivers ; 18(8): e2100455, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34185351

RESUMO

Betulinic acid, which is found in transgenic roots of Senna obtusifolia (L.) H.S.Irwin & Barneby, is a pentacyclic triterpene with distinctive pharmacological activities. In this study, we report the differences in the content of betulinic acid and selected anthraquinones in transgenic S. obtusifolia hairy roots with overexpression of the PgSS1 gene (SOPSS2 line) and in transformed hairy roots without this genetic construct (SOA41 line). Both hairy root lines grew in 10 L sprinkle bioreactor. Additionally, the extracts obtained from this plant material were used for biological tests. Our results demonstrated that the SOPSS2 hairy root cultures from the bioreactor showed an increase in the content of betulinic acid (38.125 mg/g DW), compared to the SOA41 hairy root line (4.213 mg/g DW). Biological studies have shown a cytotoxic and antiproliferative effect on U-87MG glioblastoma cells, and altering the level of apoptotic proteins (Bax, p53, Puma and Noxa). Antimicrobial properties were demonstrated for both tested extracts, with a stronger effect of SOPSS2 extract. Moreover, both extracts showed moderate antiviral properties on norovirus surrogates.


Assuntos
Modelos Biológicos , Triterpenos Pentacíclicos/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Senna/metabolismo , Antraquinonas/química , Antraquinonas/metabolismo , Antraquinonas/farmacologia , Apoptose/efeitos dos fármacos , Reatores Biológicos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Triterpenos Pentacíclicos/química , Triterpenos Pentacíclicos/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/química , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas/química , Senna/química , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo , Ácido Betulínico
17.
Food Chem ; 361: 129901, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34082384

RESUMO

A simple electrochemical immunosensor based on nitrogen-doped graphene and polyamide-amine (GN-PAM) composites was proposed for the detection of the CP4-EPSPS protein in genetically modified (GM) crops. In this immunosensor, the amplification of the detection signal was realized through antibodies labeled with gold nanoparticles (AuNPs). The electrochemical responses of the immunosensor were linear (R2 = 0.9935 and 0.9912) when the GM soybean RRS and maize NK603 content ranged from 0.025% to 1.0% and 0.05% to 1.5%, respectively. The limits of detection for the GM soybean RRS and maize NK603 were as low as 0.01% and 0.03%, respectively. The immunosensor also exhibited high specificity, and satisfactory stability, reproducibility, and accuracy. Our findings indicated that the constructed immunosensor provides a new approach for the sensitive detection of the CP4-EPSPS protein. Notably, the sensor may be applied to other proteins or pathogenic bacteria by simply changing the antibodies, and may also be used for multi-component analysis.


Assuntos
3-Fosfoshikimato 1-Carboxiviniltransferase/genética , Produtos Agrícolas/genética , Imunoensaio/métodos , Plantas Geneticamente Modificadas/genética , Anticorpos Monoclonais/química , Produtos Agrícolas/química , Técnicas Eletroquímicas , Ouro/química , Grafite/química , Limite de Detecção , Nanopartículas Metálicas/química , Plantas Geneticamente Modificadas/química , Poliaminas/química , Reprodutibilidade dos Testes , Glycine max/química , Glycine max/genética , Zea mays/química , Zea mays/genética
18.
Transgenic Res ; 30(3): 283-288, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33864193

RESUMO

An investigation of the potential allergenicity of newly expressed proteins in genetically modified (GM) crops comprises part of the assessment of GM crop safety. However, allergenicity is not completely predictable from a definitive assay result or set of protein characteristics, and scientific opinions regarding the data that should be used to assess allergenicity are continuously evolving. Early studies supported a correlation between the stability of a protein exposed to digestive enzymes such as pepsin and the protein's status as a potential allergen, but over time the conclusions of these earlier studies were not confirmed. Nonetheless, many regulatory authorities, including the European Food Safety Authority (EFSA), continue to require digestibility analyses as a component of GM crop risk assessments. Moreover, EFSA has recently investigated the use of mass spectrometry (MS), to make digestion assays more predictive of allergy risk, because it can detect and identify small undigested peptides. However, the utility of MS is questionable in this context, since known allergenic peptides are unlikely to exist in protein candidates intended for commercial development. These protein candidates are pre-screened by the same bioinformatics processes that are normally used to identify MS targets. Therefore, MS is not a standalone allergen identification method and also cannot be used to predict previously unknown allergenic epitopes. Thus, the suggested application of MS for analysis of digesta does not improve the poor predictive power of digestion assays in identifying allergenic risk.


Assuntos
Alérgenos/isolamento & purificação , Produtos Agrícolas/imunologia , Espectrometria de Massas , Plantas Geneticamente Modificadas/imunologia , Alérgenos/efeitos adversos , Alérgenos/imunologia , Produtos Agrícolas/efeitos adversos , Produtos Agrícolas/química , Inocuidade dos Alimentos , Alimentos Geneticamente Modificados/efeitos adversos , Humanos , Plantas Geneticamente Modificadas/efeitos adversos , Plantas Geneticamente Modificadas/química
19.
J Nutr Biochem ; 92: 108615, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33705954

RESUMO

Vegetables are essential protective diet ingredients that supply ample amounts of minerals, vitamins, carbohydrates, proteins, dietary fiber, and various nutraceutical compounds for protection against various disease conditions. Color is the most important quality parameter for the farmers to access the harvest maturity while for the consumer's reliable indices to define acceptability or rejection. The colored vegetables contain functional compounds like chlorophylls, carotenoids, betalains, anthocyanins, etc. well recognized for their antioxidant, antimicrobial, hypolipidemic, neuroprotective, antiaging, diuretic, and antidiabetic properties. Recently, there has been a shift in food consumption patterns from processed to semi-processed or fresh fruits and vegetables to ensure a healthy disease-free life. This shifted the focus of agriculture scientists and food processors from food security to nutrition security. This has resulted in recent improvements to existing crops like blue tomato, orange cauliflower, colored and/or black carrots, with improved color, and thus enriched bioactive compounds. Exhaustive laboratory trials though are required to document and establish their minimum effective concentrations, bioavailability, and specific health benefits. Efforts should also be directed to breed color-rich cultivars or to improve the existing varieties through conventional and molecular breeding approaches. The present review has been devoted to a better understanding of vegetable colors with specific health benefits and to provide in-hand information about the effect of specific pigment on body organs, the effect of processing on their bioavailability, and recent improvements in colors to ensure a healthy lifestyle.


Assuntos
Compostos Fitoquímicos/análise , Pigmentos Biológicos/análise , Verduras/química , Dieta Saudável , Alimento Funcional , Genes de Plantas , Humanos , Compostos Fitoquímicos/genética , Pigmentos Biológicos/genética , Melhoramento Vegetal , Plantas Geneticamente Modificadas/química , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Verduras/genética , Verduras/crescimento & desenvolvimento
20.
Mikrochim Acta ; 188(4): 125, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33723966

RESUMO

An electrochemiluminescence (ECL) DNA biosensor based on ExoIII exonuclease assistance and hybridization chain reaction (HCR) amplification technology has been constructed. ExoIII exonuclease and triple-helix DNA molecular switch are used in detecting a target in circulation. By combining HCR with AuNPs@DNA, a novel signal probe is built, which enables multiple signal amplification and the high-sensitive detection of transgenic rice BT63 DNA. The Fe3O4@Au solution is added to a magneto-controlled glassy carbon electrode, and sulfhydryl-modified capture DNA (CP) is immobilized on Fe3O4@Au through the Au-S bond. Mercaptoethanol is added to close sites and prevent the nonspecific adsorption of CP on the magnetron glassy carbon electrode. A target DNA is added to a constructed triple-helix DNA molecular centrifuge tube for reaction. Owing to base complementation and the reversible switching of the triple-helix DNA molecular state, the target DNA turns on the triple-helix DNA molecular switch and hybridizes with a long-strand recognition probe (RP) to form a double-stranded DNA (dsDNA). Exonuclease ExoIII is added to specifically recognize and cut the dsDNA and to release the target DNA. The target DNA strand then circulates back completely to open the multiple triple-helix DNA molecular switch, releasing a large number of signal transduction probes (STP). To hybridize with CP, a large amount of STP is added to the electrode. Finally, a AuNPs@DNA signal probe is added to hybridize with STP. H1 and H2 probes are added for the hybridization chain reaction and the indefinite extension of the primer strand on the probe. Then, tris-(bipyridyl)ruthenium(II) is added for ECL signal detection with PBS-tri-n-propylamine as the base solution. In the concentration range 1.0 × 10-16 to 1.0 × 10-8 mol/L of the target DNA, good linear relationship was achieved with the corresponding ECL signal. The detection limit is 3.6 × 10-17 mol/L. The spiked recovery of the rice samples range from 97.2 to 101.5%. The sensor is highly sensitive and has good selectivity, stability, and reproducibility. A novel electrochemiluminescence biosensor with extremely higher sensitivity was prepared for the determination of ultra-trace amount transgenic rice BT63 DNA. The sensitivity was significantly improved by multiple signal enhancements. Firstly, a large number of signal transduction probes are released when the triple-helix DNA molecular switch unlock after recycles assisted by ExoIII exonuclease under target BT63 DNA; and then the signal transduction probes hybridize with the signal probes of AuNPs@(DNA-HCR) produced through hybridization chain reaction. Finally, the signal probes which were embedded with a large amount of electrochemiluminescence reagent produce high luminescence intensity. The detection limit was 3.6 × 10-17 mol/L, which is almost the most sensitive methods reported.


Assuntos
Técnicas Biossensoriais/métodos , DNA Bacteriano/análise , Exodesoxirribonucleases/química , Substâncias Luminescentes/química , Nanopartículas de Magnetita/química , Toxinas de Bacillus thuringiensis/genética , Técnicas Biossensoriais/instrumentação , Sondas de DNA/química , Sondas de DNA/genética , DNA Bacteriano/química , DNA Bacteriano/genética , Técnicas Eletroquímicas/instrumentação , Técnicas Eletroquímicas/métodos , Eletrodos , Endotoxinas/genética , Ouro/química , Proteínas Hemolisinas/genética , Ácidos Nucleicos Imobilizados/química , Ácidos Nucleicos Imobilizados/genética , Limite de Detecção , Medições Luminescentes/métodos , Hibridização de Ácido Nucleico , Compostos Organometálicos/química , Oryza/química , Plantas Geneticamente Modificadas/química , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...