Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 171
Filtrar
1.
Plant Sci ; 346: 112171, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38969140

RESUMO

The escalating salinity levels in cultivable soil pose a significant threat to agricultural productivity and, consequently, human sustenance. This problem is being exacerbated by natural processes and human activities, coinciding with a period of rapid population growth. Developing halophytic crops is needed to ensure food security is not impaired and land resources can be used sustainably. Evolution has created many close halophyte relatives of our major glycophytic crops, such as Puccinellia tenuiflora (relative of barley and wheat), Oryza coarctata (relative of rice) and Glycine soja (relative of soybean). There are also some halophytes have been subjected to semi-domestication and are considered as minor crops, such as Chenopodium quinoa. In this paper, we examine the prevailing comprehension of robust salinity resilience in halophytes. We summarize the existing strategies and technologies that equip researchers with the means to enhance the salt tolerance capabilities of primary crops and investigate the genetic makeup of halophytes.


Assuntos
Produtos Agrícolas , Salinidade , Tolerância ao Sal , Plantas Tolerantes a Sal , Plantas Tolerantes a Sal/fisiologia , Plantas Tolerantes a Sal/metabolismo , Plantas Tolerantes a Sal/crescimento & desenvolvimento , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/metabolismo
2.
Sci Rep ; 14(1): 16737, 2024 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-39033227

RESUMO

In this comprehensive investigation, we successfully isolated and characterized 40 distinct plant-associated halotolerant bacteria strains obtained from three halophytic plant species: Tamarix nilotica, Suaeda pruinosa, and Arthrocnemum macrostachyum. From this diverse pool of isolates, we meticulously selected five exceptional plant-associated halotolerant bacteria strains through a judiciously designed seed biopriming experiment and then identified molecularly. Bacillus amyloliquefaciens DW6 was isolated from A. macrostachyum. Three bacteria (Providencia rettgeri DW3, Bacillus licheniformis DW4, and Salinicoccus sesuvii DW5) were isolated for the first time from T. nilotica, S. pruinosa and S. pruinosa, respectively. Paenalcaligenes suwonensis DW7 was isolated for the first time from A. macrostachyum. These plant-associated halotolerant bacteria exhibited growth-promoting activities, including phosphate solubilization, nitrogen fixation, and production of bioactive compounds, i.e., ammonia, phytohormones, hydrogen cyanide, siderophores, and exopolysaccharides. A controlled laboratory experiment was conducted to reduce the detrimental impact of soil salinity. Vicia faba seedlings were inoculated individually or in mixtures by the five most effective plant-associated halotolerant bacteria to reduce the impact of salt stress and improve growth parameters. The growth parameters were significantly reduced due to the salinity stress in the control samples, compared to the experimental ones. The unprecedented novelty of our findings is underscored by the demonstrable efficacy of co-inoculation with these five distinct bacterial types as a pioneering bio-approach for countering the deleterious effects of soil salinity on plant growth. This study thus presents a remarkable contribution to the field of plant science and offers a promising avenue for sustainable agriculture in saline environments.


Assuntos
Salinidade , Vicia faba , Vicia faba/crescimento & desenvolvimento , Vicia faba/microbiologia , Plantas Tolerantes a Sal/microbiologia , Plantas Tolerantes a Sal/crescimento & desenvolvimento , Fixação de Nitrogênio , Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Bactérias/classificação , Tamaricaceae/microbiologia , Tamaricaceae/crescimento & desenvolvimento , Chenopodiaceae/microbiologia , Chenopodiaceae/crescimento & desenvolvimento , Microbiologia do Solo , Tolerância ao Sal , Fosfatos/metabolismo
3.
Arch Microbiol ; 206(8): 341, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38967784

RESUMO

Soil salinization poses a great threat to global agricultural ecosystems, and finding ways to improve the soils affected by salt and maintain soil health and sustainable productivity has become a major challenge. Various physical, chemical and biological approaches are being evaluated to address this escalating environmental issue. Among them, fully utilizing salt-tolerant plant growth-promoting bacteria (PGPB) has been labeled as a potential strategy to alleviate salt stress, since they can not only adapt well to saline soil environments but also enhance soil fertility and plant development under saline conditions. In the last few years, an increasing number of salt-tolerant PGPB have been excavated from specific ecological niches, and various mechanisms mediated by such bacterial strains, including but not limited to siderophore production, nitrogen fixation, enhanced nutrient availability, and phytohormone modulation, have been intensively studied to develop microbial inoculants in agriculture. This review outlines the positive impacts and growth-promoting mechanisms of a variety of salt-tolerant PGPB and opens up new avenues to commercialize cultivable microbes and reduce the detrimental impacts of salt stress on plant growth. Furthermore, considering the practical limitations of salt-tolerant PGPB in the implementation and potential integration of advanced biological techniques in salt-tolerant PGPB to enhance their effectiveness in promoting sustainable agriculture under salt stress are also accentuated.


Assuntos
Bactérias , Produtos Agrícolas , Estresse Salino , Microbiologia do Solo , Produtos Agrícolas/microbiologia , Produtos Agrícolas/crescimento & desenvolvimento , Bactérias/metabolismo , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Desenvolvimento Vegetal , Tolerância ao Sal , Reguladores de Crescimento de Plantas/metabolismo , Solo/química , Plantas Tolerantes a Sal/microbiologia , Plantas Tolerantes a Sal/crescimento & desenvolvimento , Salinidade
4.
Sci Rep ; 14(1): 13199, 2024 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-38851793

RESUMO

The increasing global phenomenon of soil salinization has prompted heightened interest in the physiological ecology of plant salt and alkali tolerance. Halostachys caspica belonging to Amaranthaceae, an exceptionally salt-tolerant halophyte, is widely distributed in the arid and saline-alkali regions of Xinjiang, in Northwest China. Soil salinization and alkalinization frequently co-occur in nature, but very few studies focus on the interactive effects of various salt and alkali stress on plants. In this study, the impacts on the H. caspica seed germination, germination recovery and seedling growth were investigated under the salt and alkali stress. The results showed that the seed germination percentage was not significantly reduced at low salinity at pH 5.30-9.60, but decreased with elevated salt concentration and pH. Immediately after, salt was removed, ungerminated seeds under high salt concentration treatment exhibited a higher recovery germination percentage, indicating seed germination of H. caspica was inhibited under the condition of high salt-alkali stress. Stepwise regression analysis indicated that, at the same salt concentrations, alkaline salts exerted a more severe inhibition on seed germination, compared to neutral salts. The detrimental effects of salinity or high pH alone were less serious than their combination. Salt concentration, pH value, and their interactions had inhibitory effects on seed germination, with salinity being the decisive factor, while pH played a secondary role in salt-alkali mixed stress.


Assuntos
Álcalis , Amaranthaceae , Germinação , Plantas Tolerantes a Sal , Sementes , Germinação/efeitos dos fármacos , Plantas Tolerantes a Sal/crescimento & desenvolvimento , Amaranthaceae/crescimento & desenvolvimento , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Concentração de Íons de Hidrogênio , Plântula/crescimento & desenvolvimento , Plântula/efeitos dos fármacos , Salinidade , Estresse Fisiológico , Cloreto de Sódio/farmacologia , Estresse Salino , Tolerância ao Sal
5.
BMC Plant Biol ; 24(1): 604, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926703

RESUMO

BACKGROUND AND AIMS: Seed heteromorphism is a plant strategy that an individual plant produces two or more distinct types of diaspores, which have diverse morphology, dispersal ability, ecological functions and different effects on plant life history traits. The aim of this study was to test the effects of seasonal soil salinity and burial depth on the dynamics of dormancy/germination and persistence/depletion of buried trimorphic diaspores of a desert annual halophyte Atriplex centralasiatica. METHODS: We investigated the effects of salinity and seasonal fluctuations of temperature on germination, recovery of germination and mortality of types A, B, C diaspores of A. centralasiatica in the laboratory and buried diaspores in situ at four soil salinities and three depths. Diaspores were collected monthly from the seedbank from December 2016 to November 2018, and the number of viable diaspores remaining (not depleted) and their germinability were determined. RESULTS: Non-dormant type A diaspores were depleted in the low salinity "window" in the first year. Dormant diaspore types B and C germinated to high percentages at 0.3 and 0.1 mol L-1 soil salinity, respectively. High salinity and shallow burial delayed depletion of diaspore types B and C. High salinity delayed depletion time of the three diaspore types and delayed dormancy release of types B and C diaspores from autumn to spring. Soil salinity modified the response of diaspores in the seedbank by delaying seed dormancy release in autum and winter and by providing a low-salt concentration window for germination of non-dormant diaspores in spring and early summer. CONCLUSIONS: Buried trimorphic diaspores of annual desert halophyte A. centralasiatica exhibited diverse dormancy/germination behavior in respond to seasonal soil salinity fluctuation. Prolonging persistence of the seedbank and delaying depletion of diaspores under salt stress in situ primarily is due to inhibition of dormancy-break. The differences in dormancy/germination and seed persistence in the soil seedbank may be a bet-hadging strategy adapted to stressful temporal and spatial heterogeneity, and allows A. centralasiatica to persist in the unpredictable cold desert enevironment.


Assuntos
Atriplex , Germinação , Salinidade , Plantas Tolerantes a Sal , Estações do Ano , Sementes , Solo , Germinação/fisiologia , Plantas Tolerantes a Sal/fisiologia , Plantas Tolerantes a Sal/crescimento & desenvolvimento , China , Solo/química , Sementes/fisiologia , Sementes/crescimento & desenvolvimento , Atriplex/fisiologia , Atriplex/crescimento & desenvolvimento , Banco de Sementes , Dormência de Plantas/fisiologia , Temperatura
6.
J Basic Microbiol ; 64(6): e2300767, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38616707

RESUMO

In the current study salt tolerant-plant growth-promoting rhizobacteria (ST-PGPR) Pseudomonas atacamensis KSS-6, selected on the basis of prominent plant growth-promoting (PGP) and stress tolerance properties was tested as bioinoculant to improve yield of rice grown in saline soil. The ST-PGPR KSS-6 was capable of maintaining the PGP traits up to 200 mM NaCl, however, higher salt stress conditions affected these activities. The study was designed to determine the effect of developed talc-based bioformulation using KSS-6 along with organic manure (OM) on growth and yield of paddy under saline conditions. Bioformulation broadcasting was also done to examine the effect on soil properties. It was found that the combinatorial treatment showed positive impact on growth and yield of rice under saline conditions. Co-application of KSS-6 with OM showed maximum increment in growth, chlorophyll content, plant fresh weight, and dry weight as compared to untreated control plants. Furthermore, the combinatorial treatment improved the nutrient content (P, K, Zn, Fe, Mg, and Mn) by more than 35% and enhanced the biochemical parameters such as proline, flavonoids, carbohydrates, protein, dietary fiber, and antioxidant content of rice grains by more than 32%. Soil parameters including pH and electrical conductivity (EC), moisture content, total organic carbon, OM, sodium, and chloride ions were also improved upon treatment. There was significant lowering of EC from 7.43 to 4.3 dS/m when combination of OM and bacteria were applied. These findings suggest that the application of KSS-6 in the form of bioinoculant could be a promising strategy to mitigate negative impacts of salt stress and enhance the yield and nutritional properties of rice grown in degraded and saline soil.


Assuntos
Esterco , Oryza , Pseudomonas , Microbiologia do Solo , Solo , Oryza/crescimento & desenvolvimento , Oryza/microbiologia , Oryza/metabolismo , Pseudomonas/metabolismo , Pseudomonas/crescimento & desenvolvimento , Esterco/microbiologia , Solo/química , Estresse Salino , Tolerância ao Sal , Nutrientes/metabolismo , Plantas Tolerantes a Sal/crescimento & desenvolvimento , Plantas Tolerantes a Sal/microbiologia , Clorofila/metabolismo , Salinidade , Cloreto de Sódio/farmacologia
7.
Sci Rep ; 12(1): 1841, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35115595

RESUMO

The pecan is a salt-alkali-tolerant plant, and its fruit and wood have high economic value. This study aimed to explore the molecular mechanisms responsible for salt stress tolerance in the pecan grown under hydroponic conditions to simulate salt stress. The results showed that the photosynthetic rate (Pn) was reduced in response to salt stress, while the intercellular carbon dioxide concentrations (Ci) increased. The response of the pecan to salt stress was measured using iTRAQ (isobaric tags for relative or absolute quantitation) and LC/MS (liquid chromatography and mass spectrometry) non-targeted metabolomics technology. A total of 198 differentially expressed proteins (65 down-regulated and 133 up-regulated) and 538 differentially expressed metabolites (283 down-regulated and 255 up-regulated) were identified after exposure to salt stress for 48 h. These genes were associated with 21 core pathways, shown by Kyoto Encyclopedia of Genes and Genomes annotation and enrichment, including the metabolic pathways involved in nucleotide sugar and amino sugar metabolism, amino acid biosynthesis, starch and sucrose metabolism, and phenylpropane biosynthesis. In addition, analysis of interactions between the differentially expressed proteins and metabolites showed that two key nodes of the salt stress regulatory network, L-fucose and succinate, were up-regulated and down-regulated, respectively, suggesting that these metabolites may be significant for adaptations to salt stress. Finally, several key proteins were further verified by parallel reaction monitoring. In conclusion, this study used physiological, proteomic, and metabolomic methods to provide an important preliminary foundation for improving the salt tolerance of pecans.


Assuntos
Carya/metabolismo , Metaboloma , Metabolômica , Proteínas de Plantas/metabolismo , Proteoma , Proteômica , Tolerância ao Sal , Plantas Tolerantes a Sal/metabolismo , Dióxido de Carbono , Carya/genética , Carya/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Fotossíntese , Proteínas de Plantas/genética , Mapas de Interação de Proteínas , Salinidade , Plantas Tolerantes a Sal/genética , Plantas Tolerantes a Sal/crescimento & desenvolvimento , Solo
8.
Int J Mol Sci ; 22(21)2021 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-34769244

RESUMO

Mesembryanthemum crystallinum L. (common ice plant) is an edible halophyte. However, if ice plants are used to phytoremediate salinity soil, there are problems of slow initial growth, and a long period before active NaCl uptake occurs under higher salinity conditions. Application of endophytic bacteria may improve the problem, but there remain gaps in our understanding of how endophytic bacteria affect the growth and the biochemical and physiological characteristics of ice plants. The aims of this study were to identify growth-promoting endophytic bacteria from the roots of ice plants and to document the metabolomic response of ice plants after application of selected endophytic bacteria. Two plant growth-promoting endophytic bacteria were selected on the basis of their ability to promote ice plant growth. The two strains putatively identified as Microbacterium spp. and Streptomyces spp. significantly promoted ice plant growth, at 2-times and 2.5-times, respectively, compared with the control and also affected the metabolome of ice plants. The strain of Microbacterium spp. resulted in increased contents of metabolites related to the tricarboxylic acid cycle and photosynthesis. The effects of salt stress were alleviated in ice plants inoculated with the endobacterial strains, compared with uninoculated plants. A deeper understanding of the complex interplay among plant metabolites will be useful for developing microbe-assisted soil phytoremediation strategies, using Mesembryanthemum species.


Assuntos
Endófitos/metabolismo , Mesembryanthemum , Metabolômica , Microbacterium/metabolismo , Raízes de Plantas , Plantas Tolerantes a Sal , Microbiologia do Solo , Streptomyces/metabolismo , Mesembryanthemum/crescimento & desenvolvimento , Mesembryanthemum/microbiologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Plantas Tolerantes a Sal/crescimento & desenvolvimento , Plantas Tolerantes a Sal/microbiologia
9.
BMC Plant Biol ; 21(1): 489, 2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34696735

RESUMO

BACKGROUND: Soil salinization is causing ecosystem degradation and crop yield reduction worldwide, and elucidation of the mechanism of salt-tolerant plants to improve crop yield is highly significant. Podocarpus macrophyllus is an ancient gymnosperm species with a unique environmental adaptation strategy that may be attributed to its lengthy evolutionary process. The present study investigated the physiological and molecular responses of P. macrophyllus plants to salt stress by analyzing its photosynthetic system and antioxidant enzyme activity. We also analyzed the differentially expressed genes (DEGs) in P. macrophyllus under salt stress using RNA sequencing and de novo transcriptome assembly. RESULTS: Salt treatment significantly affected the photosynthetic system in P. macrophyllus seedlings, which decreased chlorophyll content, altered chloroplast ultrastructure, and reduced photosynthesis. The activities of antioxidant enzymes increased significantly following salt stress treatment. Transcriptome analysis showed that salt stress induced a large number of genes involved in multiple metabolic and biological regulation processes. The transcription levels of genes that mediate phytohormone transport or signaling were altered. K+ and Ca2+ transporter-encoding genes and the MYB transcription factor were upregulated under salt stress. However, the genes involved in cell wall biosynthesis and secondary metabolism were downregulated. CONCLUSION: Our research identified some important pathways and putative genes involved in salt tolerance in P. macrophyllus and provided clues for elucidating the mechanism of salt tolerance and the utilization of the salt tolerance genes of P. macrophyllus for crop improvement.


Assuntos
Cycadopsida/crescimento & desenvolvimento , Cycadopsida/genética , Estresse Salino/genética , Estresse Salino/fisiologia , Plantas Tolerantes a Sal/crescimento & desenvolvimento , Plantas Tolerantes a Sal/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas
10.
J Microbiol Biotechnol ; 31(11): 1526-1532, 2021 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-34528914

RESUMO

Suaeda australis, Phragmites australis, Suaeda maritima, Suaeda glauca Bunge, and Limonium tetragonum in the Seocheon salt marsh on the west coast of the Korean Penincula were sampled in order to identify the endophytes inhabiting the roots. A total of 128 endophytic fungal isolates belonging to 31 different genera were identified using the fungal internal transcribed spacer (ITS) regions and the 5.8S ribosomal RNA gene. Fusarium, Paraconiothyrium and Alternaria were the most commonly isolated genera in the plant root samples. Various diversity indicators were used to assess the diversity of the isolated fungi. Pure cultures containing each of the 128 endophytic fungi, respectively, were tested for the plant growth-promoting abilities of the fungus on Waito-C rice germinals. The culture filtrate of the isolate Lt-1-3-3 significantly increased the growth of shoots compared to the shoots treated with the control. Lt-1-3-3 culture filtrate was analyzed and showed the presence of gibberellins (GA1 2.487 ng/ml, GA3 2.592 ng/ml, GA9 3.998, and GA24 6.191 ng/ml). The culture filtrate from the Lt-1-3-3 fungal isolate produced greater amounts of GA9 and GA24 than the wild-type Gibberella fujikuroi, a fungus known to produce large amounts of gibberellins. By the molecular analysis, fungal isolate Lt-1-3-3 was identified as Gibberella intermedia, with 100% similarity.


Assuntos
Endófitos/classificação , Plantas Tolerantes a Sal/microbiologia , Alternaria/classificação , Alternaria/isolamento & purificação , Ascomicetos/classificação , Ascomicetos/isolamento & purificação , DNA Fúngico/genética , DNA Espaçador Ribossômico/genética , Endófitos/isolamento & purificação , Fusarium/classificação , Fusarium/isolamento & purificação , Giberelinas , Oryza/crescimento & desenvolvimento , Oryza/microbiologia , Desenvolvimento Vegetal , Raízes de Plantas/microbiologia , RNA Ribossômico 5,8S/genética , República da Coreia , Plantas Tolerantes a Sal/crescimento & desenvolvimento , Áreas Alagadas
11.
Molecules ; 26(15)2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34361696

RESUMO

The nutritional composition and productivity of halophytes is strongly related to the biotic/abiotic stress to which these extremophile salt tolerant plants are subjected during their cultivation cycle. In this study, two commercial halophyte species (Inula crithmoides and Mesembryanthemum nodiflorum) were cultivated at six levels of salinity using a soilless cultivation system. In this way, it was possible to understand the response mechanisms of these halophytes to salt stress. The relative productivity decreased from the salinities of 110 and 200 mmol L-1 upwards for I. crithmoides and M. nodiflorum, respectively. Nonetheless, the nutritional profile for human consumption remained balanced. In general, I. crithmoides vitamin (B1 and B6) contents were significantly higher than those of M. nodiflorum. For both species, ß-carotene and lutein were induced by salinity, possibly as a response to oxidative stress. Phenolic compounds were more abundant in plants cultivated at lower salinities, while the antioxidant activity increased as a response to salt stress. Sensory characteristics were evaluated by a panel of culinary chefs showing a preference for plants grown at the salt concentration of 350 mmol L-1. In summary, salinity stress was effective in boosting important nutritional components in these species, and the soilless system promotes the sustainable and safe production of halophyte plants for human consumption.


Assuntos
Inula/química , Inula/crescimento & desenvolvimento , Mesembryanthemum/química , Mesembryanthemum/crescimento & desenvolvimento , Valor Nutritivo , Salinidade , Plantas Tolerantes a Sal/química , Plantas Tolerantes a Sal/crescimento & desenvolvimento , Antioxidantes/farmacologia , Dieta Vegetariana , Humanos , Luteína/análise , Minerais/análise , Estresse Oxidativo , Fenóis/análise , Extratos Vegetais/farmacologia , Piridoxina/análise , Estresse Salino , Taninos/análise , Tiamina/análise , beta Caroteno/análise
12.
Int J Mol Sci ; 22(5)2021 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-33800795

RESUMO

Plant growth and development are challenged by biotic and abiotic stresses including salinity and heat stresses. For Populus simonii × P. nigra as an important greening and economic tree species in China, increasing soil salinization and global warming have become major environmental challenges. We aim to unravel the molecular mechanisms underlying tree tolerance to salt stress and high temprerature (HT) stress conditions. Transcriptomics revealed that a PsnNAC036 transcription factor (TF) was significantly induced by salt stress in P. simonii × P. nigra. This study focuses on addressing the biological functions of PsnNAC036. The gene was cloned, and its temporal and spatial expression was analyzed under different stresses. PsnNAC036 was significantly upregulated under 150 mM NaCl and 37 °C for 12 h. The result is consistent with the presence of stress responsive cis-elements in the PsnNAC036 promoter. Subcellular localization analysis showed that PsnNAC036 was targeted to the nucleus. Additionally, PsnNAC036 was highly expressed in the leaves and roots. To investigate the core activation region of PsnNAC036 protein and its potential regulatory factors and targets, we conducted trans-activation analysis and the result indicates that the C-terminal region of 191-343 amino acids of the PsnNAC036 was a potent activation domain. Furthermore, overexpression of PsnNAC036 stimulated plant growth and enhanced salinity and HT tolerance. Moreover, 14 stress-related genes upregulated in the transgenic plants under high salt and HT conditions may be potential targets of the PsnNAC036. All the results demonstrate that PsnNAC036 plays an important role in salt and HT stress tolerance.


Assuntos
Genes de Plantas , Resposta ao Choque Térmico/genética , Proteínas de Plantas/fisiologia , Populus/genética , Estresse Salino/genética , Plantas Tolerantes a Sal/genética , Fatores de Transcrição/fisiologia , Sequência de Aminoácidos , Clorofila/biossíntese , Cruzamentos Genéticos , Regulação da Expressão Gênica de Plantas , Temperatura Alta , Proteínas Nucleares/genética , Proteínas Nucleares/fisiologia , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Populus/fisiologia , Regiões Promotoras Genéticas/genética , Salinidade , Plantas Tolerantes a Sal/crescimento & desenvolvimento , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade da Espécie , Frações Subcelulares/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Fatores de Transcrição/genética , Ativação Transcricional
13.
Plant Sci ; 304: 110819, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33568309

RESUMO

The euhalophyte species Salicornia europaea is cultivated for oilseed and as a fodder crop in various parts of the world. In saline coastal environments it possesses great potential for the subsistence of the most disadvantaged farmers. We investigated the effect of salinity levels in irrigation water on the germination capacity, shoot biomass and seed productivity as well as diverse quality traits (nitrogen content in shoots and seeds and fatty acids, in seeds) and physiological traits (stable carbon and nitrogen isotopes and ion content) of two accessions collected in the United Arab Emirates (UAE). The three salinity levels tested were irrigation with fresh water (0.3 dS m-1), brackish water (25 dS m-1) and sea water (40 dS m-1). In addition, a hypersaline condition (80 dS m-1) was also tested for germination. The best germination rates were achieved with seeds exposed to fresh and brackish water, while imbibition with sea water decreased germination by half and hypersaline water inhibited it almost totally. However, the best irrigation regime in terms of biomass and seed yield involved brackish water. Moreover, rising salinity in the irrigation increased the stable isotope composition of carbon (δ13C) and nitrogen (δ15N), together with the Na+ and K+ of shoots and seeds, and the lipid levels of seeds, while the total nitrogen content and the profile of major fatty acids of seeds did not change. Differences between the two ecotypes existed for growth and seed yield with the best ecotype exhibiting lower δ13C and higher K+ in both shoots and seeds, lower Na+ and higher δ15N in shoots, and lower N in seeds, together with differences in major fatty acids. Physiological mechanisms behind the response to irrigation salinity and the ecotypic differences are discussed in terms of photosynthetic carbon and nitrogen metabolism.


Assuntos
Chenopodiaceae/crescimento & desenvolvimento , Sementes/crescimento & desenvolvimento , Irrigação Agrícola , Carbono/metabolismo , Chenopodiaceae/metabolismo , Chenopodiaceae/fisiologia , Ecótipo , Ácidos Graxos/metabolismo , Germinação , Nitrogênio/metabolismo , Salinidade , Estresse Salino , Plantas Tolerantes a Sal/crescimento & desenvolvimento , Plantas Tolerantes a Sal/metabolismo , Plantas Tolerantes a Sal/fisiologia , Sementes/metabolismo , Sementes/fisiologia
14.
Artigo em Inglês | MEDLINE | ID: mdl-33631342

RESUMO

Mercury is one of the major pollutants in the ocean, selenium causes toxicity beyond a certain limit, but there are few comparative toxic studies between them in halophytes. The study was to investigate the toxic effects of selenium (Se4+) and mercury (Hg2+) in halophyte Suaeda salsa at the level of genes, proteins and metabolites after exposure for 7 days. By integrating the results of proteomics and metabolomics, the pathway changed under different treatments were revealed. In Se4+-treated group, the changed 3 proteins and 10 metabolites participated in the process of substance metabolism (amino acid, pyrimidine), citrate cycle, pentose phosphate pathway, photosynthesis, energy, and protein biosynthesis. In Hg2+-treated group, the changed 10 proteins and 10 metabolites were related to photosynthesis, glycolysis, substance metabolism (cysteine and methionine, amino acid, pyrimidine), ATP synthesis and binding, tolerance, sugar-phosphatase activity, and citrate cycle. In Se4++ Hg2+-treated group, the changed 5 proteins an 12 metabolites involved in stress defence, iron ion binding, mitochondrial respiratory chain, structural constituent of ribosome, citrate cycle, and amino acid metabolism. Furthermore, the separate and combined selenium and mercury both inhibited growth of S. salsa, enhanced activity of antioxidant enzymes (superoxide dismutase, peroxidase and catalase), and disturbed osmotic regulation through the genes of choline monoxygenase and betaine aldehyde dehydrogenase. Our experiments also showed selenium could induce synergistic effects in S. salsa. In all, we successfully characterized the effects of selenium and mercury in plant which was helpful to evaluate the toxicity and interaction of marine pollutants.


Assuntos
Chenopodiaceae/efeitos dos fármacos , Mercúrio/toxicidade , Proteínas de Plantas/metabolismo , Plantas Tolerantes a Sal , Selênio/toxicidade , Poluentes Químicos da Água/toxicidade , Chenopodiaceae/crescimento & desenvolvimento , Metabolômica , Plantas Tolerantes a Sal/efeitos dos fármacos , Plantas Tolerantes a Sal/crescimento & desenvolvimento
15.
J Microbiol Biotechnol ; 31(3): 408-418, 2021 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-33397833

RESUMO

The diversity and plant growth-promoting ability of fungal endophytes that are associated with five halophytic plant species (Phragmites australis, Suaeda australis, Limonium tetragonum, Suaeda glauca Bunge, and Suaeda maritima) growing in the Buan salt marsh on the west coast of South Korea have been explored. About 188 fungal strains were isolated from these plant samples' roots and were then studied with the use of the internal transcribed spacer (ITS) region (ITS1-5.8S-ITS2). The endophytic fungal strains belonged to 33 genera. Alternaria (18%) and Fusarium (12.8%), of the classes Dothideomycetes and Sordariomycetes, were most rampant in the coastal salt marsh plants. There was a higher diversity in fungal endophytes that are isolated from S. glauca Bunge than in isolates from other coastal salt marsh plants. Plant growth-promoting experiments with the use of Waito-C rice seedlings show that some of the fungal strains could encourage a more efficient growth than others. Furthermore, gibberellins (GAs) GA1, GA3, and GA9 were seen in the Sa-1-4-3 isolate (Acrostalagmus luteoalbus) culture filtrate with a gas chromatography/mass spectrometry.


Assuntos
Alternaria , Endófitos/classificação , Fusarium , Plantas Tolerantes a Sal/microbiologia , Áreas Alagadas , Alternaria/classificação , Alternaria/isolamento & purificação , Ascomicetos/metabolismo , Biodiversidade , DNA Fúngico/genética , Endófitos/isolamento & purificação , Fusarium/classificação , Fusarium/isolamento & purificação , Giberelinas/metabolismo , Oryza/microbiologia , Filogenia , Reguladores de Crescimento de Plantas , Raízes de Plantas/microbiologia , Reação em Cadeia da Polimerase , República da Coreia , Plantas Tolerantes a Sal/crescimento & desenvolvimento , Análise de Sequência de DNA , Simbiose
16.
Molecules ; 27(1)2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-35011260

RESUMO

Halophytes have been characterized as a potential resource for fiber, food, fodder, and bioactive compounds. Proximate composition, bioactive compounds, and antioxidant activity of five wild dominant halophytes (Arthrocnemummacrostachyum, Halocnemumstrobilaceum, Limoniastrummonopetalum, Limoniastrumpruinosum, and Tamarix nilotica) naturally growing along the Nile Delta coast were assessed. The soil supporting these halophytes was sandy to sand-silty, alkaline, with low organic carbon, and relatively high CaCO3. H. strobilaceum attained the highest moisture content, ash, crude fiber, lipids, and total soluble sugars. L. monopetalum showed the highest content of crude protein (18.00%), while T. nilotica had the highest content of total carbohydrates. The studied halophytes can be ranked according to their nutritive value as follows: H.strobilaceum > L.monopetalum > A.macrostachyum > L.pruinosum > T. nilotica. A. macrostachyum attained the highest amount of Na+, K+, Ca2+, and Mg2+. A. macrostachyum showed a high content of phenolic compounds, while H.strobilaceum was rich in tannins and saponin contents. The MeOH extract of A. macrostachyum and H. strobilaceum exhibited substantial antioxidant activity. The present results showed that the studied halophytes could be considered as candidates for forage production or used as green eco-friendly natural resources for bioactive compounds.


Assuntos
Antioxidantes/química , Antioxidantes/farmacologia , Ecossistema , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Plantas Tolerantes a Sal/química , Geografia , Fenótipo , Plantas Tolerantes a Sal/crescimento & desenvolvimento , Plantas Tolerantes a Sal/metabolismo , Metabolismo Secundário , Solo/química
17.
Microbiol Res ; 242: 126616, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33115624

RESUMO

Rice (Oryza sativa L.) growth and productivity has been negatively affected due to high soil salinity. However, some salt-tolerant plant growth-promoting bacteria (ST-PGPB) enhance crop growth and reduce the negative impacts of salt stress through regulation of some biochemical, physiological, and molecular features. Total thirty six ST-PGPB were isolated from sodic soil of eastern Uttar Pradesh, India, and screened for salt tolerance at different salt (NaCl) concentrations up to 2000 millimolar (mM). Out of thirty-six, thirteen strains indicated better growth and plant growth properties (PGPs) in NaCl amended medium. Among thirteen, one most effective Bacillus pumilus strain JPVS11 was molecularly characterized, which showed potential PGPs, such as indole-3-acetic acid (IAA),1-aminocyclo propane-1-carboxylicacid (ACC) deaminase activity, P-solubilization, proline accumulation and exopolysaccharides (EPS) production at different concentrations of NaCl (0 -1200 mM). Pot experiment was conducted on rice (Variety CSR46) at different NaCl concentrations (0, 50, 100, 200, and 300 mM) with and without inoculation of Bacillus pumilus strain JPVS11. At elevated concentrations of NaCl, the adverse effects on chlorophyll content, carotenoids, antioxidant activity was recorded in non-inoculated (only NaCl) plants. However, inoculation of Bacillus pumilus strain JPVS11 showed positive adaption and improve growth performance of rice as compared to non-inoculated in similar conditions. A significant (P < 0.05) enhancement plant height (12.90-26.48%), root length (9.55-23.09%), chlorophyll content (10.13-27.24%), carotenoids (8.38-25.44%), plant fresh weight (12.33-25.59%), and dry weight (8.66-30.89%) were recorded from 50 to 300 mM NaCl concentration in inoculated plants as compared to non-inoculated. Moreover, the plants inoculated with Bacillus pumilus strain JPVS11showed improvement in antioxidant enzyme activities of catalase (15.14-32.91%) and superoxide dismutase (8.68-26.61%). Besides, the significant improvement in soil enzyme activities, such as alkaline phosphatase (18.37-53.51%), acid phosphatase (28.42-45.99%), urease (14.77-47.84%), and ß-glucosidase (25.21-56.12%) were recorded in inoculated pots as compared to non-inoculated. These results suggest that Bacillus pumilus strain JPVS11 is a potential ST-PGPB for promoting plant growth attributes, soil enzyme activities, microbial counts, and mitigating the deleterious effects of salinity in rice.


Assuntos
Bacillus pumilus/fisiologia , Oryza/crescimento & desenvolvimento , Oryza/microbiologia , Desenvolvimento Vegetal , Estresse Salino/fisiologia , Plantas Tolerantes a Sal/crescimento & desenvolvimento , Plantas Tolerantes a Sal/microbiologia , Solo/química , Antioxidantes , Bacillus pumilus/classificação , Bacillus pumilus/genética , Bacillus pumilus/isolamento & purificação , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Clorofila , Cianeto de Hidrogênio/metabolismo , Ácidos Indolacéticos , Fixação de Nitrogênio , Fosfatos/metabolismo , Prolina/metabolismo , Salinidade , Tolerância ao Sal/fisiologia , Sementes/microbiologia , Sideróforos/metabolismo , Microbiologia do Solo , Estresse Fisiológico
18.
Plant Sci ; 302: 110704, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33288017

RESUMO

Arabidopsis thaliana TRY is a negative regulator of trichome differentiation that promotes root hair differentiation. Here, we established that LbTRY, from the recretohalophyte Limonium bicolor, is a typical MYB transcription factor that exhibits transcriptional activation activity and locates in nucleus. By in situ hybridization in L. bicolor, LbTRY may be specifically positioned in salt gland of the expanded leaves. LbTRY expression was the highest in mature leaves and lowest under NaCl treatment. For functional assessment, we heterologously expressed LbTRY in wild-type and try29760 mutant Arabidopsis plants. Epidermal differentiation was remarkably affected in the transgenic wild-type line, as was increased root hair development. Complementation of try29760 with LbTRY under both 35S and LbTRY specific promoter restored the wild-type phenotype. qRT-PCR analysis suggested that AtGL3 and AtZFP5 promote root hair cell fate in lines heterologously producing LbTRY. In addition, four genes (AtRHD6, AtRSL1, AtLRL2, and AtLRL3) involved in root hair initiation and elongation were upregulated in the transgenic lines. Furthermore, LbTRY specifically increased the salt sensitivity of the transgenic lines. The transgenic and complementation lines showed poor germination rates and reduced root lengths, whereas the mutant unexpectedly fared the best under a range of NaCl treatments. Under salt stress, the transgenic seedlings accumulated more MDA and Na+ and less proline and soluble sugar than try29760. Thus, when heterologously expressed in Arabidopsis, LbTRY participates in hair development, similar to other MYB proteins, and specifically reduces salt tolerance by increasing ion accumulation and reducing osmolytes. The expression of salt-tolerance marker genes (SOS1, SOS2, SOS3 and P5CS1) was significant reduced in the transgenic lines. More will be carried by downregulating expression of TRY homologs in crops to improve salt tolerance.


Assuntos
Osmorregulação/genética , Proteínas de Plantas/fisiologia , Raízes de Plantas/crescimento & desenvolvimento , Plumbaginaceae/genética , Proteínas Proto-Oncogênicas c-myb/fisiologia , Plantas Tolerantes a Sal/genética , Arabidopsis , Clonagem Molecular , Regulação da Expressão Gênica de Plantas , Hibridização In Situ , Osmorregulação/fisiologia , Folhas de Planta/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/fisiologia , Plantas Geneticamente Modificadas , Plumbaginaceae/crescimento & desenvolvimento , Plumbaginaceae/metabolismo , Plumbaginaceae/fisiologia , Proteínas Proto-Oncogênicas c-myb/genética , Proteínas Proto-Oncogênicas c-myb/metabolismo , Tolerância ao Sal , Plantas Tolerantes a Sal/crescimento & desenvolvimento , Plantas Tolerantes a Sal/metabolismo , Plantas Tolerantes a Sal/fisiologia
19.
Genes Genomics ; 42(11): 1239-1249, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32939614

RESUMO

BACKGROUND: Salinity stress, as the key limiting factor for agricultural productivity, can activate a series of molecular responses and alter gene expression in plants. Endogenous regulatory small RNAs, such as microRNAs (miRNAs) and phased siRNAs (phasiRNAs), play crucial roles during stress adaptation and prevent the injury from environmental circumstances. OBJECTIVE: To identify long-term salt stress responsive miRNAs and phasiRNAs as well as their associated genes and pathways in soybean roots. METHODS: Small RNA and degradome sequencing strategies were applied to genome widely investigate miRNAs and phasiRNAs in soybean roots under control and long-term salt stress conditions. RESULTS: In this study, stringent bioinformatic analysis led to the identification of 253 conserved and 38 novel miRNA candidates. Results of expression profiling, target and endogenous target mimics predictions provided valuable clues to their functional roles. Furthermore, 156 genes were identified to be capable of generating 21 nt and 24 nt phasiRNAs, in which 37 candidates were confirmed by degradome data for miRNA-directed cleavage. Approximately 90% of these phasiRNA loci were protein coding genes. And GO enrichment analysis pointed to "signal transduction" and "ADP binding" entries and reflected the functional roles of identified phasiRNA genes. CONCLUSION: Taken together, our findings extended the knowledge of salt responsive miRNAs and phasiRNAs in soybean roots, and provided valuable information for a better understanding of the regulatory events caused by small RNAs underlying plant adaptations to long-term salt stress.


Assuntos
Glycine max/genética , MicroRNAs/genética , RNA Interferente Pequeno/genética , Estresse Salino/genética , Genoma de Planta/genética , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Plantas Tolerantes a Sal/genética , Plantas Tolerantes a Sal/crescimento & desenvolvimento , Glycine max/crescimento & desenvolvimento
20.
Commun Biol ; 3(1): 513, 2020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32943738

RESUMO

Halophytes are plants that grow in high-salt environments and form characteristic epidermal bladder cells (EBCs) that are important for saline tolerance. To date, however, little has been revealed about the formation of these structures. To determine the genetic basis for their formation, we applied ethylmethanesulfonate mutagenesis and obtained two mutants with reduced levels of EBCs (rebc) and abnormal chloroplasts. In silico subtraction experiments revealed that the rebc phenotype was caused by mutation of REBC, which encodes a WD40 protein that localizes to the nucleus and chloroplasts. Phylogenetic and transformant analyses revealed that the REBC protein differs from TTG1, a WD40 protein involved in trichome formation. Furthermore, rebc mutants displayed damage to their shoot apices under abiotic stress, suggesting that EBCs may protect the shoot apex from such stress. These findings will help clarify the mechanisms underlying EBC formation and function.


Assuntos
Chenopodium quinoa/genética , Tolerância ao Sal/genética , Plantas Tolerantes a Sal/genética , Repetições WD40/genética , Chenopodium quinoa/crescimento & desenvolvimento , Chenopodium quinoa/metabolismo , Cloroplastos/genética , Células Epidérmicas/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Filogenia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Salinidade , Plantas Tolerantes a Sal/crescimento & desenvolvimento , Plantas Tolerantes a Sal/metabolismo , Estresse Fisiológico/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA