Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 21(16)2020 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-32764343

RESUMO

The antigen-antibody complex (AAC) has novel functions for immunomodulation, encouraging the application of diverse quaternary protein structures for vaccination. In this study, GA733 antigen and anti-GA733 antibody proteins were both co-expressed to obtain the AAC protein structures in a F1 plant obtained by crossing the plants expressing each protein. In F1 plant, the antigen and antibody assembled to form a large quaternary circular ACC structure (~30 nm). The large quaternary protein structures induced immune response to produce anticancer immunoglobulins G (IgGs) that are specific to the corresponding antigens in mouse. The serum containing the anticancer IgGs inhibited the human colorectal cancer cell growth in the xenograft nude mouse. Taken together, antigens and antibodies can be assembled to form AAC protein structures in plants. Plant crossing represents an alternative strategy for the formation of AAC vaccines that efficiently increases anticancer antibody production.


Assuntos
Anticorpos Anti-Idiotípicos/farmacologia , Complexo Antígeno-Anticorpo/imunologia , Molécula de Adesão da Célula Epitelial/imunologia , Neoplasias/tratamento farmacológico , Planticorpos/farmacologia , Animais , Anticorpos Anti-Idiotípicos/imunologia , Complexo Antígeno-Anticorpo/farmacologia , Vacinas Anticâncer/imunologia , Moléculas de Adesão Celular/imunologia , Humanos , Imunidade/efeitos dos fármacos , Imunidade/imunologia , Imunoglobulina G/imunologia , Imunomodulação/efeitos dos fármacos , Imunomodulação/imunologia , Camundongos , Neoplasias/imunologia , Planticorpos/imunologia , Estrutura Quaternária de Proteína/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Curr Med Chem ; 26(3): 381-395, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-29231134

RESUMO

BACKGROUND: A cost-effective plant platform for therapeutic monoclonal antibody production is both flexible and scalable. Plant cells have mechanisms for protein synthesis and posttranslational modification, including glycosylation, similar to those in animal cells. However, plants produce less complex and diverse Asn-attached glycans compared to animal cells and contain plant-specific residues. Nevertheless, plant-made antibodies (PMAbs) could be advantageous compared to those produced in animal cells due to the absence of a risk of contamination from nucleic acids or proteins of animal origin. OBJECTIVE: In this review, the various platforms of PMAbs production are described, and the widely used transient expression system based on Agrobacterium-mediated delivery of genetic material into plant cells is discussed in detail. RESULTS: We examined the features of and approaches to humanizing the Asn-linked glycan of PMAbs. The prospects for PMAbs in the prevention and treatment of human infectious diseases have been illustrated by promising results with PMAbs against human immunodeficiency virus, rotavirus infection, human respiratory syncytial virus, rabies, anthrax and Ebola virus. The pre-clinical and clinical trials of PMAbs against different types of cancer, including lymphoma and breast cancer, are addressed. CONCLUSION: PMAb biosafety assessments in patients suggest that it has no side effects, although this does not completely remove concerns about the potential immunogenicity of some plant glycans in humans. Several PMAbs at various developmental stages have been proposed. Promise for the clinical use of PMAbs is aimed at the treatment of viral and bacterial infections as well as in anti-cancer treatment.


Assuntos
Planticorpos/imunologia , Planticorpos/uso terapêutico , Agrobacterium/genética , Animais , Anticorpos Monoclonais Humanizados/imunologia , Glicosilação , Humanos
3.
Anal Sci ; 35(2): 207-214, 2019 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-30318489

RESUMO

Eutrophication of water bodies can promote cyanobacterial (blue-green algae) blooms, which has become a source of increasing concern for both recreational and drinking water use. Many bacterial species can produce toxins that pose threats to wildlife, domestic animals and humans. Microcystin-leucine-arginine (MC-LR) is the most frequent and most toxic microcystin congener. For the first time, lab-scale investigations were performed to test the application of a recombinant plant-derived anti-MC-LR antibody immobilized on an immunoaffinity support material to selectively extract the toxin from spiked freshwater samples. As a comparison, its hybridoma-derived counterpart (murine monoclonal antibody) was evaluated. The antibody-doped material was prepared via an optimized sol-gel process; its stability and binding efficiency of MC-LR in spiked freshwater samples were thoroughly tested using the ELISA and orthogonal LC-MS methods. For removal, two column-based procedures with sequential or continuous cyclic sample addition and a suspension mode (moving adsorbent) were tested. Noteworthy the results obtained with a crude antibody fraction were fully compatible with the highly purified preparation. This study paves the way for further investigation being focused on novel applications of plant-derived anti-MC-LR antibodies in bioremediation to selectively deplete the toxin from freshwater: a green and promising technology without secondary pollution.


Assuntos
Ensaio de Imunoadsorção Enzimática , Água Doce/química , Vidro/química , Microcistinas/imunologia , Microcistinas/isolamento & purificação , Planticorpos/imunologia , Animais , Géis , Toxinas Marinhas , Microcistinas/análise , Nicotiana
4.
Planta Med ; 83(18): 1412-1419, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28575911

RESUMO

Porcine epidemic diarrhea virus (PEDV) causes acute diarrhea, vomiting, dehydration, weight loss, and high mortality rate in neonatal piglets. Porcine epidemic diarrhea (PED) has been reported in Europe, America, and Asia including Thailand. The disease causes substantial losses to the swine industry in many countries. Presently, there is no effective PEDV vaccine available. In this study, we developed a plant-produced monoclonal antibody (mAb) 2C10 as a prophylactic candidate to prevent the PEDV infection. Recently, plant expression systems have gained interest as an alternative for the production of antibodies because of many advantages, such as low production cost, lack of human and animal pathogen, large scalability, etc. The 2C10 mAb was transiently expressed in Nicotiana benthamiana and lettuce using geminiviral vector. After purification by protein A affinity chromatography, the antibody was tested for the binding and neutralizing activity against PEDV. Our result showed that the plant produced 2C10 mAb can bind to the virus and also inhibit PEDV infection in vitro. These results show excellent potential for a plant-expressed 2C10 as a PEDV prophylaxis and a diagnostic for PEDV infection.


Assuntos
Anticorpos Monoclonais/imunologia , Infecções por Coronavirus/veterinária , Lactuca/imunologia , Nicotiana/imunologia , Vírus da Diarreia Epidêmica Suína/imunologia , Doenças dos Suínos/prevenção & controle , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/genética , Chlorocebus aethiops , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/virologia , Lactuca/genética , Lactuca/virologia , Agricultura Molecular , Testes de Neutralização/veterinária , Folhas de Planta/genética , Folhas de Planta/imunologia , Folhas de Planta/virologia , Planticorpos/genética , Planticorpos/imunologia , Vírus da Diarreia Epidêmica Suína/genética , Suínos , Doenças dos Suínos/imunologia , Doenças dos Suínos/virologia , Nicotiana/genética , Nicotiana/virologia , Células Vero
5.
Afr Health Sci ; 16(2): 640-5, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27605982

RESUMO

BACKGROUND: Antibodies are essential part of vertebrates' adaptive immune system; they can now be produced by transforming plants with antibody-coding genes from mammals/humans. Although plants do not naturally make antibodies, the plant-derived antibodies (plantibodies) have been shown to function in the same way as mammalian antibodies. METHODS: PubMed and Google search engines were used to download relevant publications on plantibodies in medical and veterinary fields; the papers were reviewed and findings qualitatively described. RESULTS: The process of bioproduction of plantibodies offers several advantages over the conventional method of antibody production in mammalian cells with the cost of antibody production in plants being substantially lesser. Contrary to what is possible with animal-derived antibodies, the process of making plantibodies almost exclusively precludes transfer of pathogens to the end product. Additionally, plants not only produce a relatively high yield of antibodies in a comparatively faster time, they also serve as cost-effective bioreactors to produce antibodies of diverse specificities. CONCLUSION: Plantibodies are safe, cost-effective and offer more advantages over animal-derived antibodies. Methods of producing them are described with a view to inspiring African scientists on the need to embrace and harness this rapidly evolving biotechnology in solving human and animal health challenges on the continent where the climate supports growth of diverse plants.


Assuntos
Formação de Anticorpos/imunologia , Imunomodulação , Planticorpos/administração & dosagem , Planticorpos/imunologia , Animais , Formação de Anticorpos/fisiologia , Nível de Saúde , Humanos , Nigéria
6.
Clin Vaccine Immunol ; 23(4): 346-52, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26865596

RESUMO

Fimbrial protein fimbrillin (FimA), a major structural subunit of Porphyromonas gingivalis, has been suggested as a vaccine candidate to control P. gingivalis-induced periodontal disease. Previously, cDNAs encoding IgG monoclonal antibodies (MAbs) against purified FimA from P. gingivalis 2561 have been cloned, and the MAbs have been produced in rice cell suspension. Here we examined the biological activities of the plant-produced MAb specific for FimA (anti-FimA plantibody) of P. gingivalis in vitro and in vivo. The anti-FimA plantibody recognized oligomeric/polymeric forms of native FimA in immunoblot analysis and showed high affinity for native FimA (KD = 0.11 nM). Binding of P. gingivalis (10(8) cells) to 2 mg of saliva-coated hydroxyapatite beads was reduced by 53.8% in the presence of 1 µg/ml plantibody. Anti-FimA plantibody (10 µg/ml) reduced invasion of periodontal ligament cells by P. gingivalis (multiplicity of infection, 100) by 68.3%. Intracellular killing of P. gingivalis opsonized with the anti-FimA plantibody by mouse macrophages was significantly increased (77.1%) compared to killing of bacterial cells with irrelevant IgG (36.7%). In a mouse subcutaneous chamber model, the number of recoverable P. gingivalis cells from the chamber fluid was significantly reduced when the numbers of bacterial cells opsonized with anti-FimA plantibody were compared with the numbers of bacterial cells with irrelevant IgG, 66.7% and 37.1%, respectively. These in vitro and in vivo effects of anti-FimA plantibody were comparable to those of the parental MAb. Further studies with P. gingivalis strains with different types of fimbriae are needed to investigate the usefulness of anti-FimA plantibody for passive immunization to control P. gingivalis-induced periodontal disease.


Assuntos
Proteínas de Fímbrias/imunologia , Planticorpos/imunologia , Adolescente , Adulto , Animais , Aderência Bacteriana/efeitos dos fármacos , Carga Bacteriana , Infecções por Bacteroidaceae/microbiologia , Infecções por Bacteroidaceae/prevenção & controle , Células Cultivadas , Modelos Animais de Doenças , Endocitose/efeitos dos fármacos , Feminino , Humanos , Macrófagos/imunologia , Masculino , Camundongos Endogâmicos C57BL , Viabilidade Microbiana/efeitos dos fármacos , Oryza , Fagocitose , Porphyromonas gingivalis/imunologia , Porphyromonas gingivalis/fisiologia , Adulto Jovem
7.
PLoS One ; 10(12): e0145156, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26709700

RESUMO

Soybean is one of the most important crops grown across the globe. In the United States, approximately 15% of the soybean yield is suppressed due to various pathogen and pests attack. Sudden death syndrome (SDS) is an emerging fungal disease caused by Fusarium virguliforme. Although growing SDS resistant soybean cultivars has been the main method of controlling this disease, SDS resistance is partial and controlled by a large number of quantitative trait loci (QTL). A proteinacious toxin, FvTox1, produced by the pathogen, causes foliar SDS. Earlier, we demonstrated that expression of an anti-FvTox1 single chain variable fragment antibody resulted in reduced foliar SDS development in transgenic soybean plants. Here, we investigated if synthetic FvTox1-interacting peptides, displayed on M13 phage particles, can be identified for enhancing foliar SDS resistance in soybean. We screened three phage-display peptide libraries and discovered four classes of M13 phage clones displaying FvTox1-interacting peptides. In vitro pull-down assays and in vivo interaction assays in yeast were conducted to confirm the interaction of FvTox1 with these four synthetic peptides and their fusion-combinations. One of these peptides was able to partially neutralize the toxic effect of FvTox1 in vitro. Possible application of the synthetic peptides in engineering SDS resistance soybean cultivars is discussed.


Assuntos
Resistência à Doença/genética , Fusarium/patogenicidade , Glycine max/microbiologia , Micotoxinas/imunologia , Doenças das Plantas/imunologia , Planticorpos/genética , Bacteriófagos/genética , Resistência à Doença/fisiologia , Micotoxinas/metabolismo , Biblioteca de Peptídeos , Peptídeos/genética , Peptídeos/imunologia , Doenças das Plantas/microbiologia , Folhas de Planta/microbiologia , Raízes de Plantas/microbiologia , Planticorpos/imunologia , Plantas Geneticamente Modificadas/genética , Locos de Características Quantitativas/genética , Glycine max/genética , Glycine max/imunologia
8.
Transgenic Res ; 24(5): 897-909, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26109093

RESUMO

The use of plants as heterologous hosts is one of the most promising technologies for manufacturing valuable recombinant proteins. Plant seeds, in particular, constitute ideal production platforms for long-term applications requiring a steady supply of starting material, as they combine the general advantages of plants as bioreactors with the possibility of biomass storage for long periods in a relatively small volume, thus allowing manufacturers to decouple upstream and downstream processing. In the present work we have used transgenic tobacco seeds to produce large amounts of a functionally active mouse monoclonal antibody against the Hepatitis B Virus surface antigen, fused to a KDEL endoplasmic reticulum retrieval motif, under control of regulatory sequences from common bean (Phaseolus vulgaris) seed storage proteins. The antibody accumulated to levels of 6.5 mg/g of seed in the T3 generation, and was purified by Protein A affinity chromatography combined with SEC-HPLC. N-glycan analysis indicated that, despite the KDEL signal, the seed-derived plantibody bore both high-mannose and complex-type sugars that indicate partial passage through the Golgi compartment, although its performance in the immunoaffinity purification of HBsAg was unaffected. An analysis discussing the industrial feasibility of replacing the currently used tobacco leaf-derived plantibody with this seed-derived variant is also presented.


Assuntos
Antígenos de Superfície da Hepatite B/imunologia , Nicotiana/embriologia , Planticorpos/imunologia , Sementes/imunologia , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida/métodos , Eletroforese em Gel de Poliacrilamida , Antígenos de Superfície da Hepatite B/isolamento & purificação
9.
Mol Biotechnol ; 57(7): 662-74, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25779638

RESUMO

Multi-HIV, a multiepitopic protein derived from both gp120 and gp41 envelope proteins of the human immunodeficiency virus (HIV), has been proposed as a vaccine prototype capable of inducing broad immune responses, as it carries various B and T cell epitopes from several HIV strains. In this study, the immunogenic properties of a Multi-HIV expressed in tobacco chloroplasts are evaluated in test mice. BALB/c mice orally immunized with tobacco-derived Multi-HIV have elicited antibody responses, including both the V3 loop of gp120 and the ELDKWA epitope of gp41. Based on splenocyte proliferation assays, stimulation with epitopes of the C4, V3 domain of gp120, and the ELDKWA domain of gp41 elicits positive cellular responses. Furthermore, specific interferon gamma production is observed in both CD4+ and CD8+ T cells stimulated with HIV peptides. These results demonstrate that plant-derived Multi-HIV induces T helper-specific responses. Altogether, these findings illustrate the immunogenic potential of plant-derived Multi-HIV in an oral immunization scheme. The potential of this low-cost immunization approach and its implications on HIV/AIDS vaccine development are discussed.


Assuntos
Proteína gp120 do Envelope de HIV/biossíntese , Proteína gp41 do Envelope de HIV/biossíntese , Infecções por HIV/imunologia , Planticorpos/imunologia , Animais , Cloroplastos/imunologia , Epitopos de Linfócito T/imunologia , Proteína gp120 do Envelope de HIV/administração & dosagem , Proteína gp120 do Envelope de HIV/imunologia , Proteína gp41 do Envelope de HIV/administração & dosagem , Proteína gp41 do Envelope de HIV/imunologia , Infecções por HIV/prevenção & controle , Infecções por HIV/virologia , HIV-1/imunologia , HIV-1/patogenicidade , Humanos , Imunização , Camundongos , Nicotiana/citologia , Nicotiana/imunologia
10.
PLoS Pathog ; 10(12): e1004569, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25500833

RESUMO

Despite causing considerable damage to host tissue during the onset of parasitism, nematodes establish remarkably persistent infections in both animals and plants. It is thought that an elaborate repertoire of effector proteins in nematode secretions suppresses damage-triggered immune responses of the host. However, the nature and mode of action of most immunomodulatory compounds in nematode secretions are not well understood. Here, we show that venom allergen-like proteins of plant-parasitic nematodes selectively suppress host immunity mediated by surface-localized immune receptors. Venom allergen-like proteins are uniquely conserved in secretions of all animal- and plant-parasitic nematodes studied to date, but their role during the onset of parasitism has thus far remained elusive. Knocking-down the expression of the venom allergen-like protein Gr-VAP1 severely hampered the infectivity of the potato cyst nematode Globodera rostochiensis. By contrast, heterologous expression of Gr-VAP1 and two other venom allergen-like proteins from the beet cyst nematode Heterodera schachtii in plants resulted in the loss of basal immunity to multiple unrelated pathogens. The modulation of basal immunity by ectopic venom allergen-like proteins in Arabidopsis thaliana involved extracellular protease-based host defenses and non-photochemical quenching in chloroplasts. Non-photochemical quenching regulates the initiation of the defense-related programmed cell death, the onset of which was commonly suppressed by venom allergen-like proteins from G. rostochiensis, H. schachtii, and the root-knot nematode Meloidogyne incognita. Surprisingly, these venom allergen-like proteins only affected the programmed cell death mediated by surface-localized immune receptors. Furthermore, the delivery of venom allergen-like proteins into host tissue coincides with the enzymatic breakdown of plant cell walls by migratory nematodes. We, therefore, conclude that parasitic nematodes most likely utilize venom allergen-like proteins to suppress the activation of defenses by immunogenic breakdown products in damaged host tissue.


Assuntos
Proteínas de Helminto/imunologia , Nematoides/imunologia , Infecções por Nematoides/imunologia , Doenças das Plantas/parasitologia , Imunidade Vegetal/imunologia , Receptores de Superfície Celular/imunologia , Peçonhas/imunologia , Animais , Antígenos de Helmintos/imunologia , Apoptose/imunologia , Arabidopsis , Imunidade Inata/imunologia , Doenças das Plantas/imunologia , Planticorpos/imunologia , Tylenchoidea
11.
Plant Biotechnol J ; 12(8): 1098-107, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24975464

RESUMO

Previously, our group engineered a plant-derived monoclonal antibody (MAb pE16) that efficiently treated West Nile virus (WNV) infection in mice. In this study, we developed a pE16 variant consisting of a single-chain variable fragment (scFv) fused to the heavy chain constant domains (CH) of human IgG (pE16scFv-CH). pE16 and pE16scFv-CH were expressed and assembled efficiently in Nicotiana benthamiana ∆XF plants, a glycosylation mutant lacking plant-specific N-glycan residues. Glycan analysis revealed that ∆XF plant-derived pE16scFv-CH (∆XFpE16scFv-CH) and pE16 (∆XFpE16) both displayed a mammalian glycosylation profile. ∆XFpE16 and ∆XFpE16scFv-CH demonstrated equivalent antigen-binding affinity and kinetics, and slightly enhanced neutralization of WNV in vitro compared with the parent mammalian cell-produced E16 (mE16). A single dose of ∆XFpE16 or ∆XFpE16scFv-CH protected mice against WNV-induced mortality even 4 days after infection at equivalent rates as mE16. This study provides a detailed tandem comparison of the expression, structure and function of a therapeutic MAb and its single-chain variant produced in glycoengineered plants. Moreover, it demonstrates the development of anti-WNV MAb therapeutic variants that are equivalent in efficacy to pE16, simpler to produce, and likely safer to use as therapeutics due to their mammalian N-glycosylation. This platform may lead to a more robust and cost-effective production of antibody-based therapeutics against WNV infection and other infectious, inflammatory or neoplastic diseases.


Assuntos
Anticorpos Antivirais/imunologia , Antígenos Virais/imunologia , Nicotiana/metabolismo , Anticorpos de Cadeia Única/imunologia , Febre do Nilo Ocidental/prevenção & controle , Vírus do Nilo Ocidental/imunologia , Animais , Anticorpos Monoclonais/imunologia , Expressão Gênica , Glicosilação , Humanos , Imunoglobulina G/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Testes de Neutralização , Planticorpos/imunologia , Ressonância de Plasmônio de Superfície , Proteínas do Envelope Viral/imunologia
12.
PLoS One ; 8(11): e80712, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24312238

RESUMO

Shiga toxin 1 (Stx1) is a virulence factor of enterohemorrhagic Escherichia coli, such as the O157:H7 strain. In the intestines, secretory IgA (SIgA) is a major component of the immune defense against pathogens and toxins. To form SIgA, the production of dimeric IgA that retains biological activity is an important step. We previously established hybrid-IgG/IgA having variable regions of the IgG specific for the binding subunit of Stx1 (Stx1B) and the heavy chain constant region of IgA. If hybrid-IgG/IgA cDNAs can be expressed in plants, therapeutic or preventive effects may be expected in people eating those plants containing a "plantibody". Here, we established transgenic Arabidopsis thaliana expressing dimeric hybrid-IgG/IgA. The heavy and light chain genes were placed under the control of a bidirectional promoter and terminator of the chlorophyll a/b-binding protein of Arabidopsis thaliana (expression cassette). This expression cassette and the J chain gene were subcloned into a single binary vector, which was then introduced into A. thaliana by means of the Agrobacterium method. Expression and assembly of the dimeric hybrid-IgG/IgA in plants were revealed by ELISA and immunoblotting. The hybrid-IgG/IgA bound to Stx1B and inhibited Stx1B binding to Gb3, as demonstrated by ELISA. When Stx1 holotoxin was pre-treated with the resulting plantibody, the cytotoxicity of Stx1 was inhibited. The toxin neutralization was also demonstrated by means of several assays including Stx1-induced phosphatidylserine translocation on the plasma membrane, caspase-3 activation and 180 base-pair DNA ladder formation due to inter-nucleosomal cleavage. These results indicate that edible plants containing hybrid-IgG/IgA against Stx1B have the potential to be used for immunotherapy against Stx1-caused food poisoning.


Assuntos
Imunoglobulina A/imunologia , Imunoglobulina G/imunologia , Planticorpos/imunologia , Toxina Shiga I/imunologia , Anticorpos Bloqueadores/genética , Anticorpos Bloqueadores/imunologia , Antígenos Glicosídicos Associados a Tumores/imunologia , Antígenos Glicosídicos Associados a Tumores/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Morte Celular/imunologia , Expressão Gênica , Ordem dos Genes , Imunoglobulina A/genética , Imunoglobulina G/genética , Planticorpos/genética , Plantas Geneticamente Modificadas , Ligação Proteica/imunologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Toxina Shiga I/metabolismo
13.
PLoS One ; 8(11): e79920, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24278216

RESUMO

Pf38 is a surface protein of the malarial parasite Plasmodium falciparum. In this study, we produced and purified recombinant Pf38 and a fusion protein composed of red fluorescent protein and Pf38 (RFP-Pf38) using a transient expression system in the plant Nicotiana benthamiana. To our knowledge, this is the first description of the production of recombinant Pf38. To verify the quality of the recombinant Pf38, plasma from semi-immune African donors was used to confirm specific binding to Pf38. ELISA measurements revealed that immune responses to Pf38 in this African subset were comparable to reactivities to AMA-1 and MSP119. Pf38 and RFP-Pf38 were successfully used to immunise mice, although titres from these mice were low (on average 1∶11.000 and 1∶39.000, respectively). In immune fluorescence assays, the purified IgG fraction from the sera of immunised mice recognised Pf38 on the surface of schizonts, gametocytes, macrogametes and zygotes, but not sporozoites. Growth inhibition assays using αPf38 antibodies demonstrated strong inhibition (≥60%) of the growth of blood-stage P. falciparum. The development of zygotes was also effectively inhibited by αPf38 antibodies, as determined by the zygote development assay. Collectively, these results suggest that Pf38 is an interesting candidate for the development of a malaria vaccine.


Assuntos
Antígenos de Protozoários/genética , Vacinas Antimaláricas/imunologia , Nicotiana/genética , Planticorpos/genética , Plasmodium falciparum/imunologia , Animais , Antígenos de Protozoários/imunologia , Ensaio de Imunoadsorção Enzimática , Imunofluorescência , Planticorpos/imunologia , Plasmodium falciparum/crescimento & desenvolvimento , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia
14.
PLoS One ; 8(8): e68772, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23967055

RESUMO

Plant genetic engineering, which has led to the production of plant-derived monoclonal antibodies (mAb(P)s), provides a safe and economically effective alternative to conventional antibody expression methods. In this study, the expression levels and biological properties of the anti-rabies virus mAb(P) SO57 with or without an endoplasmic reticulum (ER)-retention peptide signal (Lys-Asp-Glu-Leu; KDEL) in transgenic tobacco plants (Nicotiana tabacum) were analyzed. The expression levels of mAb(P) SO57 with KDEL (mAb(P)K) were significantly higher than those of mAb(P) SO57 without KDEL (mAb(P)) regardless of the transcription level. The Fc domains of both purified mAb(P) and mAb(P)K and hybridoma-derived mAb (mAb(H)) had similar levels of binding activity to the FcγRI receptor (CD64). The mAb(P)K had glycan profiles of both oligomannose (OM) type (91.7%) and Golgi type (8.3%), whereas the mAb(P) had mainly Golgi type glycans (96.8%) similar to those seen with mAb(H). Confocal analysis showed that the mAb(P)K was co-localized to ER-tracker signal and cellular areas surrounding the nucleus indicating accumulation of the mAb(P) with KDEL in the ER. Both mAb(P) and mAb(P)K disappeared with similar trends to mAb(H) in BALB/c mice. In addition, mAb(P)K was as effective as mAb(H) at neutralizing the activity of the rabies virus CVS-11. These results suggest that the ER localization of the recombinant mAb(P) by KDEL reprograms OM glycosylation and enhances the production of the functional antivirus therapeutic antibody in the plant.


Assuntos
Anticorpos Monoclonais , Anticorpos Antivirais , Expressão Gênica , Planticorpos/genética , Planticorpos/metabolismo , Animais , Glicosilação , Espaço Intracelular , Camundongos , Células Vegetais/metabolismo , Planticorpos/química , Planticorpos/imunologia , Planticorpos/isolamento & purificação , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Transporte Proteico , Nicotiana/genética , Nicotiana/metabolismo
15.
Biotechnol J ; 8(10): 1203-12, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23960004

RESUMO

Cereal seeds are versatile platforms for the production of recombinant proteins because they provide a stable environment for protein accumulation. Endogenous seed storage proteins, however, include several prolamin-type polypeptides that aggregate and crosslink via intermolecular disulfide bridges, which could potentially interact with multimeric recombinant proteins such as antibodies, which assemble in the same manner. We investigated this possibility by sequentially extracting a human antibody expressed in maize endosperm, followed by precipitation in vitro with zein. We provide evidence that a significant proportion of the antibody pool interacts with zein and therefore cannot be extracted using non-reducing buffers. Immunolocalization experiments demonstrated that antibodies targeted for secretion were instead retained within zein bodies because of such covalent interactions. Our findings suggest that the production of soluble recombinant antibodies in maize could be enhanced by eliminating or minimizing interactions with endogenous storage proteins.


Assuntos
Grão Comestível/genética , Planticorpos/química , Planticorpos/isolamento & purificação , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas de Armazenamento de Sementes/química , Zea mays/embriologia , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Anticorpos Amplamente Neutralizantes , Grão Comestível/metabolismo , Endosperma/genética , Endosperma/metabolismo , Anticorpos Anti-HIV , Humanos , Agricultura Molecular , Proteínas de Plantas/metabolismo , Planticorpos/imunologia , Plantas Geneticamente Modificadas , Proteínas Recombinantes/metabolismo , Proteínas de Armazenamento de Sementes/metabolismo , Sementes/crescimento & desenvolvimento , Zea mays/genética , Zea mays/metabolismo , Zeína/química , Zeína/metabolismo
16.
Biotechnol J ; 8(10): 1193-202, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23857915

RESUMO

Plant-produced vaccines and therapeutic agents offer enormous potential for providing relief to developing countries by reducing the incidence of infant mortality caused by infectious diseases. Vaccines derived from plants have been demonstrated to effectively elicit an immune response. Biopharmaceuticals produced in plants are inexpensive to produce, require fewer expensive purification steps, and can be stored at ambient temperatures for prolonged periods of time. As a result, plant-produced biopharmaceuticals have the potential to be more accessible to the rural poor. This review describes current progress with respect to plant-produced biopharmaceuticals, with a particular emphasis on those that target developing countries. Specific emphasis is given to recent research on the production of plant-produced vaccines toward human immunodeficiency virus, malaria, tuberculosis, hepatitis B virus, Ebola virus, human papillomavirus, rabies virus and common diarrheal diseases. Production platforms used to express vaccines in plants, including nuclear and chloroplast transformation, and the use of viral expression vectors, are described in this review. The review concludes by outlining the next steps for plant-produced vaccines to achieve their goal of providing safe, efficacious and inexpensive vaccines to the developing world.


Assuntos
Biofarmácia/economia , Países em Desenvolvimento/economia , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Vacinas , Anticorpos Monoclonais/uso terapêutico , Biofarmácia/métodos , Pré-Escolar , Doenças Transmissíveis/tratamento farmacológico , Doenças Transmissíveis/epidemiologia , Vetores Genéticos , Humanos , Imunidade nas Mucosas , Lactente , Agricultura Molecular , Proteínas de Plantas/economia , Proteínas de Plantas/uso terapêutico , Planticorpos/imunologia , Proteínas Recombinantes/biossíntese , Vacinas/biossíntese , Vacinas/economia , Vacinas/imunologia , Vírus/genética
17.
PLoS One ; 6(10): e26040, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22039433

RESUMO

BACKGROUND: Fc-glycosylation of monoclonal antibodies (mAbs) has profound implications on the Fc-mediated effector functions. Alteration of this glycosylation may affect the efficiency of an antibody. However, difficulties in the production of mAbs with homogeneous N-glycosylation profiles in sufficient amounts hamper investigations of the potential biological impact of different glycan residues. METHODOLOGY/PRINCIPAL FINDINGS: Here we set out to evaluate a transient plant viral based production system for the rapid generation of different glycoforms of a monoclonal antibody. Ebola virus mAb h-13F6 was generated using magnICON expression system in Nicotiana benthamiana, a plant species developed for commercial scale production of therapeutic proteins. h-13F6 was co-expressed with a series of modified mammalian enzymes involved in the processing of complex N-glycans. Using wild type (WT) plants and the glycosylation mutant ΔXTFT that synthesizes human like biantennary N-glycans with terminal N-acetylglucosamine on each branch (GnGn structures) as expression hosts we demonstrate the generation of h-13F6 complex N-glycans with (i) bisected structures, (ii) core α1,6 fucosylation and (iii) ß1,4 galactosylated oligosaccharides. In addition we emphasize the significance of precise sub Golgi localization of enzymes for engineering of IgG Fc-glycosylation. CONCLUSION: The method described here allows the efficient generation of a series of different human-like glycoforms at large homogeneity of virtually any antibody within one week after cDNA delivery to plants. This accelerates follow up functional studies and thus may contribute to study the biological role of N-glycan residues on Fcs and maximizing the clinical efficacy of therapeutic antibodies.


Assuntos
Anticorpos Monoclonais/biossíntese , Ebolavirus/imunologia , Anticorpos Monoclonais/imunologia , Cromatografia Líquida , Eletroforese em Gel de Poliacrilamida , Glicosilação , Planticorpos/imunologia , Espectrometria de Massas por Ionização por Electrospray , Nicotiana/imunologia
18.
Plant Biotechnol J ; 9(9): 1120-30, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21819534

RESUMO

Plant cells are able to perform most of the post-translational modifications that are required by recombinant proteins to achieve adequate bioactivity and pharmacokinetics. However, regarding N-glycosylation the processing of plant N-glycans in the Golgi apparatus displays major differences when compared with that of mammalian cells. These differences in N-glycosylation are expected to influence serum clearance rate of plant-derived monoclonal antibodies. The monoclonal antibody against the hepatitis B virus surface antigen expressed in Nicotiana tabacum leaves without KDEL endoplasmic reticulum (ER) retention signal (CB.Hep1(-)KDEL) and with a KDEL (Lys-Asp-Glu-Leu) fused to both IgG light and heavy chains (CB.Hep1(+)KDEL) were tested for in vivo stability in mice. Full characterization of N-glycosylation and aggregate formation in each monoclonal antibody batch was determined. The mouse counterpart (CB.Hep1) was used as control. Both (CB.Hep1(-)KDEL) and (CB.Hep1(+)KDEL) showed a faster initial clearance rate (first 24 h) compared with the analogous murine antibody while the terminal phase was similar in the three antibodies. Despite the differences between CB.Hep1(+)KDEL and CB.Hep1(-)KDEL N-glycans, the in vivo elimination in mice was indistinguishable from each other and higher than the murine monoclonal antibody. Molecular modelling confirmed that N-glycans linked to plantibodies were oriented away from the interdomain region, increasing the accessibility of the potential glycan epitopes by glycoprotein receptors that might be responsible for the difference in stability of these molecules.


Assuntos
Anticorpos Monoclonais/biossíntese , Retículo Endoplasmático/metabolismo , Anticorpos Anti-Hepatite B/biossíntese , Nicotiana/imunologia , Planticorpos/metabolismo , Sinais Direcionadores de Proteínas , Agrobacterium tumefaciens/genética , Agrobacterium tumefaciens/metabolismo , Animais , Anticorpos Monoclonais/imunologia , Clonagem Molecular , Epitopos/imunologia , Epitopos/metabolismo , Feminino , Regulação da Expressão Gênica de Plantas , Glicosilação , Anticorpos Anti-Hepatite B/imunologia , Antígenos da Hepatite B/imunologia , Vírus da Hepatite B/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Modelos Moleculares , Folhas de Planta/imunologia , Folhas de Planta/metabolismo , Planticorpos/imunologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/imunologia , Plantas Geneticamente Modificadas/metabolismo , Polissacarídeos/imunologia , Polissacarídeos/isolamento & purificação , Polissacarídeos/metabolismo , Estabilidade Proteica , Coelhos , Nicotiana/genética , Nicotiana/metabolismo
19.
Plant Biotechnol J ; 9(5): 527-39, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21447052

RESUMO

Infectious diseases represent a continuously growing menace that has severe impact on health of the people worldwide, particularly in the developing countries. Therefore, novel prevention and treatment strategies are urgently needed to reduce the rate of these diseases in humans. For this reason, different options can be considered for the production of affordable vaccines. Plants have been proved as an alternative expression system for various compounds of biological importance. Particularly, plastid genetic engineering can be potentially used as a tool for cost-effective vaccine production. Antigenic proteins from different viruses and bacteria have been expressed in plastids. Initial immunological studies of chloroplast-derived vaccines have yielded promising results in animal models. However, because of certain limitations, these vaccines face many challenges on production and application level. Adaptations to the novel approaches are needed, which comprise codon usage and choice of proven expression cassettes for the optimal yield of expressed proteins, use of inducible systems, marker gene removal, selection of specific antigens with high immunogenicity and development of tissue culture systems for edible crops to prove the concept of low-cost edible vaccines. As various aspects of plant-based vaccines have been discussed in recent reviews, here we will focus on certain aspects of chloroplast transformation related to vaccine production against human diseases.


Assuntos
Cloroplastos/genética , Engenharia Genética/métodos , Plantas/genética , Vacinas/biossíntese , Vacinas/genética , Antígenos/biossíntese , Antígenos/genética , Cloroplastos/imunologia , Humanos , Planticorpos/genética , Planticorpos/imunologia , Planticorpos/metabolismo , Plantas/imunologia , Plantas Geneticamente Modificadas , Vacinas/imunologia
20.
Plant Biotechnol J ; 9(7): 776-87, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21265996

RESUMO

There is an increasing interest in the development of therapeutic antibodies (Ab) to improve the control of fungal pathogens, but none of these reagents is available for clinical use. We previously described a murine monoclonal antibody (mAb 2G8) targeting ß-glucan, a cell wall polysaccharide common to most pathogenic fungi, which conferred significant protection against Candida albicans, Aspergillus fumigatus and Cryptococcus neoformans in animal models. Transfer of this wide-spectrum, antifungal mAb into the clinical setting would allow the control of most frequent fungal infections in many different categories of patients. To this aim, two chimeric mouse-human Ab derivatives from mAb 2G8, in the format of complete IgG or scFv-Fc, were generated, transiently expressed in Nicotiana benthamiana plants and purified from leaves with high yields (approximately 50 mg Ab/kg of plant tissues). Both recombinant Abs fully retained the ß-glucan-binding specificity and the antifungal activities of the cognate murine mAb against C. albicans. In fact, they recognized preferentially ß1,3-linked glucan molecules present at the fungal cell surface and directly inhibited the growth of C. albicans and its adhesion to human epithelial cells in vitro. In addition, both the IgG and the scFv-Fc promoted C. albicans killing by isolated, human polymorphonuclear neutrophils in ex vivo assays and conferred significant antifungal protection in animal models of systemic or vulvovaginal C. albicans infection. These recombinant Abs represent valuable molecules for developing novel, plant-derived immunotherapeutics against candidiasis and, possibly, other fungal diseases.


Assuntos
Anticorpos Antifúngicos/imunologia , Candida albicans/imunologia , Candidíase/terapia , Imunoterapia , Nicotiana/imunologia , beta-Glucanas/imunologia , Animais , Anticorpos Antifúngicos/biossíntese , Anticorpos Antifúngicos/genética , Anticorpos Antifúngicos/uso terapêutico , Anticorpos Monoclonais/biossíntese , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/uso terapêutico , Antígenos de Fungos/imunologia , Aspergillus fumigatus/imunologia , Candida albicans/crescimento & desenvolvimento , Candida albicans/fisiologia , Candidíase/microbiologia , Adesão Celular/imunologia , Linhagem Celular , Parede Celular/imunologia , Cryptococcus neoformans/imunologia , Feminino , Humanos , Fragmentos Fc das Imunoglobulinas/genética , Fragmentos Fc das Imunoglobulinas/metabolismo , Imunoglobulina G/genética , Imunoglobulina G/metabolismo , Camundongos , Modelos Animais , Micoses/microbiologia , Micoses/terapia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Planticorpos/genética , Planticorpos/imunologia , Planticorpos/metabolismo , Planticorpos/uso terapêutico , Ratos , Proteínas Recombinantes de Fusão/imunologia , Proteínas Recombinantes de Fusão/metabolismo , Anticorpos de Cadeia Única/genética , Anticorpos de Cadeia Única/metabolismo , Nicotiana/genética , beta-Glucanas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...