Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 307
Filtrar
1.
Methods Mol Biol ; 2197: 135-150, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32827135

RESUMO

Therapeutic applications of plasmid DNA (pDNA) have significantly advanced during the last years. Currently, several pDNA-based drugs are already in the market, whereas several others have entered phases 2 and 3 of clinical trials. The present and future demand for pDNA requires the development of efficient bioprocesses to produce it. Commonly, pDNA is produced by cultures of Escherichia coli. It has been previously demonstrated that specific strains of E. coli with a modified substrate transport system can be able to attain high cell densities in batch mode, due to the very low overflow metabolism displayed. However, the large amounts of oxygen demanded can lead to microaerobic conditions after some hours of cultivation, even at small scale. Typically, the inherent problems for these cultures are the high oxygen demand and the accumulation of acetate, a metabolic byproduct that is synthesized aerobically when the glucose rate exceeds the limits.In recent years, several researches have been focused on the study of induction of plasmid DNA as well as strategies for fermentation using semi-defined mediums. These studies conceived relevant results that allow us to design a production platform for enhanced plasmid DNA. So, the main goal of this chapter is to show how the development of an experimental design directed to aromatic amino acids pathway can improve the yield of a therapeutic plasmid DNA by culture of a new strain of Escherichia coli VH33.


Assuntos
Fermentação , Plasmídeos/biossíntese , Plasmídeos/genética , Vacinas de DNA/genética , Vacinas de DNA/imunologia , Reatores Biológicos , Escherichia coli/genética , Plasmídeos/administração & dosagem , Plasmídeos/imunologia , Projetos de Pesquisa , Transformação Genética , Vacinas de DNA/administração & dosagem
2.
Respir Res ; 20(1): 255, 2019 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-31718614

RESUMO

BACKGROUND: Bronchopulmonary dysplasia (BPD) is characterized by alveolar simplification and disordered angiogenesis. Stromal derived factor-1 (SDF-1) is a chemokine which modulates cell migration, proliferation, and angiogenesis. Here we tested the hypothesis that intra-tracheal (IT) administration of a naked plasmid DNA expressing SDF-1 would attenuate neonatal hyperoxia-induced lung injury in an experimental model of BPD, by promoting angiogenesis. DESIGN/METHODS: Newborn Sprague-Dawley rat pups (n = 18-20/group) exposed to room air (RA) or hyperoxia (85% O2) from postnatal day (P) 1 to 14 were randomly assigned to receive IT a naked plasmid expressing SDF-1, JVS-100 (Juventas Therapeutics, Cleveland, Ohio) or placebo (PL) on P3. Lung alveolarization, angiogenesis, inflammation, vascular remodeling and pulmonary hypertension (PH) were assessed on P14. PH was determined by measuring right ventricular systolic pressure (RVSP) and the weight ratio of the right to left ventricle + septum (RV/LV + S). Capillary tube formation in SDF-1 treated hyperoxia-exposed human pulmonary microvascular endothelial cells (HPMEC) was determined by matrigel assay. Data is expressed as mean ± SD and analyzed by two-way ANOVA. RESULTS: Exposure of neonatal pups to 14 days of hyperoxia decreased lung SDF-1 gene expression. Moreover, whilst hyperoxia exposure inhibited capillary tube formation in HPMEC, SDF-1 treatment increased tube length and branching in HPMEC. PL-treated hyperoxia-exposed pups had decreased alveolarization and lung vascular density. This was accompanied by an increase in RVSP, RV/LV + S, pulmonary vascular remodeling and inflammation. In contrast, IT JVS-100 improved lung structure, reduced inflammation, PH and vascular remodeling. CONCLUSIONS: Intratracheal administration of a naked plasmid expressing SDF-1 improves alveolar and vascular structure in an experimental model of BPD. These findings suggest that therapies which modulate lung SDF-1 expression may have beneficial effects in preterm infants with BPD.


Assuntos
Displasia Broncopulmonar/tratamento farmacológico , Quimiocina CXCL12/administração & dosagem , Pulmão/efeitos dos fármacos , Plasmídeos/administração & dosagem , Traqueia/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Displasia Broncopulmonar/patologia , Displasia Broncopulmonar/fisiopatologia , Sistemas de Liberação de Medicamentos/métodos , Feminino , Expressão Gênica , Pulmão/anatomia & histologia , Pulmão/fisiologia , Plasmídeos/biossíntese , Plasmídeos/genética , Gravidez , Ratos , Ratos Sprague-Dawley , Roedores , Traqueia/fisiologia
3.
Biochem Mol Biol Educ ; 47(6): 638-643, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31390150

RESUMO

This laboratory experiment describes the production and purification of plasmid DNA for undergraduate biochemistry and biotechnology courses. This experiment performed in a one-week period includes the protocols for plasmid pVAX1-LacZ production in Escherichia coli DH5α cells and subsequent purification of supercoiled pVAX1-LacZ. Firstly, the students use a growth medium that favors the replication of the plasmid resulting in a higher plasmid production during exponential growth. Afterwards, alkaline lysis is done to disrupt the bacterial cells and recover pVAX1-LacZ plasmid. Lastly, they perform the purification of pVAX1-LacZ supercoiled isoform by L-histidine chromatography, followed by agarose gel electrophoresis to characterize the separation of supercoiled isoform from contaminants. The proposed experiment provides an opportunity for students to acquire these skills that are routinely used in biochemistry and biotechnology laboratories. © 2019 International Union of Biochemistry and Molecular Biology, 47(6):638-643, 2019.


Assuntos
Bioquímica/educação , Biotecnologia/educação , Currículo , DNA Bacteriano/biossíntese , DNA Bacteriano/isolamento & purificação , Plasmídeos/biossíntese , Plasmídeos/isolamento & purificação , DNA Bacteriano/genética , Escherichia coli/citologia , Escherichia coli/metabolismo , Humanos , Laboratórios , Plasmídeos/genética , Estudantes , Universidades
4.
Chembiochem ; 20(20): 2633-2642, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31344304

RESUMO

A biomimetic system capable of replication and segregation of genetic material constitutes an essential component for the future design of a minimal synthetic cell. Here we have used the simple T7 bacteriophage system and the plasmid-derived ParMRC system to establish in vitro DNA replication and DNA segregation, respectively. These processes were incorporated into biomimetic compartments providing an enclosed reaction space. The functional lifetime of the encapsulated segregation system could be prolonged by equipping it with ATP-regenerating and oxygen-scavenging systems. Finally, we showed that DNA replication and segregation processes could be coupled in vitro by using condensed DNA nanoparticles resulting from DNA replication. ParM spindles extended over tens of micrometers and could thus be used for segregation in compartments that are significantly longer than bacterial cell size. Overall, this work demonstrates the successful bottom-up assembly and coupling of molecular machines that mediate replication and segregation, thus providing an important step towards the development of a fully functional minimal cell.


Assuntos
Biomimética/métodos , Plasmídeos/biossíntese , Células Artificiais/citologia , Replicação do DNA , DNA Polimerase Dirigida por DNA/química , Escherichia coli/genética , Proteínas de Escherichia coli/química , Nanopartículas/química , Biologia Sintética
5.
Bioprocess Biosyst Eng ; 42(9): 1457-1466, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31079222

RESUMO

Escherichia coli strains W3110 and BL21 were engineered for the production of plasmid DNA (pDNA) under aerobic and transitions to microaerobic conditions. The gene coding for recombinase A (recA) was deleted in both strains. In addition, the Vitreoscilla hemoglobin (VHb) gene (vgb) was chromosomally inserted and constitutively expressed in each E. coli recA mutant and wild type. The recA inactivation increased the supercoiled pDNA fraction (SCF) in both strains, while VHb expression improved the pDNA production in W3110, but not in BL21. Therefore, a codon-optimized version of vgb was inserted in strain BL21recA-, which, together with W3110recA-vgb+, was tested in cultures with shifts from aerobic to oxygen-limited regimes. VHb expression lowered the accumulation of fermentative by-products in both strains. VHb-expressing cells displayed higher oxidative activity as indicated by the Redox Sensor Green fluorescence, which was more intense in BL21 than in W3110. Furthermore, VHb expression did not change pDNA production in W3110, but decreased it in BL21. These results are useful for understanding the physiological effects of VHb expression in two industrially relevant E. coli strains, and for the selection of a host for pDNA production.


Assuntos
Escherichia coli/metabolismo , Microrganismos Geneticamente Modificados/metabolismo , Plasmídeos/biossíntese , Aerobiose , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Cromossomos Bacterianos/genética , Cromossomos Bacterianos/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Deleção de Genes , Microrganismos Geneticamente Modificados/genética , Plasmídeos/genética , Recombinases Rec A/genética , Recombinases Rec A/metabolismo , Hemoglobinas Truncadas/biossíntese , Hemoglobinas Truncadas/genética
6.
Biochem Pharmacol ; 166: 192-202, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31129050

RESUMO

Duration of gene silencing due to the short-term silencing effects induced by exogenous siRNA have limited the therapeutic applications of RNAi and the development of RNAi-based therapeutics. We here generated Eg5 shRNA-expressing plasmids using the inverted terminal repeats (ITRs) sequences to produce Eg5 hairpin RNA under the control of U6 promoter. Using PEGylated DC-Chol/DOPE cationic liposomes, we demonstrated that a single systemic administration of Eg5 shRNA-expressing plasmid/liposome lipoplexes induced the long-term Eg5 silencing in the tumor sites of tumor-bearing mice, and ultimately lead to more sustained anticancer effects than standard synthetic siEg5/liposome lipoplexes. This non-viral Eg5 shRNA expression system had no risk of immunogenicity anticipated in the use of viral vectors, and could reduce the potential of off-target effects by scaling down the administration dose of RNAi therapeutics in patient. Therefore, the sustainable shRNA expression properties in the tumor sites suggest an efficient strategy to overcome the limitations caused by chemically synthesized siRNA methods such as short-term silencing effects and off-target effects. Herein, this study provides a non-viral silencing strategy for inducing long-term Eg5 silencing in vivo and suggests the great potential of Eg5 shRNA-expressing lipoplexes as a DNA-based RNAi therapeutics for cancer treatment.


Assuntos
Colesterol/análogos & derivados , Inativação Gênica/fisiologia , Cinesinas/biossíntese , Fosfatidiletanolaminas/biossíntese , Plasmídeos/biossíntese , RNA Interferente Pequeno/biossíntese , Animais , Antineoplásicos/administração & dosagem , Linhagem Celular Tumoral , Colesterol/administração & dosagem , Colesterol/biossíntese , Colesterol/genética , Feminino , Expressão Gênica , Inativação Gênica/efeitos dos fármacos , Técnicas de Transferência de Genes , Humanos , Cinesinas/administração & dosagem , Cinesinas/genética , Lipossomos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Nus , Fosfatidiletanolaminas/administração & dosagem , Fosfatidiletanolaminas/genética , Plasmídeos/administração & dosagem , Plasmídeos/genética , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/genética , Distribuição Aleatória , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
7.
Bioprocess Biosyst Eng ; 42(8): 1391-1397, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31006041

RESUMO

A synthetic plasmid consisting of the minimal elements for replication control of the R1 replicon and kanamycin resistance marker, which was named pminiR1, was developed. pminiR1 production was tested at 30 °C under aerobic and microaerobic conditions in Escherichia coli W3110 recA- (W1). The plasmid DNA yields from biomass (YpDNA/X) were only 0.06 ± 0.02 and 0.22 ± 0.11 mg/g under aerobic and microaerobic conditions, respectively. As an option to increase YpDNA/X values, pminiR1 was introduced in an engineered E. coli strain expressing the Vitreoscilla hemoglobin inserted in chromosome (W12). The YpDNA/X values using strain W12 increased to 0.85 ± 0.05 and 1.53 ± 0.14 mg/g under aerobic and microaerobic conditions, respectively. pminiR1 production in both strains was compared with that of pUC57Kan at 37 °C under aerobic and microaerobic conditions. The YpDNA/X values for pminiR1 using strain W12 were 6.25 ± 0.16 and 9.27 ± 0.95 mg/g under aerobic and microaerobic conditions, respectively. Such yields were similar to those obtained for plasmid pUC57Kan using strain W12 (6.9 ± 0.64 and 10.85 ± 1.06 mg/g for aerobic and microaerobic cultures, respectively). Therefore, the synthetic minimal plasmid based on the R1 replicon is a valuable alternative to pUC plasmids for biotechnological applications.


Assuntos
Escherichia coli , Microrganismos Geneticamente Modificados , Plasmídeos , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Cromossomos Bacterianos/genética , Cromossomos Bacterianos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Microrganismos Geneticamente Modificados/genética , Microrganismos Geneticamente Modificados/metabolismo , Plasmídeos/biossíntese , Plasmídeos/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Hemoglobinas Truncadas/biossíntese , Hemoglobinas Truncadas/genética
8.
J Microbiol Methods ; 160: 20-28, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30890401

RESUMO

Astaxanthin possesses various biological properties and is used in the animal and fish feed, food, and beverage industries. In this study, we derived zeaxanthin biosynthesis genes (crtE, crtB, crtI, crtY, and crtZ) from Erwinia uredovora and crtW from Agrobacterium aurantiacum. We fused inducible and constitutive promoters to astaxanthin biosynthesis genes to construct a novel plasmid (dubbed PTP3-6) that can effectively enhance free-form astaxanthin (FFAX) production. The PTP3-6 plasmid contains one T7 promoter, driving IPTG inducible crtW expression, and three constitutive promoters (isolated from E. uredovora) driving expression of the other zeaxanthin biosynthesis genes. Escherichia coli BL21 (DE3) cells carrying the PTP3-6 plasmid produced 8.3 mg/g dry cell weight astaxanthin, which is 69.4-fold higher than has been previously reported. Using multiple promoter fusions of astaxanthin biosynthesis genes could be applied in other hosts to enhance astaxanthin production. FFAX was identified in recombinant E. coli cells through ultra-performance liquid chromatography-mass spectrometry.


Assuntos
Plasmídeos/biossíntese , Agrobacterium/genética , Clonagem Molecular , Escherichia coli/genética , Genes Bacterianos , Pantoea/genética , Plasmídeos/genética , Regiões Promotoras Genéticas/genética , Xantofilas/isolamento & purificação
9.
Catheter Cardiovasc Interv ; 94(5): 669-676, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30866153

RESUMO

OBJECTIVES: To demonstrate coronary sinus (CS) retrograde catheterization as a practicable technique for delivering biologics into the heart. BACKGROUND: There are many options to deliver biologics into the heart. However, there is no single optimal technique when considering safety, biologic retention, and reproducibility. Retrograde delivery has the potential to address many of these concerns. This study evaluated retrograde CS infusion of luciferase-expressing plasmid in a porcine model using the Advance® CS Coronary Sinus Infusion Catheter and bioluminescence imaging to track the expression of the infused biological markers. METHODS: Plasmid was delivered retrograde into the CS in one of three infusion volumes. Twenty-four hours post-infusion, hearts were excised and underwent bioluminescence imaging to characterize the expression of the infusates. Heart and lung biopsies were also assessed for luciferase expression using RT-qPCR. RESULTS: Retrograde infusion was safe and successful in all nine test subjects. Luciferase detection was inconsistent in the low volume group. Bioluminescence was confined predominantly along the posterolateral left ventricle for medium volume infusions and was more broadly dispersed along the anterior side of the heart for high volume infusions. Tissue mRNA analysis corroborated the bioluminescence results, with the highest concentration of luciferase expression localized in the left ventricle. CONCLUSIONS: Retrograde CS infusion is a promising technique for delivering biological molecules to the heart. Specifically, this study demonstrated that the low pressure coronary venous system accommodates a wide range of infusion volumes and that biological infusates can be maintained in situ following the resumption of coronary venous flow.


Assuntos
Cateterismo Cardíaco , Seio Coronário , Técnicas de Transferência de Genes , Luciferases/administração & dosagem , Plasmídeos/administração & dosagem , Animais , Infusões Intravenosas , Luciferases/biossíntese , Luciferases/genética , Medições Luminescentes , Modelos Animais , Miocárdio/metabolismo , Plasmídeos/biossíntese , Plasmídeos/genética , RNA Mensageiro/biossíntese , Sus scrofa , Fatores de Tempo
10.
Iran Biomed J ; 22(6): 394-400, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29776310

RESUMO

BAckground: The human immunodeficiency virus type 1 (HIV-1) is an infectious viral agent that gradually extinguishes the immune system, resulting in acquired immune deficiency syndrome (AIDS). The aim of this study was to construct an RNA-positive control based on armored (AR) RNA technology, using HIV-1 RNA as a model. Methods: The MS2 maturase, a coat protein gene (at positions 1765 to 1787) and HIV-1 pol gene were cloned into pET-32a plasmid. The prepared plasmid was transformed into Escherichia coli strain BL2 (DE3), and the expression of the construct was induced by 1 mM of isopropyl-L-thio-D-galactopyranoside (IPTG) at 37 °C for 16 h to obtain the fabricated AR RNA. The AR RNA was precipitated and purified using polyethylene glycol and Sephacryl S-200 chromatography. Results: The stability of AR RNA was evaluated by treatment with DNase I and RNase A and confirmed by transmission electron microscopy and gel agarose electrophoresis. Tenfold serial dilution of AR RNA from 101 to 105 was prepared. Real-time PCR assays had a range of detection between 101 and 105. In addition, R2 value was 0.998, and the slope of the standard curve was -3.33. Conclusion: Prepared AR RNA, as a positive control, could be used as a basis for launching an in-house HIV-1 virus assay and other infectious agents. It can be readily available to laboratories and HIV research centers. The AR RNA is non-infectious and highly resistant to ribonuclease enzyme and can reduce the risk of infection in the clinical laboratory.


Assuntos
HIV-1/enzimologia , RNA Viral/biossíntese , Ribonucleases/biossíntese , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Plasmídeos/biossíntese , Plasmídeos/genética , Plasmídeos/farmacologia , RNA Viral/genética , Ribonucleases/genética , Ribonucleases/farmacologia
11.
Int J Pharm ; 545(1-2): 295-305, 2018 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-29698820

RESUMO

The poly(cystaminebis(acrylamide)-diaminohexane) (poly(CBA-DAH)) was designed previously as a bio-reducible efficient gene delivery carrier. However, the high weight ratio required to form the polyplexes between poly(CBA-DAH) with pDNA is still a problem that needs to be addressed. To solve this problem and increase the transfection efficiency, poly(ethylenimine) (PEI, 1.8 kDa) was conjugated to poly(CBA-DAH) via disulfide bond. The PEI conjugated poly(CBA-DAH) (PCDP) can bind with pDNA at a very low weight ratio of 0.5 and above, like PEI 25 kDa, and form the polyplexes with nano-size (102-128 nm) and positive surface charge (27-34 mV). PCDP and PCDP polyplexes had negligible cytotoxicity and indicated similar or better cellular uptake than the comparison groups such as PEI 25 kDa and Lipofectamine® polyplexes. To confirm the transfection efficiency, the plasmid DNA (pDNA) encoded with the luciferase reporter gene (gWiz-Luc) and green fluorescent protein reporter gene (GFP) were used and treated with PCDP into the A549, Huh-7, and Mia PaCa-2 cells. PCDP/pDNA polyplexes showed highest transfection efficiency in all tested cell lines. In the luciferase assay, PCDP polyplexes showed 10.2 times higher gene transfection efficiency than Lipofectamine® polyplexes in mimic in vivo conditions (30% FBS, A549 cells). The VEGF siRNA expressing plasmid (pshVEGF), which is constructed as a therapeutic gene by our previous work, was delivered by PCDP into the cancer cells. The VEGF gene expression of PCDP/pshVEGF polyplexes was dramatically lower than control and the VEGF gene silencing efficiencies of PCDP/pshVEGF (w/w; 10/1) polyplexes were 54% (A549 cells), 77% (Huh-7 cells), and 66% (Mia PaCa-2 cells). In addition, PCDP/pshVEGF had reduced cell viability rates of about 31% (A549 cells), 39% (Huh-7 cells), and 42% (Mia PaCa-2 cells) and showed better results than all comparison groups. In the transfection efficiency and VEGF silencing assay, PCDP polyplexes showed better results than poly(CBA-DAH) at 4-fold lower weight ratio. The data of all experiments demonstrate that the synthesized PCDP could be used for efficient gene delivery and could be widely applied.


Assuntos
Acrilamidas/síntese química , Diaminas/síntese química , Técnicas de Transferência de Genes , Iminas/síntese química , Neoplasias/genética , Plasmídeos/genética , Polietilenos/síntese química , Transfecção/métodos , Células A549 , Acrilamidas/metabolismo , Acrilamidas/toxicidade , Diaminas/metabolismo , Diaminas/toxicidade , Regulação Neoplásica da Expressão Gênica , Genes Reporter , Humanos , Iminas/metabolismo , Iminas/toxicidade , Nanopartículas , Neoplasias/metabolismo , Neoplasias/patologia , Tamanho da Partícula , Plasmídeos/biossíntese , Plasmídeos/química , Polietilenos/metabolismo , Polietilenos/toxicidade , Interferência de RNA , RNA Interferente Pequeno/biossíntese , RNA Interferente Pequeno/genética , Propriedades de Superfície , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
12.
Biotechnol Prog ; 34(1): 271-276, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28960932

RESUMO

The establishment of erythromycin production within the heterologous host E. coli marked an accomplishment in genetic transfer capacity. Namely, over 20 genes and 50 kb of DNA was introduced to E. coli for successful heterologous biosynthetic reconstitution. However, the prospect for production levels that approach those of the native host requires the application of engineering tools associated with E. coli. In this report, metabolic and genomic engineering were implemented to improve the E. coli cellular background and the plasmid platform supporting heterologous erythromycin formation. Results include improved plasmid stability and metabolic support for biosynthetic product formation. Specifically, the new plasmid design for erythromycin formation allowed for ≥89% stability relative to current standards (20% stability). In addition, the new strain (termed LF01) designed to improve carbon flow to the erythromycin biosynthetic pathway provided a 400% improvement in titer level. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 34:271-276, 2018.


Assuntos
Eritromicina/biossíntese , Escherichia coli/genética , Engenharia Metabólica/métodos , Plasmídeos/genética , Vias Biossintéticas/genética , Carbono/metabolismo , Eritromicina/química , Genômica , Plasmídeos/biossíntese
13.
Gene ; 637: 14-24, 2017 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-28935259

RESUMO

The fission yeast Schizosaccharomyces pombe is a powerful model organism for cell biology and molecular biology, as genetic manipulation is easily achieved. Introduction of exogenous genes cloned in episomal plasmids into yeast cells can be done through well-established transformation methods. For expression of genes in S. pombe cells, the multi-copy plasmid pREP1 and its derivatives, including pREP41 and pREP81, have been widely used as vectors. Although recent advancement of technology brought a number of useful genetic elements such as new promoters, selection marker genes and fluorescent protein tags, introduction of those elements into conventional pREP1 requires a large commitment of both time and effort because cloning procedures need to be repeated until the final products are constructed. Here, we introduce materials and methods to construct many pREP1-type plasmids easily and systematically using the Golden Gate shuffling method, which enables one-step ligation of many DNA fragments into a plasmid. These materials and methods support creation of expression plasmids employing a variety of novel genetic elements, which will further facilitate genetic studies using S. pombe.


Assuntos
Expressão Gênica , Vetores Genéticos/biossíntese , Plasmídeos/biossíntese , Recombinação Genética , Schizosaccharomyces/genética , DNA Fúngico , Genes Fúngicos , Regiões Promotoras Genéticas , Schizosaccharomyces/crescimento & desenvolvimento , Transformação Genética
14.
BMC Biotechnol ; 17(1): 60, 2017 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-28676110

RESUMO

BACKGROUND: Dissolved oxygen tension (DOT) is hardly constant and homogenously distributed in a bioreactor, which can have a negative impact in the metabolism and product synthesis. However, the effects of DOT on plasmid DNA (pDNA) production and quality have not been thoroughly investigated. In the present study, the effects of aerobic (DOT ≥30% air sat.), microaerobic (constant DOT = 3% air sat.) and oscillatory DOT (from 0 to 100% air sat.) conditions on pDNA production, quality and host performance were characterized. RESULTS: Microaerobic conditions had little effect on pDNA production, supercoiled fraction and sequence fidelity. By contrast, oscillatory DOT caused a 22% decrease in pDNA production compared with aerobic cultures. Although in aerobic cultures the pDNA supercoiled fraction was 98%, it decreased to 80% under heterogeneous DOT conditions. The different oxygen availabilities had no effect on the fidelity of the produced pDNA. The estimated metabolic fluxes indicated substantial differences at the level of the pentose phosphate pathway and TCA cycle under different conditions. Cyclic changes in fermentative pathway fluxes, as well as fast shifts in the fluxes through cytochromes, were also estimated. Model-based genetic modifications that can potentially improve the process performance are suggested. CONCLUSIONS: DOT heterogeneities strongly affected cell performance, pDNA production and topology. This should be considered when operating or scaling-up a bioreactor with deficient mixing. Constant microaerobic conditions affected the bacterial metabolism but not the amount or quality of pDNA. Therefore, pDNA production in microaerobic cultures may be an alternative for bioreactor operation at higher oxygen transfer rates.


Assuntos
DNA Bacteriano/biossíntese , DNA Bacteriano/genética , Escherichia coli/fisiologia , Oxigênio/metabolismo , Plasmídeos/biossíntese , Plasmídeos/genética , Disponibilidade Biológica , Regulação Bacteriana da Expressão Gênica/genética , Plasmídeos/isolamento & purificação
15.
Nucleic Acids Res ; 45(7): 3953-3966, 2017 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-28335002

RESUMO

Specific nucleoprotein complexes are formed strictly to prevent over-initiation of DNA replication. An example of those is the so-called handcuff complex, in which two plasmid molecules are coupled together with plasmid-encoded replication initiation protein (Rep). In this work, we elucidate the mechanism of the handcuff complex disruption. In vitro tests, including dissociation progress analysis, demonstrate that the dimeric variants of plasmid RK2 replication initiation protein TrfA are involved in assembling the plasmid handcuff complex which, as we found, reveals high stability. Particular proteases, namely Lon and ClpAP, disrupt the handcuff by degrading TrfA, thus affecting plasmid stability. Moreover, our data demonstrate that TrfA monomers are able to dissociate handcuffed plasmid molecules. Those monomers displace TrfA molecules, which are involved in handcuff formation, and through interaction with the uncoupled plasmid replication origins they re-initiate DNA synthesis. We discuss the relevance of both Rep monomers and host proteases for plasmid maintenance under vegetative and stress conditions.


Assuntos
Replicação do DNA , Endopeptidase Clp/metabolismo , Proteínas de Escherichia coli/metabolismo , Plasmídeos/biossíntese , Protease La/metabolismo , DNA Bacteriano/biossíntese , Escherichia coli/enzimologia , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Nucleoproteínas/metabolismo , Plasmídeos/metabolismo , Protease La/genética , Multimerização Proteica
16.
Nucleic Acids Res ; 45(7): 3724-3737, 2017 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-28031373

RESUMO

The conserved DnaA-oriC system is used to initiate replication of primary chromosomes throughout the bacterial kingdom; however, bacteria with multipartite genomes evolved distinct systems to initiate replication of secondary chromosomes. In the cholera pathogen, Vibrio cholerae, and in related species, secondary chromosome replication requires the RctB initiator protein. Here, we show that RctB consists of four domains. The structure of its central two domains resembles that of several plasmid replication initiators. RctB contains at least three DNA binding winged-helix-turn-helix motifs, and mutations within any of these severely compromise biological activity. In the structure, RctB adopts a head-to-head dimeric configuration that likely reflects the arrangement in solution. Therefore, major structural reorganization likely accompanies complex formation on the head-to-tail array of binding sites in oriCII. Our findings support the hypothesis that the second Vibrionaceae chromosome arose from an ancestral plasmid, and that RctB may have evolved additional regulatory features.


Assuntos
Proteínas de Bactérias/química , Proteínas de Ligação a DNA/química , Vibrio cholerae/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Cromossomos Bacterianos , DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Plasmídeos/biossíntese , Domínios Proteicos , Multimerização Proteica , Origem de Replicação
17.
PLoS Genet ; 12(12): e1006523, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27977669

RESUMO

By using fluorescence imaging, we provide a time-resolved single-cell view on coupled defects in transcription, translation, and growth during expression of heterologous membrane proteins in Lactococcus lactis. Transcripts encoding poorly produced membrane proteins accumulate in mRNA-dense bodies at the cell poles, whereas transcripts of a well-expressed homologous membrane protein show membrane-proximal localization in a translation-dependent fashion. The presence of the aberrant polar mRNA foci correlates with cessation of cell division, which is restored once these bodies are cleared. In addition, activation of the heat-shock response and a loss of nucleoid-occluded ribosomes are observed. We show that the presence of a native-like N-terminal domain is key to SRP-dependent membrane localization and successful production of membrane proteins. The work presented gives new insights and detailed understanding of aberrant membrane protein biogenesis, which can be used for strategies to optimize membrane protein production.


Assuntos
Lactococcus lactis/genética , Proteínas de Membrana/biossíntese , Plasmídeos/genética , Biossíntese de Proteínas/genética , Polaridade Celular/genética , Regulação Bacteriana da Expressão Gênica/genética , Proteínas de Membrana/genética , Microscopia de Fluorescência , Plasmídeos/biossíntese , RNA Mensageiro/biossíntese , Ribossomos/genética
18.
Assay Drug Dev Technol ; 14(6): 355-63, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27505074

RESUMO

We previously reported clinical performance of a novel noninvasive and quantitative PCR (qPCR)-based molecular diagnostic assay (the pigmented lesion assay; PLA) that differentiates primary cutaneous melanoma from benign pigmented skin lesions through two target gene signatures, LINC00518 (LINC) and preferentially expressed antigen in melanoma (PRAME). This study focuses on analytical characterization of this PLA, including qPCR specificity and sensitivity, optimization of RNA input in qPCR to achieve a desired diagnostic sensitivity and specificity, and analytical performance (repeatability and reproducibility) of this two-gene PLA. All target qPCRs demonstrated a good specificity (100%) and sensitivity (with a limit of detection of 1-2 copies), which allows reliable detection of gene expression changes of LINC and PRAME between melanomas and nonmelanomas. Through normalizing RNA input in qPCR, we converted the traditional gene expression analyses to a binomial detection of gene transcripts (i.e., detected or not detected). By combining the binomial qPCR results of the two genes, an improved diagnostic sensitivity (raised from 52%- 65% to 71% at 1 pg of total RNA input, and to 91% at 3 pg of total RNA input) was achieved. This two-gene PLA demonstrates a high repeatability and reproducibility (coefficient of variation <3%) and all required analytical performance characteristics for the commercial processing of clinical samples.


Assuntos
Expressão Gênica/genética , Melanoma/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Neoplasias Cutâneas/genética , Antígenos de Neoplasias/biossíntese , Antígenos de Neoplasias/genética , Linhagem Celular Tumoral , Humanos , Melanoma/metabolismo , Plasmídeos/biossíntese , Plasmídeos/genética , RNA Longo não Codificante/biossíntese , RNA Longo não Codificante/genética , Neoplasias Cutâneas/metabolismo , Melanoma Maligno Cutâneo
19.
Biomed Res Int ; 2016: 3073949, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27073802

RESUMO

To clone and express the γ-polyglutamic acid (γ-PGA) synthetase gene pgsBCA in Bacillus subtilis, a pWB980 plasmid was used to construct and transfect the recombinant expression vector pWB980-pgsBCA into Bacillus subtilis WB600. PgsBCA was expressed under the action of a P43 promoter in the pWB980 plasmid. Our results showed that the recombinant bacteria had the capacity to synthesize γ-PGA. The expression product was secreted extracellularly into the fermentation broth, with a product yield of 1.74 g/L or higher. γ-PGA samples from the fermentation broth were purified and characterized. Hydrolysates of γ-PGA presented in single form, constituting simple glutamic acid only, which matched the characteristics of the infrared spectra of the γ-PGA standard, and presented as multimolecular aggregates with a molecular weight within the range of 500-600 kDa. Expressing the γ-PGA synthetase gene pgsBCA in B. subtilis system has potential industrial applications.


Assuntos
Bacillus subtilis/enzimologia , Escherichia coli/genética , Peptídeo Sintases/genética , Bacillus subtilis/genética , Clonagem Molecular , Fermentação , Regulação Bacteriana da Expressão Gênica , Peptídeo Sintases/biossíntese , Plasmídeos/biossíntese , Plasmídeos/genética
20.
Protein Expr Purif ; 121: 1-8, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26748213

RESUMO

Ferredoxins are small, acidic proteins containing iron-sulfur clusters that are widespread in living organisms. They play key roles as electron carriers in various metabolic processes, including respiration, photosynthesis, fermentation, nitrogen fixation, carbon dioxide fixation, and hydrogen production. However, only several kinds of ferredoxins are commercially available now, greatly limiting the investigation of ferredoxin-related enzymes and metabolic processes. Here we describe the heterologous overproduction of 2[4Fe4S]- and [2Fe2S]-type clostridial ferredoxins and [2Fe2S]-type agrobacterial ferredoxin. Adding extra iron and sulfur sources to the medium in combination with using Escherichia coli C41(DE3) harboring pCodonplus and pRKISC plasmids as host greatly enhanced iron-sulfur cluster synthesis in the three ferredoxins. After induction for 12 h in terrific broth and purification by affinity chromatography and anion exchange chromatography, approximately 3.4 mg of streptavidin (Strep)-tagged and 3.7 mg of polyhistidine (His)-tagged clostridial 2[4Fe4S] ferredoxins were obtained from 1 l of culture. Excitingly, after induction for 24 h in terrific broth, around 40 mg of His-tagged clostridial [2Fe2S] and 23 mg of His-tagged agrobacterial [2Fe2S] ferredoxins were purified from 1 l of culture. The recombinant ferredoxins apparently exhibited identical properties and physiological function to native ferredoxins. No negative impact of two different affinity tags on ferredoxin activity was found. In conclusion, we successfully developed a convenient method for heterologous overproduction of the three kinds of ferredoxins with satisfactory yields and activities, which would be very helpful for the ferredoxin-related researches.


Assuntos
Ferredoxinas/biossíntese , Proteínas Ferro-Enxofre/biossíntese , Proteínas Recombinantes/biossíntese , Agrobacterium/genética , Cromatografia de Afinidade , Clostridium/genética , Espectroscopia de Ressonância de Spin Eletrônica , Escherichia coli/genética , Ferredoxinas/química , Ferredoxinas/isolamento & purificação , Ferro/química , Proteínas Ferro-Enxofre/química , Proteínas Ferro-Enxofre/isolamento & purificação , Plasmídeos/biossíntese , Plasmídeos/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...