Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 586
Filtrar
1.
Planta ; 260(2): 45, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965075

RESUMO

MAIN CONCLUSION: Developing bryophytes differentially modify their plasmodesmata structure and function. Secondary plasmodesmata formation via twinning appears to be an ancestral trait. Plasmodesmata networks in hornwort sporophyte meristems resemble those of angiosperms. All land-plant taxa use plasmodesmata (PD) cell connections for symplasmic communication. In angiosperm development, PD networks undergo an extensive remodeling by structural and functional PD modifications, and by postcytokinetic formation of additional secondary PD (secPD). Since comparable information on PD dynamics is scarce for the embryophyte sister groups, we investigated maturating tissues of Anthoceros agrestis (hornwort), Physcomitrium patens (moss), and Marchantia polymorpha (liverwort). As in angiosperms, quantitative electron microscopy revealed secPD formation via twinning in gametophytes of all model bryophytes, which gives rise to laterally adjacent PD pairs or to complex branched PD. This finding suggests that PD twinning is an ancient evolutionary mechanism to adjust PD numbers during wall expansion. Moreover, all bryophyte gametophytes modify their existing PD via taxon-specific strategies resembling those of angiosperms. Development of type II-like PD morphotypes with enlarged diameters or formation of pit pairs might be required to maintain PD transport rates during wall thickening. Similar to angiosperm leaves, fluorescence redistribution after photobleaching revealed a considerable reduction of the PD permeability in maturating P. patens phyllids. In contrast to previous reports on monoplex meristems of bryophyte gametophytes with single initials, we observed targeted secPD formation in the multi-initial basal meristems of A. agrestis sporophytes. Their PD networks share typical features of multi-initial angiosperm meristems, which may hint at a putative homologous origin. We also discuss that monoplex and multi-initial meristems may require distinct types of PD networks, with or without secPD formation, to control maintenance of initial identity and positional signaling.


Assuntos
Plasmodesmos , Plasmodesmos/ultraestrutura , Plasmodesmos/metabolismo , Briófitas/crescimento & desenvolvimento , Briófitas/fisiologia , Briófitas/ultraestrutura , Bryopsida/crescimento & desenvolvimento , Bryopsida/fisiologia , Bryopsida/ultraestrutura , Marchantia/genética , Marchantia/crescimento & desenvolvimento , Marchantia/fisiologia , Marchantia/ultraestrutura , Células Germinativas Vegetais/crescimento & desenvolvimento , Anthocerotophyta/fisiologia , Anthocerotophyta/metabolismo , Meristema/crescimento & desenvolvimento , Meristema/ultraestrutura , Meristema/fisiologia
2.
PeerJ ; 12: e17625, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38948221

RESUMO

Plasmodesmata are transmembrane channels embedded within the cell wall that can facilitate the intercellular communication in plants. Plasmodesmata callose-binding (PDCB) protein that associates with the plasmodesmata contributes to cell wall extension. Given that the elongation of cotton fiber cells correlates with the dynamics of the cell wall, this protein can be related to the cotton fiber elongation. This study sought to identify PDCB family members within the Gossypium. hirsutum genome and to elucidate their expression profiles. A total of 45 distinct family members were observed through the identification and screening processes. The analysis of their physicochemical properties revealed the similarity in the amino acid composition and molecular weight across most members. The phylogenetic analysis facilitated the construction of an evolutionary tree, categorizing these members into five groups mainly distributed on 20 chromosomes. The fine mapping results facilitated a tissue-specific examination of group V, revealing that the expression level of GhPDCB9 peaked five days after flowering. The VIGS experiments resulted in a marked decrease in the gene expression level and a significant reduction in the mature fiber length, averaging a shortening of 1.43-4.77 mm. The results indicated that GhPDCB9 played a pivotal role in the cotton fiber development and served as a candidate for enhancing cotton yield.


Assuntos
Fibra de Algodão , Gossypium , Filogenia , Proteínas de Plantas , Plasmodesmos , Gossypium/genética , Gossypium/metabolismo , Plasmodesmos/metabolismo , Fibra de Algodão/análise , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Glucanos/metabolismo , Família Multigênica , Parede Celular/metabolismo , Parede Celular/genética , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo
3.
Mol Plant Pathol ; 25(6): e13485, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38877764

RESUMO

Fusarium head blight disease on small-grain cereals is primarily caused by the ascomycete fungal pathogen Fusarium graminearum. Infection of floral spike tissues is characterized by the biosynthesis and secretion of potent trichothecene mycotoxins, of which deoxynivalenol (DON) is widely reported due to its negative impacts on grain quality and consumer safety. The TRI5 gene encodes an essential enzyme in the DON biosynthesis pathway and the single gene deletion mutant, ΔTri5, is widely reported to restrict disease progression to the inoculated spikelet. In this study, we present novel bioimaging evidence revealing that DON facilitates the traversal of the cell wall through plasmodesmata, a process essential for successful colonization of host tissue. Chemical complementation of ΔTri5 did not restore macro- or microscopic phenotypes, indicating that DON secretion is tightly regulated both spatially and temporally. A comparative qualitative and quantitative morphological cellular analysis revealed infections had no impact on plant cell wall thickness. Immunolabelling of callose at plasmodesmata during infection indicates that DON can increase deposits when applied exogenously but is reduced when F. graminearum hyphae are present. This study highlights the complexity of the interconnected roles of mycotoxin production, cell wall architecture and plasmodesmata in this highly specialized interaction.


Assuntos
Parede Celular , Fusarium , Doenças das Plantas , Tricotecenos , Triticum , Tricotecenos/metabolismo , Fusarium/patogenicidade , Fusarium/metabolismo , Triticum/microbiologia , Doenças das Plantas/microbiologia , Parede Celular/metabolismo , Parede Celular/efeitos dos fármacos , Plasmodesmos/metabolismo , Micotoxinas/metabolismo
4.
J Virol ; 98(6): e0050724, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38775482

RESUMO

Viruses employ a series of diverse translational strategies to expand their coding capacity, which produces viral proteins with common domains and entangles virus-host interactions. P3N-PIPO, which is a transcriptional slippage product from the P3 cistron, is a potyviral protein dedicated to intercellular movement. Here, we show that P3N-PIPO from watermelon mosaic virus (WMV) triggers cell death when transiently expressed in Cucumis melo accession PI 414723 carrying the Wmr resistance gene. Surprisingly, expression of the P3N domain, shared by both P3N-PIPO and P3, can alone induce cell death, whereas expression of P3 fails to activate cell death in PI 414723. Confocal microscopy analysis revealed that P3N-PIPO targets plasmodesmata (PD) and P3N associates with PD, while P3 localizes in endoplasmic reticulum in melon cells. We also found that mutations in residues L35, L38, P41, and I43 of the P3N domain individually disrupt the cell death induced by P3N-PIPO, but do not affect the PD localization of P3N-PIPO. Furthermore, WMV mutants with L35A or I43A can systemically infect PI 414723 plants. These key residues guide us to discover some WMV isolates potentially breaking the Wmr resistance. Through searching the NCBI database, we discovered some WMV isolates with variations in these key sites, and one naturally occurring I43V variation enables WMV to systemically infect PI 414723 plants. Taken together, these results demonstrate that P3N-PIPO, but not P3, is the avirulence determinant recognized by Wmr, although the shared N terminal P3N domain can alone trigger cell death.IMPORTANCEThis work reveals a novel viral avirulence (Avr) gene recognized by a resistance (R) gene. This novel viral Avr gene is special because it is a transcriptional slippage product from another virus gene, which means that their encoding proteins share the common N-terminal domain but have distinct C-terminal domains. Amazingly, we found that it is the common N-terminal domain that determines the Avr-R recognition, but only one of the viral proteins can be recognized by the R protein to induce cell death. Next, we found that these two viral proteins target different subcellular compartments. In addition, we discovered some virus isolates with variations in the common N-terminal domain and one naturally occurring variation that enables the virus to overcome the resistance. These results show how viral proteins with common domains interact with a host resistance protein and provide new evidence for the arms race between plants and viruses.


Assuntos
Doenças das Plantas , Potyvirus , Proteínas Virais , Doenças das Plantas/virologia , Potyvirus/genética , Potyvirus/patogenicidade , Proteínas Virais/genética , Proteínas Virais/metabolismo , Cucumis melo/virologia , Resistência à Doença/genética , Morte Celular , Plasmodesmos/virologia , Plasmodesmos/metabolismo , Virulência , Cucurbitaceae/virologia , Interações Hospedeiro-Patógeno , Retículo Endoplasmático/virologia , Retículo Endoplasmático/metabolismo , Mutação , Citrullus/virologia
5.
6.
Curr Opin Plant Biol ; 79: 102541, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38663258

RESUMO

Messenger RNAs (mRNAs) are the templates for protein translation but can also act as non-cell-autonomous signaling molecules. Plants input endogenous and exogenous cues to mobile mRNAs and output them to local or systemic target cells and organs to support specific plant responses. Mobile mRNAs form ribonucleoprotein (RNP) complexes with proteins during transport. Components of these RNP complexes could interact with plasmodesmata (PDs), a major mediator of mRNA transport, to ensure mRNA mobility and transport selectivity. Based on advances in the last two to three years, this review summarizes mRNA transport mechanisms in local and systemic signaling from the perspective of RNP complex formation and PD transport. We also discuss the physiological roles of endogenous mRNA transport and the recently revealed roles of non-cell-autonomous mRNAs in inter-organism communication.


Assuntos
Plasmodesmos , RNA Mensageiro , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Plasmodesmos/metabolismo , Ribonucleoproteínas/metabolismo , Ribonucleoproteínas/genética , RNA de Plantas/metabolismo , RNA de Plantas/genética , Transporte de RNA , Plantas/metabolismo , Plantas/genética , Transdução de Sinais , Comunicação Celular
7.
New Phytol ; 243(1): 32-47, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38494438

RESUMO

Plasmodesmata are plasma membrane-lined connections that join plant cells to their neighbours, establishing an intercellular cytoplasmic continuum through which molecules can travel between cells, tissues, and organs. As plasmodesmata connect almost all cells in plants, their molecular traffic carries information and resources across a range of scales, but dynamic control of plasmodesmal aperture can change the possible domains of molecular exchange under different conditions. Plasmodesmal aperture is controlled by specialised signalling cascades accommodated in spatially discrete membrane and cell wall domains. Thus, the composition of plasmodesmata defines their capacity for molecular trafficking. Further, their shape and density can likewise define trafficking capacity, with the cell walls between different cell types hosting different numbers and forms of plasmodesmata to drive molecular flux in physiologically important directions. The molecular traffic that travels through plasmodesmata ranges from small metabolites through to proteins, and possibly even larger mRNAs. Smaller molecules are transmitted between cells via passive mechanisms but how larger molecules are efficiently trafficked through plasmodesmata remains a key question in plasmodesmal biology. How plasmodesmata are formed, the shape they take, what they are made of, and what passes through them regulate molecular traffic through plants, underpinning a wide range of plant physiology.


Assuntos
Plasmodesmos , Plasmodesmos/metabolismo , Transporte Biológico , Plantas/metabolismo , Células Vegetais/metabolismo
8.
Methods Mol Biol ; 2772: 39-48, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38411805

RESUMO

The plant endoplasmic reticulum (ER) forms several specialized structures. These include the sieve element reticulum (SER) and the desmotubule formed as the ER passes through plasmodesmata. Imaging both of these structures has been inhibited by the resolution limits of light microscopy and their relatively inaccessible locations, combined with the fragile nature of the ER. Here we describe methods to view desmotubules in live cells under 3D-structured illumination microscopy (3D-SIM) and methods to fix and prepare phloem tissue for both 3D-SIM and transmission electron microscopy (TEM), which preserve the fragile structure and allow the detailed imaging of the SER.


Assuntos
Retículo Endoplasmático , Floema , Microscopia Eletrônica de Transmissão , Plasmodesmos
9.
Mol Plant Microbe Interact ; 37(5): 427-431, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38377039

RESUMO

Callose, a ß-(1,3)-d-glucan polymer, is essential for regulating intercellular trafficking via plasmodesmata (PD). Pathogens manipulate PD-localized proteins to enable intercellular trafficking by removing callose at PD or, conversely, by increasing callose accumulation at PD to limit intercellular trafficking during infection. Plant defense hormones like salicylic acid regulate PD-localized proteins to control PD and intercellular trafficking during immune defense responses such as systemic acquired resistance. Measuring callose deposition at PD in plants has therefore emerged as a popular parameter for assessing likely intercellular trafficking activity during plant immunity. Despite the popularity of this metric, there is no standard for how these measurements should be made. In this study, three commonly used methods for identifying and quantifying plasmodesmal callose by aniline blue staining were evaluated to determine the most effective in the Nicotiana benthamiana leaf model. The results reveal that the most reliable method used aniline blue staining and fluorescence microscopy to measure callose deposition in fixed tissue. Manual or semiautomated workflows for image analysis were also compared and found to produce similar results, although the semiautomated workflow produced a wider distribution of data points. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Glucanos , Nicotiana , Doenças das Plantas , Folhas de Planta , Plasmodesmos , Glucanos/metabolismo , Nicotiana/metabolismo , Plasmodesmos/metabolismo , Folhas de Planta/metabolismo , Doenças das Plantas/microbiologia , Compostos de Anilina/metabolismo , Imunidade Vegetal , Coloração e Rotulagem/métodos
10.
New Phytol ; 242(2): 389-391, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38363008
11.
Nat Plants ; 10(1): 161-171, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38177664

RESUMO

Plants convert external cues into mobile mRNAs to synchronize meristematic differentiation with environmental dynamics. These mRNAs are selectively transported to intercellular pores, plasmodesmata (PD), for cell-to-cell movement. However, how plants recognize and deliver mobile mRNAs to PD remains unknown. Here we show that mobile mRNAs hitchhike on organelle trafficking to transport towards PD. Perturbed cytoskeleton organization or organelle trafficking severely disrupts the subcellular distribution of mobile mRNAs. Arabidopsis rotamase cyclophilins (ROCs), which are organelle-localized RNA-binding proteins, specifically bind mobile mRNAs on the surface of organelles to direct intracellular transport. Arabidopsis roc mutants exhibit phenotype alterations and disruptions in the transport of mobile mRNAs. These findings suggest that ROCs play a crucial role in facilitating the systemic delivery of mobile mRNAs. Our results highlight that an RNA-binding protein-mediated hitchhiking system is specifically recruited to orient plant mobile mRNAs for intercellular transport.


Assuntos
Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transporte Biológico , Organelas , Plantas/genética , Plasmodesmos/metabolismo
12.
Protoplasma ; 261(1): 31-41, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37418158

RESUMO

In this study, the results of the first detection of callose within the ovules of the representatives of the family Crassulaceae are presented. This study was carried out on three species of the genus Sedum. Data analysis showed differences in the callose deposition pattern between Sedum hispanicum and Sedum ser. Rupestria species during megasporogenesis. Callose was present mostly in the transversal walls of dyads and tetrads in S. hispanicum. Furthermore, a complete loss of callose from the cell walls of the linear tetrad and a gradual and simultaneous deposition of callose within the nucellus of S. hispanicum were observed. The findings of this study showed the presence of hypostase with callose in the ovules of S. hispanicum, which is not common in other angiosperms. The remaining species tested in this study-Sedum sediforme and Sedum rupestre-showed a typical, well-known callose deposition pattern for plants with the monospore type of megasporogenesis and the Polygonum type of embryo sac. The functional megaspore (FM) in all studied species was located most chalazally. FM is a mononuclear cell, which wall is callose-free in the chalazal pole. The study presents the causes of different patterns of callose deposition within Sedum and their relationship with the systematic position of the study species. Moreover, embryological studies present an argument for excluding callose as a substance that forms an electron-dense material near the plasmodesmata in megaspores of S. hispanicum. This research expands the knowledge about the embryological processes of succulent plants from the family Crassulaceae.


Assuntos
Crassulaceae , Glucanos , Sedum , Sedum/ultraestrutura , Crassulaceae/ultraestrutura , Gametogênese Vegetal , Plasmodesmos/ultraestrutura
13.
Mol Plant Microbe Interact ; 37(2): 84-92, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37942798

RESUMO

In plants, plasmodesmata establish cytoplasmic continuity between cells to allow for communication and resource exchange across the cell wall. While plant pathogens use plasmodesmata as a pathway for both molecular and physical invasion, the benefits of molecular invasion (cell-to-cell movement of pathogen effectors) are poorly understood. To establish a methodology for identification and characterization of the cell-to-cell mobility of effectors, we performed a quantitative live imaging-based screen of candidate effectors of the fungal pathogen Colletotrichum higginsianum. We predicted C. higginsianum effectors by their expression profiles, the presence of a secretion signal, and their predicted and in planta localization when fused to green fluorescent protein. We assayed for cell-to-cell mobility of nucleocytosolic effectors and identified 14 that are cell-to-cell mobile. We identified that three of these effectors are "hypermobile," showing cell-to-cell mobility greater than expected for a protein of that size. To explore the mechanism of hypermobility, we chose two hypermobile effectors and measured their impact on plasmodesmata function and found that even though they show no direct association with plasmodesmata, each increases the transport capacity of plasmodesmata. Thus, our methods for quantitative analysis of cell-to-cell mobility of candidate microbe-derived effectors, or any suite of host proteins, can identify cell-to-cell hypermobility and offer greater understanding of how proteins affect plasmodesmal function and intercellular connectivity. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Assuntos
Plantas , Plasmodesmos , Plasmodesmos/metabolismo , Plantas/metabolismo , Citoplasma , Citosol , Parede Celular
14.
Trends Plant Sci ; 29(1): 10-12, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37919125

RESUMO

Brassinosteroids (BRs) are exceptional phytohormones: they do not undergo a long-distance transport between plant organs. However, the mechanism of short-distance (intercellular) transport of BRs remains poorly understood. Recently, Wang et al. provided a novel insight into the mutual dependence of BR homeostasis, their intercellular transport, and plasmodesmata permeability.


Assuntos
Brassinosteroides , Plasmodesmos , Reguladores de Crescimento de Plantas , Plantas , Homeostase , Regulação da Expressão Gênica de Plantas
15.
Mol Plant Microbe Interact ; 37(3): 304-314, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37782126

RESUMO

It has been discovered that plant pathogens produce effectors that spread via plasmodesmata (PD) to allow modulation of host processes in distal uninfected cells. Fusarium oxysporum f. sp. lycopersici (Fol) facilitates effector translocation by expansion of the size-exclusion limit of PD using the Six5/Avr2 effector pair. How other fungal pathogens manipulate PD is unknown. We recently reported that many fungal pathogens belonging to different families carry effector pairs that resemble the SIX5/AVR2 gene pair from Fol. Here, we performed structural predictions of three of these effector pairs from Leptosphaeria maculans (Lm) and tested their ability to manipulate PD and to complement the virulence defect of a Fol SIX5 knockout mutant. We show that the AvrLm10A homologs are structurally related to FolSix5 and localize at PD when they are expressed with their paired effectors. Furthermore, these effectors were found to complement FolSix5 function in cell-to-cell mobility assays and in fungal virulence. We conclude that distantly related fungal species rely on structurally related paired effector proteins to manipulate PD and facilitate effector mobility. The wide distribution of these effector pairs implies Six5-mediated effector translocation to be a conserved propensity among fungal plant pathogens. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Proteínas Fúngicas , Fusarium , Humanos , Proteínas Fúngicas/metabolismo , Virulência , Plasmodesmos/metabolismo , Doenças das Plantas/microbiologia
16.
New Phytol ; 241(1): 298-313, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37882365

RESUMO

In leaves of C4 plants, the reactions of photosynthesis become restricted between two compartments. Typically, this allows accumulation of C4 acids in mesophyll (M) cells and subsequent decarboxylation in the bundle sheath (BS). In C4 grasses, proliferation of plasmodesmata between these cell types is thought to increase cell-to-cell connectivity to allow efficient metabolite movement. However, it is not known whether C4 dicotyledons also show this enhanced plasmodesmal connectivity and so whether this is a general requirement for C4 photosynthesis is not clear. How M and BS cells in C4 leaves become highly connected is also not known. We investigated these questions using 3D- and 2D-electron microscopy on the C4 dicotyledon Gynandropsis gynandra as well as phylogenetically close C3 relatives. The M-BS interface of C4 G. gynandra showed higher plasmodesmal frequency compared with closely related C3 species. Formation of these plasmodesmata was induced by light. Pharmacological agents that perturbed photosynthesis reduced the number of plasmodesmata, but this inhibitory effect could be reversed by the provision of exogenous sucrose. We conclude that enhanced formation of plasmodesmata between M and BS cells is wired to the induction of photosynthesis in C4 G. gynandra.


Assuntos
Magnoliopsida , Células do Mesofilo , Células do Mesofilo/metabolismo , Plasmodesmos/metabolismo , Folhas de Planta/metabolismo , Fotossíntese , Poaceae
17.
Plant Biotechnol J ; 22(5): 1387-1401, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38130080

RESUMO

Viral diseases seriously threaten rice production. Plasmodesmata (PD)-associated proteins are deemed to play a key role in viral infection in host plants. However, few PD-associated proteins have been discovered in rice to afford viral infection. Here, inspired by the infection mechanism in insect vectors, we identified a member of the Flotillin family taking part in the cell-to-cell transport of rice stripe virus (RSV) in rice. Flotillin1 interacted with RSV nucleocapsid protein (NP) and was localized on PD. In flotillin1 knockout mutant rice, which displayed normal growth, RSV intercellular movement was retarded, leading to significantly decreased disease incidence. The PD pore sizes of the mutant rice were smaller than those of the wild type due to more callose deposits, which was closely related to the upregulation of two callose synthase genes. RSV infection stimulated flotillin1 expression and enlarged the PD aperture via RSV NP. In addition, flotillin1 knockout decreased disease incidences of southern rice black-streaked dwarf virus (SRBSDV) and rice dwarf virus (RDV) in rice. Overall, our study reveals a new PD-associated protein facilitating virus cell-to-cell trafficking and presents the potential of flotillin1 as a target to produce broad-spectrum antiviral rice resources in the future.


Assuntos
Hemípteros , Proteínas de Membrana , Oryza , Viroses , Animais , Plasmodesmos/metabolismo , Proteínas Virais/metabolismo , Oryza/metabolismo , Doenças das Plantas , Hemípteros/metabolismo
18.
Plant Cell Rep ; 43(1): 4, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38117314

RESUMO

KEY MESSAGE: The leaf hyponasty response depends on tip-to-petiole auxin transport. This transport can happen through two parallel pathways: active trans-membrane transport mediated by PIN proteins and passive diffusion through plasmodesmata. A plant's ability to counteract potential shading by neighboring plants depends on transport of the hormone auxin. Neighbor sensing at the leaf tip triggers auxin production. Once this auxin reaches the abaxial petiole epidermis, it causes cell elongation, which leads to leaf hyponasty. Two pathways are known to contribute to this intercellular tip-to-petiole auxin movement: (i) transport facilitated by plasma membrane-localized PIN auxin transporters and (ii) diffusion enabled by plasmodesmata. We tested if these two modes of transport are arranged sequentially or in parallel. Moreover, we investigated if they are functionally linked. Mutants in which one of the two pathways is disrupted indicated that both pathways are necessary for a full hyponasty response. Visualization of PIN3-GFP and PIN7-GFP localization indicated PIN-mediated transport in parallel to plasmodesmata-mediated transport along abaxial midrib epidermis cells. We found plasmodesmata-mediated cell coupling in the pin3pin4pin7 mutant to match wild-type levels, indicating no redundancy between pathways. Similarly, PIN3, PIN4 and PIN7 mRNA levels were unaffected in a mutant with disrupted plasmodesmata pathway. Our results provide mechanistic insight on leaf hyponasty, which might facilitate the manipulation of the shade avoidance response in crops.


Assuntos
Arabidopsis , Arabidopsis/genética , Plasmodesmos , Transporte Biológico , Proteínas de Membrana Transportadoras/genética , Ácidos Indolacéticos
19.
Biol Open ; 12(10)2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37874138

RESUMO

Cell-cell communication is a central feature of multicellular organisms, enabling division of labour and coordinated responses. Plasmodesmata are membrane-lined pores that provide regulated cytoplasmic continuity between plant cells, facilitating signalling and transport across neighboring cells. Plant development and survival profoundly depend on the existence and functioning of these structures, bringing them to the spotlight for both fundamental and applied research. Despite the rich conceptual and translational rewards in sight, however, the study of plasmodesmata poses significant challenges. This Review will mostly focus on research published between May 2022 and May 2023 and intends to provide a short overview of recent discoveries, innovations, community resources and hypotheses.


Assuntos
Comunicação Celular , Plasmodesmos , Transdução de Sinais , Desenvolvimento Vegetal , Biologia
20.
J Plant Res ; 136(6): 865-877, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37707645

RESUMO

Plants are exposed to a variety of biotic and abiotic stresses, including wounding at the stem. The healing process (tissue reunion) begins immediately after stem wounding. The plant hormone auxin plays an important role during tissue reunion. In decapitated stems, auxin transport from the shoot apex is reduced and tissue reunion does not occur but is restored by application of indole-3-acetic acid (IAA). In this study, we found that plasmodesmata callose binding protein 2 (PDCB2) affects the expansion of the cambium/phloem region via changes in auxin response during the process of tissue reunion. PDCB2 was expressed in the cortex and endodermis on the incised side of stems 1-3 days after incision. PDCB2-knockout plants showed reduced callose deposition at plasmodesmata and DR5::GUS activity in the endodermis/cortex in the upper region of the incision accompanied by an increase in size of the cambium/phloem region during tissue reunion. In addition, PIN(PIN-FORMED)3, which is involved in lateral auxin transport, was induced by auxin in the cambium/phloem and endodermis/cortex in the upper part of the incision in wild type, but its expression of PIN3 was decreased in pdcb2 mutant. Our results suggest that PDCB2 contributes to the regulation of cambium/phloem development via auxin response.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/fisiologia , Floema , Câmbio , Proteínas de Arabidopsis/genética , Proteínas de Transporte/metabolismo , Plasmodesmos/metabolismo , Ácidos Indolacéticos/metabolismo , Regulação da Expressão Gênica de Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...