Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Malar J ; 20(1): 454, 2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34861860

RESUMO

BACKGROUND: Thailand is committed to eliminating malaria by 2024. From 2013 to 2020, the total number of malaria cases have decreased, from 37,741 to 4474 (an 88.1% reduction). However, infections with Plasmodium knowlesi, a monkey malarial pathogen that can also infect humans, have been increasingly observed. This study focused on the molecular analysis of P. knowlesi parasites causing malaria in Thailand. METHODS: Under Thailand's integrated Drug Efficacy Surveillance (iDES), which includes drug-resistance monitoring as part of routine case-based surveillance and responses, specimens were collected from malaria patients (n = 966) between 2018 and 2020. Thirty-one mono P. knowlesi infections (3.1%), most of which were from eastern and southern Thailand, were observed and confirmed by nested PCR assay and DNA sequencing. To evaluate whether these pathogens were from different lineages, cluster analysis based on seven microsatellite genotyping markers and the merozoite surface protein 1 (pkmsp1) gene was carried out. The P. knowlesi pyrimethamine resistance gene dihydrofolate reductase (pkdhfr) was sequenced and homology modelling was constructed. RESULTS: The results of analysing the seven microsatellite markers and pkmsp1 sequence demonstrated that P. knowlesi parasites from eastern Thailand were of the same lineage as those isolated in Cambodia, while the parasites causing malaria in southern Thailand were the same lineage as those isolated from Malaysia. The sequencing results for the pkdhfr genes indicated the presence of two mutations, Arg34Leu and a deletion at position 105. On analysis with homology modelling, the two mutations were not associated with anti-malarial drug resistance. CONCLUSIONS: This report compared the genetic populations of P. knowlesi parasites in Thailand from 2018 to 2020 and have shown similar lineages as those isolated in Cambodia and Malaysia of P. knowlesi infection in Thailand and demonstrated that the P. knowlesi parasites were of the same lineages as those isolated in Cambodia and Malaysia. The parasites were also shown to be sensitive to pyrimethamine.


Assuntos
Malária/epidemiologia , Plasmodium knowlesi/genética , Erradicação de Doenças , Genes de Protozoários , Marcadores Genéticos , Humanos , Incidência , Malária/parasitologia , Plasmodium knowlesi/classificação , Proteínas de Protozoários/análise , Tailândia/epidemiologia
2.
Sci Rep ; 11(1): 20117, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34635723

RESUMO

Plasmodium knowlesi, a simian malaria parasite responsible for all recent indigenous cases of malaria in Malaysia, infects humans throughout Southeast Asia. There are two genetically distinct subpopulations of Plasmodium knowlesi in Malaysian Borneo, one associated with long-tailed macaques (termed cluster 1) and the other with pig-tailed macaques (cluster 2). A prospective study was conducted to determine whether there were any between-subpopulation differences in clinical and laboratory features, as well as in epidemiological characteristics. Over 2 years, 420 adults admitted to Kapit Hospital, Malaysian Borneo with knowlesi malaria were studied. Infections with each subpopulation resulted in mostly uncomplicated malaria. Severe disease was observed in 35/298 (11.7%) of single cluster 1 and 8/115 (7.0%) of single cluster 2 infections (p = 0.208). There was no clinically significant difference in outcome between the two subpopulations. Cluster 1 infections were more likely to be associated with peri-domestic activities while cluster 2 were associated with interior forest activities consistent with the preferred habitats of the respective macaque hosts. Infections with both P. knowlesi subpopulations cause a wide spectrum of disease including potentially life-threatening complications, with no implications for differential patient management.


Assuntos
Biomarcadores/análise , DNA de Protozoário/genética , Laboratórios/estatística & dados numéricos , Malária/epidemiologia , Plasmodium knowlesi/isolamento & purificação , Adulto , DNA de Protozoário/análise , Feminino , Seguimentos , Genética Populacional , Humanos , Malária/parasitologia , Malásia/epidemiologia , Masculino , Pessoa de Meia-Idade , Plasmodium knowlesi/classificação , Plasmodium knowlesi/genética , Plasmodium knowlesi/crescimento & desenvolvimento , Prognóstico , Estudos Prospectivos
3.
Infect Genet Evol ; 75: 103994, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31421245

RESUMO

Plasmodium knowlesi is an important causative agent of malaria in humans of Southeast Asia. Macaques are natural hosts for this parasite, but little is conclusively known about its patterns of transmission within and between these hosts. Here, we apply a comprehensive phylogenetic approach to test for patterns of cryptic population genetic structure between P. knowlesi isolated from humans and long-tailed macaques from the state of Sarawak in Malaysian Borneo. Our approach differs from previous investigations through our exhaustive use of archival 18S Small Subunit rRNA (18S) gene sequences from Plasmodium and Hepatocystis species, our inclusion of insertion and deletion information during phylogenetic inference, and our application of Bayesian phylogenetic inference to this problem. We report distinct clades of P. knowlesi that predominantly contained sequences from either human or macaque hosts for paralogous A-type and S-type 18S gene loci. We report significant partitioning of sequence distances between host species across both types of loci, and confirmed that sequences of the same locus type showed significantly biased assortment into different clades depending on their host species. Our results support the zoonotic potential of Plasmodium knowlesi, but also suggest that humans may be preferentially infected with certain strains of this parasite. Broadly, such patterns could arise through preferential zoonotic transmission of some parasite lineages or a disposition of parasites to transmit within, rather than between, human and macaque hosts. Available data are insufficient to address these hypotheses. Our results suggest that the epidemiology of P. knowlesi may be more complicated than previously assumed, and highlight the need for renewed and more vigorous explorations of transmission patterns in the fifth human malarial parasite.


Assuntos
Macaca fascicularis/virologia , Plasmodium knowlesi/classificação , RNA Ribossômico 18S/genética , Análise de Sequência de DNA/métodos , Animais , Teorema de Bayes , Bornéu , DNA de Protozoário/genética , Humanos , Filogenia , Plasmodium knowlesi/genética , Especificidade da Espécie
4.
Emerg Infect Dis ; 25(4): 817-820, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30882328

RESUMO

Using PCR and sequencing, we found Plasmodium knowlesi in the malaria vector Anopheles sundaicus mosquito collected from Katchal Island in the Andaman and Nicobar Islands, India. We cannot rule out natural transmission of this parasite to humans through this mosquito species. An in-depth investigation is needed to prevent disease outbreaks.


Assuntos
Anopheles/parasitologia , Malária/parasitologia , Malária/transmissão , Mosquitos Vetores/parasitologia , Plasmodium knowlesi , Animais , DNA de Protozoário , Incidência , Índia/epidemiologia , Ilhas , Malária/epidemiologia , Plasmodium knowlesi/classificação , Plasmodium knowlesi/genética
5.
J Infect Dis ; 219(5): 695-702, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30295822

RESUMO

BACKGROUND: In Southeast Asia, Plasmodium knowlesi, a parasite of long-tailed macaques (Macaca fascicularis), is an important cause of human malaria. Plasmodium cynomolgi also commonly infects these monkeys, but only one naturally acquired symptomatic human case has been reported previously. METHODS: Malariometric studies involving 5422 subjects (aged 6 months to 65 years) were conducted in 23 villages in Pailin and Battambang, western Cambodia. Parasite detection and genotyping was conducted on blood samples, using high-volume quantitative PCR (uPCR). RESULTS: Asymptomatic malaria parasite infections were detected in 1361 of 14732 samples (9.2%). Asymptomatic infections with nonhuman primate malaria parasites were found in 21 individuals living close to forested areas; P. cynomolgi was found in 11, P. knowlesi was found in 8, and P. vivax and P. cynomolgi were both found in 2. Only 2 subjects were female, and 14 were men aged 20-40 years. Geometric mean parasite densities were 3604 parasites/mL in P. cynomolgi infections and 52488 parasites/mL in P. knowlesi infections. All P. cynomolgi isolates had wild-type dihydrofolate reductase genes, in contrast to the very high prevalence of mutations in the human malaria parasites. Asymptomatic reappearance of P. cynomolgi occurred in 2 subjects 3 months after the first infection. CONCLUSIONS: Asymptomatic naturally acquired P. cynomolgi and P. knowlesi infections can both occur in humans. CLINICAL TRIALS REGISTRATION: NCT01872702.


Assuntos
Malária/parasitologia , Plasmodium cynomolgi/isolamento & purificação , Plasmodium knowlesi/isolamento & purificação , Adolescente , Adulto , Idoso , Animais , Doenças Assintomáticas/epidemiologia , Camboja/epidemiologia , Criança , Pré-Escolar , Estudos Transversais , Feminino , Genótipo , Técnicas de Genotipagem , Humanos , Lactente , Malária/epidemiologia , Masculino , Pessoa de Meia-Idade , Carga Parasitária , Plasmodium cynomolgi/classificação , Plasmodium cynomolgi/genética , Plasmodium knowlesi/classificação , Plasmodium knowlesi/genética , Plasmodium vivax/classificação , Plasmodium vivax/genética , Plasmodium vivax/isolamento & purificação , Prevalência , Reação em Cadeia da Polimerase em Tempo Real , Adulto Jovem
6.
Malar J ; 17(1): 442, 2018 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-30497496

RESUMO

BACKGROUND: The C-terminal 42 kDa domain of Plasmodium knowlesi merozoite surface protein 1 (PkMSP1) is a potential asexual blood-stage vaccine candidate, however, only a limited number of clinical isolates have been analysed from Malaysia and no inter-country comparative diversity study has been conducted. In the present study, nucleotide diversity, haplotypes and natural selection levels of pkmsp1 in clinical samples from geographically distinct regions of Malaysia and Thailand were investigated. The overall population structure of the parasite from the region was determined. METHODS: Eleven full-length pkmsp1 sequences obtained from clinical isolates of Malaysia along with the H-strain were downloaded from the database for domain wise characterization of pkmsp1 gene. Additionally, 76 pkmsp-142 sequences from Thailand and Malaysia were downloaded from the database for intra and inter-population analysis. DnaSP 5.10 and MEGA 5.0 software were used to determine genetic diversity, polymorphism, haplotypes and natural selection. Genealogical relationships were determined using haplotype network tree in NETWORK software v5.0. Population genetic differentiation index (FST) of parasites were analysed using Arlequin v3.5. RESULTS: Sequence analysis of 11 full-length pkmsp1 sequences along with the H-strain identified 477 (8.4%) polymorphic sites, of which 107 were singleton sites. The overall diversity observed in the full-length genes were high in comparison to its ortholog pvmsp1 and the 4 variable domains showed extensive size variations. The nucleotide diversity was low towards the pkmsp1-42 compared to the conserved domains. The 19 kDa domain was less diverse and completely conserved among isolates from Malaysian Borneo. The nucleotide diversity of isolates from Peninsular Malaysia and Thailand were higher than Malaysian Borneo. Network analysis of pkmsp1-42 haplotypes showed geographical clustering of the isolates from Malaysian Borneo and grouping of isolates from Peninsular Malaysia and Thailand. Population differentiation analysis indicated high FST values between parasite populations originating from Malaysian Borneo, Peninsular Malaysia and Thailand attributing to geographical distance. Moderate genetic differentiation was observed for parasite populations from Thailand and Peninsular Malaysia. Evidence of population expansion and purifying selection were observed in all conserved domains with strongest selection within the pkmsp1-42 domain. CONCLUSIONS: This study is the first to report on inter country genetic diversity and population structure of P. knowlesi based on msp1. Strong evidence of negative selection was observed in the 42 kDa domain, indicating functional constrains. Geographical clustering of P. knowlesi and moderate to high genetic differentiation values between populations identified in this study highlights the importance of further evaluation using larger number of clinical samples from Southeast Asian countries.


Assuntos
Variação Genética , Genética Populacional , Malária/parasitologia , Proteína 1 de Superfície de Merozoito/genética , Plasmodium knowlesi/classificação , Plasmodium knowlesi/genética , Biologia Computacional , Feminino , Haplótipos , Humanos , Malásia , Masculino , Seleção Genética , Análise de Sequência de DNA , Tailândia
7.
Parasit Vectors ; 11(1): 626, 2018 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-30518419

RESUMO

BACKGROUND: The merozoite surface protein-1 (MSP-1) gene encodes for a leading malaria vaccine candidate antigen. However, its extensive polymorphic nature represents a major obstacle to the development of a protective vaccine. Previously, a pilot study was carried out to explore the sequence variation of the C-terminal 42 kDa fragment within P. knowlesi MSP-1 gene (PkMSP-142) based on 12 clinical samples; however, further study on an adequate sample size is vital in estimating the genetic diversity of the parasite population. METHODS: In the present study, we included a larger sample size of P. knowlesi (83 samples) covering eight states of Malaysia to determine the genetic polymorphism, natural selection and haplotype groups of the gene fragment coding PkMSP-142. The region flanking PkMSP-142 was amplified by PCR and directly sequenced. Genetic diversity, haplotype diversity, population genetic differentiation and natural selection were determined in order to study the polymorphic characteristic of PkMSP-142. RESULTS: A high level of genetic diversity (Hd = 0.970 ± 0.007; л = 0.01079 ± 0.00033) was observed among the 83 P. knowlesi samples, confirming the extensive genetic polymorphism exhibited among the P. knowlesi population found in Malaysia. A total of 18 distinct haplotypes with 17 amino acid changes were identified, whereby 15 were new haplotypes. High population differentiation values were observed within samples from Peninsular Malaysia and Malaysian Borneo. The 42 kDa fragments of P. knowlesi from Malaysian Borneo were found to be acting on balancing selection whilst purifying selection was suggested to act on isolates from Peninsular Malaysia. The separation of PkMSP-142 haplotypes into two main groups based on geographical separation has further supported the existence of two distinct P. knowlesi lineages. CONCLUSIONS: A high level of genetic diversity was observed among PkMSP-142 in Malaysia, whereby most of the polymorphisms were found within the 33 kDa region. Taken together, these data will be useful in order to understand the nature of P. knowlesi population in Malaysia as well as the design and development of a MSP-142 based knowlesi malaria vaccine.


Assuntos
Malária/parasitologia , Proteína 1 de Superfície de Merozoito/genética , Filogenia , Plasmodium knowlesi/classificação , Plasmodium knowlesi/genética , Proteínas de Protozoários/genética , Sequência de Aminoácidos , Sequência de Bases , DNA de Protozoário/genética , Genética Populacional , Geografia , Haplótipos , Malásia , Polimorfismo Genético , Seleção Genética , Análise de Sequência de DNA
8.
PLoS Negl Trop Dis ; 12(11): e0006924, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30500828

RESUMO

The discovery of the life-threatening zoonotic infection Plasmodium knowlesi has added to the challenges of prompt and accurate malaria diagnosis and surveillance. In this study from Aceh Province, Indonesia, a malaria elimination setting where P. knowlesi endemicity was not previously known, we report the laboratory investigation and difficulties encountered when using molecular detection methods for quality assurance of microscopically identified clinical cases. From 2014 to 2015, 20 (49%) P. falciparum, 16 (39%) P. vivax, 3 (7%) P. malariae, and 2 (5%) indeterminate species were identified by microscopy from four sentinel health facilities. At a provincial-level reference laboratory, loop-mediated isothermal amplification (LAMP), a field-friendly molecular method, was performed and confirmed Plasmodium in all samples though further species-identification was limited by the unavailability of non-falciparum species-specific testing with the platform used. At a national reference laboratory, several molecular methods including nested PCR (nPCR) targeting the 18 small sub-unit (18S) ribosomal RNA, nPCR targeting the cytochrome-b (cytb) gene, a P. knowlesi-specific nPCR, and finally sequencing, were necessary to ultimately classify the samples as: 19 (46%) P. knowlesi, 8 (20%) P. falciparum, 14 (34%) P. vivax. Microscopy was unable to identify or mis-classified up to 56% of confirmed cases, including all cases of P. knowlesi. With the nPCR methods targeting the four human-only species, P. knowlesi was missed (18S rRNA method) or showed cross-reactivity for P. vivax (cytb method). To facilitate diagnosis and management of potentially fatal P. knowlesi infection and surveillance for elimination of human-only malaria in Indonesia and other affected settings, new detection methods are needed for testing at the point-of-care and in local reference laboratories.


Assuntos
Malária/parasitologia , Plasmodium knowlesi/isolamento & purificação , Plasmodium/isolamento & purificação , Erradicação de Doenças , Humanos , Indonésia/epidemiologia , Laboratórios , Malária/epidemiologia , Malária/prevenção & controle , Técnicas de Amplificação de Ácido Nucleico , Plasmodium/classificação , Plasmodium/genética , Plasmodium knowlesi/classificação , Plasmodium knowlesi/genética , Reação em Cadeia da Polimerase
9.
Acta Trop ; 181: 35-39, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29409854

RESUMO

Malaria is a notorious disease which causes major global morbidity and mortality. This study aims to investigate the genetic and haplotype differences of Plasmodium knowlesi (P. knowlesi) isolates in Malaysian Borneo and Peninsular Malaysia based on the molecular analysis of the cytochrome b (cyt b) gene. The cyt b gene of 49 P. knowlesi isolates collected from Sabah, Malaysian Borneo and Peninsular Malaysia was amplified using PCR, cloned into a commercialized vector and sequenced. In addition, 45 cyt b sequences were retrieved from humans and macaques bringing to a total of 94 cyt b gene nucleotide sequences for phylogenetic analysis. Genetic and haplotype analyses of the cyt b were analyzed using MEGA6 and DnaSP ver. 5.10.01. The haplotype genealogical linkage of cyt b was generated using NETWORK ver. 4.6.1.3. Our phylogenetic tree revealed the conservation of the cyt b coding sequences with no distinct cluster across different geographic regions. Nucleotide analysis of cyt b showed that the P. knowlesi isolates underwent purifying selection with population expansion, which was further supported by extensive haplotype sharing between the macaques and humans from Malaysian Borneo and Peninsular Malaysia in the median-joining network analysis. This study expands knowledge on conservation of the zoonotic P. knowlesi cyt b gene between Malaysian Borneo and Peninsular Malaysia.


Assuntos
Citocromos b/genética , Haplótipos , Plasmodium knowlesi/genética , Animais , Citocromos b/química , Variação Genética , Malásia , Filogenia , Plasmodium knowlesi/classificação , Plasmodium knowlesi/enzimologia
10.
PLoS Negl Trop Dis ; 11(10): e0005991, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28968395

RESUMO

BACKGROUND: Anopheles balabacensis of the Leucospyrus group has been confirmed as the primary knowlesi malaria vector in Sabah, Malaysian Borneo for some time now. Presently, knowlesi malaria is the only zoonotic simian malaria in Malaysia with a high prevalence recorded in the states of Sabah and Sarawak. METHODOLOGY/PRINCIPAL FINDINGS: Anopheles spp. were sampled using human landing catch (HLC) method at Paradason village in Kudat district of Sabah. The collected Anopheles were identified morphologically and then subjected to total DNA extraction and polymerase chain reaction (PCR) to detect Plasmodium parasites in the mosquitoes. Identification of Plasmodium spp. was confirmed by sequencing the SSU rRNA gene with species specific primers. MEGA4 software was then used to analyse the SSU rRNA sequences and bulid the phylogenetic tree for inferring the relationship between simian malaria parasites in Sabah. PCR results showed that only 1.61% (23/1,425) of the screened An. balabacensis were infected with one or two of the five simian Plasmodium spp. found in Sabah, viz. Plasmodium coatneyi, P. inui, P. fieldi, P. cynomolgi and P. knowlesi. Sequence analysis of SSU rRNA of Plasmodium isolates showed high percentage of identity within the same Plasmodium sp. group. The phylogenetic tree based on the consensus sequences of P. knowlesi showed 99.7%-100.0% nucleotide identity among the isolates from An. balabacensis, human patients and a long-tailed macaque from the same locality. CONCLUSIONS/SIGNIFICANCE: This is the first study showing high molecular identity between the P. knowlesi isolates from An. balabacensis, human patients and a long-tailed macaque in Sabah. The other common simian Plasmodium spp. found in long-tailed macaques and also detected in An. balabacensis were P. coatneyi, P. inui, P. fieldi and P. cynomolgi. The high percentage identity of nucleotide sequences between the P. knowlesi isolates from the long-tailed macaque, An. balabacensis and human patients suggests a close genetic relationship between the parasites from these hosts.


Assuntos
Anopheles/parasitologia , Doenças dos Macacos/parasitologia , Plasmodium knowlesi/classificação , Plasmodium knowlesi/genética , Animais , DNA de Protozoário/genética , Genes de RNAr , Macaca fascicularis/parasitologia , Malária/epidemiologia , Malária/parasitologia , Malária/transmissão , Malária/veterinária , Malásia/epidemiologia , Filogenia , Reação em Cadeia da Polimerase , RNA de Protozoário/genética , RNA Ribossômico/genética , Zoonoses/epidemiologia , Zoonoses/parasitologia
11.
Infect Genet Evol ; 54: 39-46, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28634105

RESUMO

Plasmodium knowlesi, a malaria parasite of macaques, has emerged as an important parasite of humans. Despite the significance of P. knowlesi malaria in parts of Southeast Asia, very little is known about the genetic variation in this parasite. Our aim here was to explore sequence variation in a molecule called the 42kDa merozoite surface protein-1 (MSP-1), which is found on the surface of blood stages of Plasmodium spp. and plays a key role in erythrocyte invasion. Several studies of P. falciparum have reported that the C-terminus (a 42kDa fragment) of merozoite surface protein-1 (MSP-142; consisting of MSP-119 and MSP-133) is a potential candidate for a malaria vaccine. However, to date, no study has yet investigated the sequence diversity of the gene encoding P. knowlesi MSP-142 (comprising Pk-msp-119 and Pk-msp-133) among isolates in Malaysia. The present study explored this aspect. Twelve P. knowlesi isolates were collected from patients from hospitals in Selangor and Sabah Borneo, Malaysia, between 2012 and 2014. The Pk-msp-142 gene was amplified by PCR and directly sequenced. Haplotype diversity (Hd) and nucleotide diversity (л) were studied among the isolates. There was relatively high genetic variation among P. knowlesi isolates; overall Hd and л were 1±0.034 and 0.01132±0.00124, respectively. A total of nine different haplotypes related to amino acid alterations at 13 positions, and the Pk-MSP-119 sequence was found to be more conserved than Pk-msp-133. We have found evidence for negative selection in Pk-msp-42 as well as the 33kDa and 19kDa fragments by comparing the rate of non-synonymous versus synonymous substitutions. Future investigations should study large numbers of samples from disparate geographical locations to critically assess whether this molecule might be a potential vaccine target for P. knowlesi.


Assuntos
Malária/parasitologia , Proteína 1 de Superfície de Merozoito/genética , Plasmodium knowlesi/genética , Sequência de Aminoácidos , DNA de Protozoário/genética , Variação Genética , Humanos , Malásia , Plasmodium knowlesi/classificação , Análise de Sequência de DNA
12.
Infect Genet Evol ; 50: 7-19, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28163236

RESUMO

Malaria parasites (genus Plasmodium) are a diverse group found in many species of vertebrate hosts. These parasites invade red blood cells in a complex process comprising several proteins, many encoded by multigene families, one of which is merozoite surface protein 7 (msp7). In the case of Plasmodium vivax, the most geographically widespread human-infecting species, differences in the number of paralogs within multigene families have been previously explained, at least in part, as potential adaptations to the human host. To explore this in msp7, we studied its orthologs in closely related nonhuman primate parasites; investigating both paralog evolutionary history and genetic polymorphism. The emerging patterns were then compared with the human parasite Plasmodium falciparum. We found that the evolution of the msp7 family is consistent with a birth-and-death model, where duplications, pseudogenizations, and gene loss events are common. However, all paralogs in P. vivax and P. falciparum had orthologs in their closely related species in non-human primates indicating that the ancestors of those paralogs precede the events leading to their origins as human parasites. Thus, the number of paralogs cannot be explained as an adaptation to human hosts. Although there is no functional information for msp7 in P. vivax, we found evidence for purifying selection in the genetic polymorphism of some of its paralogs as well as their orthologs in closely related non-human primate parasites. We also found evidence indicating that a few of P. vivax's paralogs may have diverged from their orthologs in non-human primates by episodic positive selection. Hence, they may had been under selection when the lineage leading to P. vivax diverged from the Asian non-human primates and switched into Homininae. All these lines of evidence suggest that msp7 is functionally important in P. vivax.


Assuntos
Evolução Molecular , Proteínas de Membrana/genética , Filogenia , Plasmodium cynomolgi/genética , Plasmodium falciparum/genética , Plasmodium knowlesi/genética , Plasmodium vivax/genética , Proteínas de Protozoários/genética , Sequência de Aminoácidos , Animais , Eritrócitos/parasitologia , Deleção de Genes , Duplicação Gênica , Expressão Gênica , Especiação Genética , Humanos , Modelos Genéticos , Família Multigênica , Plasmodium cynomolgi/classificação , Plasmodium falciparum/classificação , Plasmodium knowlesi/classificação , Plasmodium vivax/classificação , Polimorfismo Genético , Primatas/parasitologia , Pseudogenes , Seleção Genética , Homologia de Sequência de Aminoácidos
13.
Infect Genet Evol ; 44: 367-375, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27480919

RESUMO

Plasmodium knowlesi and P. cynomolgi are simian malaria parasites capable of causing symptomatic human infections. The interaction between the Duffy binding protein alpha on P. knowlesi merozoite and the Duffy-antigen receptor for chemokine (DARC) on human and macaque erythrocyte membrane is prerequisite for establishment of blood stage infection whereas DARC is not required for erythrocyte invasion by P. cynomolgi. To gain insights into the evolution of the PkDBP gene family comprising PkDBPα, PkDBPß and PkDBPγ, and a member of the DBP gene family of P. cynomolgi (PcyDBP1), the complete coding sequences of these genes were analyzed from Thai field isolates and compared with the publicly available DBP sequences of P. vivax (PvDBP). The complete coding sequences of PkDBPα (n=11), PkDBPß (n=11), PkDBPγ (n=10) and PcyDBP1 (n=11) were obtained from direct sequencing of the PCR products. Nucleotide diversity of DBP is highly variable across malaria species. PcyDBP1 displayed the greatest level of nucleotide diversity while all PkDBP gene members exhibited comparable levels of diversity. Positive selection occurred in domains I, II and IV of PvDBP and in domain V of PcyDBP1. Although deviation from neutrality was not detected in domain II of PkDBPα, a signature of positive selection was identified in the putative DARC binding site in this domain. The DBP gene families seem to have arisen following the model of concerted evolution because paralogs rather than orthologs are clustered in the phylogenetic tree. The presence of identical or closely related repeats exclusive for the PkDBP gene family suggests that duplication of gene members postdated their divergence from the ancestral PcyDBP and PvDBP lineages. Intragenic recombination was detected in all DBP genes of these malaria species. Despite the limited number of isolates, P. knowlesi from Thailand shared phylogenetically related domain II sequences of both PkDBPα and PkDBPγ with those from Peninsular Malaysia, consistent with their geographic proximity.


Assuntos
Antígenos de Protozoários/genética , Variação Genética , Plasmodium cynomolgi/genética , Plasmodium knowlesi/genética , Proteínas de Protozoários/genética , Receptores de Superfície Celular/genética , Seleção Genética , Sequência de Aminoácidos , Humanos , Malária/epidemiologia , Malária/parasitologia , Família Multigênica , Fases de Leitura Aberta , Filogenia , Plasmodium cynomolgi/classificação , Plasmodium cynomolgi/isolamento & purificação , Plasmodium knowlesi/classificação , Plasmodium knowlesi/isolamento & purificação , Recombinação Genética , Sequências Repetitivas de Ácido Nucleico , Análise de Sequência de DNA , Tailândia/epidemiologia
14.
Malar J ; 15(1): 357, 2016 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-27405869

RESUMO

BACKGROUND: Transfusion-transmitted malaria (TTM) is a well-recognized risk of receiving blood transfusions, and has occurred with Plasmodium falciparum, Plasmodium vivax, Plasmodium ovale, and Plasmodium malariae. The simian parasite Plasmodium knowlesi is also known to be transmissible through inoculation of infected blood, and this species is now the most common cause of malaria in Malaysia with a high rate of severity and fatal cases reported. No confirmed case of accidental transfusion-transmitted P. knowlesi has yet been reported. CASE PRESENTATION: A 23-year old splenectomized patient with beta thalassaemia major presented with fever 11 days after receiving a blood transfusion from a pre-symptomatic donor who presented with knowlesi malaria 12 days following blood donation. The infection resulted in severe disease in the recipient, with a parasite count of 84,000/µL and associated metabolic acidosis and multi-organ failure. She was treated with intravenous artesunate and made a good recovery. Sequencing of a highly diverse 649-base pair fragment of the P. knowlesi bifunctional dihydrofolate reductase-thymidylate synthase gene (pkdhfr) revealed that the recipient and donor shared the same haplotype. CONCLUSIONS: This case demonstrates that acquisition of P. knowlesi from blood transfusion can occur, and that clinical consequences can be severe. Furthermore, this case raises the possibility that thalassaemic patients, particularly those who are splenectomized, may represent a high-risk group for TTM and severe malaria. With rising P. knowlesi incidence, further studies in Sabah are required to determine the risk of TTM in order to guide screening strategies for blood transfusion services.


Assuntos
Malária/transmissão , Plasmodium knowlesi/isolamento & purificação , Esplenectomia , Reação Transfusional , Administração Intravenosa , Artemisininas/administração & dosagem , Artesunato , Feminino , Humanos , Malária/tratamento farmacológico , Malásia , Plasmodium knowlesi/classificação , Plasmodium knowlesi/enzimologia , Plasmodium knowlesi/genética , Tetra-Hidrofolato Desidrogenase/genética , Resultado do Tratamento , Adulto Jovem
15.
Int J Parasitol ; 46(11): 685-96, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27392654

RESUMO

Malaria in humans is caused by six species of Plasmodium parasites, of which the nuclear genome sequences for the two Plasmodium ovale spp., P. ovale curtisi and P. ovale wallikeri, and Plasmodium malariae have not yet been analyzed. Here we present an analysis of the nuclear genome sequences of these three parasites, and describe gene family expansions therein. Plasmodium ovale curtisi and P. ovale wallikeri are genetically distinct but morphologically indistinguishable and have sympatric ranges through the tropics of Africa, Asia and Oceania. Both P. ovale spp. show expansion of the surfin variant gene family, and an amplification of the Plasmodium interspersed repeat (pir) superfamily which results in an approximately 30% increase in genome size. For comparison, we have also analyzed the draft nuclear genome of P. malariae, a malaria parasite causing mild malaria symptoms with a quartan life cycle, long-term chronic infections, and wide geographic distribution. Plasmodium malariae shows only a moderate level of expansion of pir genes, and unique expansions of a highly diverged transmembrane protein family with over 550 members and the gamete P25/27 gene family. The observed diversity in the P. ovale wallikeri and P. ovale curtisi surface antigens, combined with their phylogenetic separation, supports consideration that the two parasites be given species status.


Assuntos
Genoma de Protozoário , Família Multigênica , Plasmodium malariae/genética , Plasmodium ovale/genética , Adulto , África Ocidental , Animais , Antígenos de Protozoários/genética , Antígenos de Superfície/genética , China , Homólogo 5 da Proteína Cromobox , Variação Genética , Humanos , Sequências Repetitivas Dispersas/genética , Masculino , Proteínas de Membrana/genética , Família Multigênica/genética , Filogenia , Plasmodium falciparum/classificação , Plasmodium falciparum/genética , Plasmodium knowlesi/classificação , Plasmodium knowlesi/genética , Plasmodium malariae/classificação , Plasmodium ovale/classificação , Plasmodium vivax/classificação , Plasmodium vivax/genética , Adulto Jovem
16.
Malar J ; 15: 241, 2016 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-27118390

RESUMO

BACKGROUND: The zoonotic malaria parasite Plasmodium knowlesi has become an emerging threat to South East Asian countries particular in Malaysia. A recent study from Sarawak (Malaysian Borneo) discovered two distinct normocyte binding protein xa (Pknbpxa) types of P. knowlesi. In the present study, the Pknbpxa of clinical isolates from Peninsular Malaysia and Sabah (Malaysian Borneo) were investigated for the presence of Pknbpxa types and natural selection force acting on the gene. METHOD: Blood samples were collected from 47 clinical samples from Peninsular Malaysia (n = 35) and Sabah (Malaysian Borneo, n = 12) were used in the study. The Pknbpxa gene was successfully amplified and directly sequenced from 38 of the samples (n = 31, Peninsular Malaysia and n = 7, Sabah, Malaysian Borneo). The Pknbpxa sequences of P. knowlesi isolates from Sarawak (Malaysian Borneo) were retrieved from GenBank and included in the analysis. Polymorphism, genetic diversity and natural selection of Pknbpxa sequences were analysed using DNAsp v 5.10, MEGA5. Phylogentics of Pknbpxa sequences was analysed using MrBayes v3.2 and Splits Tree v4.13.1. The pairwise F ST indices were used to determine the genetic differentiation between the Pknbpxa types and was calculated using Arlequin 3.5.1.3. RESULTS: Analyses of the sequences revealed Pknbpxa dimorphism throughout Malaysia indicating co-existence of the two types (Type-1 and Type-2) of Pknbpxa. More importantly, a third type (Type 3) closely related to Type 2 Pknbpxa was also detected. This third type was found only in the isolates originating from Peninsular Malaysia. Negative natural selection was observed, suggesting functional constrains within the Pknbpxa types. CONCLUSIONS: This study revealed the existence of three Pknbpxa types in Malaysia. Types 1 and 2 were found not only in Malaysian Borneo (Sarawak and Sabah) but also in Peninsular Malaysia. A third type which was specific only to samples originating from Peninsular Malaysia was discovered. Further genetic studies with a larger sample size will be necessary to determine whether natural selection is driving this genetic differentiation and geographical separation.


Assuntos
Variação Genética , Proteínas de Membrana/genética , Plasmodium knowlesi/genética , Proteínas de Protozoários/genética , Sequência de Aminoácidos , Bornéu , Malásia , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Filogenia , Plasmodium knowlesi/classificação , Polimorfismo Genético , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo , Seleção Genética , Alinhamento de Sequência
17.
Malar J ; 15: 62, 2016 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-26847346

RESUMO

BACKGROUND: The Plasmodium rhoptry-associated protein 1 (RAP-1) plays a role in the formation of the parasitophorous vacuole following the parasite's invasion of red blood cells. Although there is some evidence that the protein is recognized by the host's immune system, study of Plasmodium falciparum RAP-1 (PfRAP-1) suggests that it is not under immune pressure. A previous study on five old (1953-1962) P. knowlesi strains suggested that RAP-1 has limited genetic polymorphism and might be under negative selection. In the present study, 30 recent P. knowlesi isolates were studied to obtain a better insight into the polymorphism and natural selection of PkRAP-1. METHODS: Blood samples from 30 knowlesi malaria patients were used. These samples were collected between 2010 and 2014. The PkRAP-1 gene, which contains two exons, was amplified by PCR, cloned into Escherichia coli and sequenced. Genetic diversity and phylogenetic analyses were performed using MEGA6 and DnaSP ver. 5.10.00 programs. RESULTS: Thirty PkRAP-1 sequences were obtained. The nucleotide diversity (π) of exons 1, 2 and the total coding region (0.00915, 0.01353 and 0.01298, respectively) were higher than those of the old strains. Further analysis revealed a lower rate of non-synonymous (dN) than synonymous (dS) mutations, suggesting negative (purifying) selection of PkRAP-1. Tajima's D test and Fu and Li's D test values were not significant. At the amino acid level, 22 haplotypes were established with haplotype H7 having the highest frequency (7/34, 20.5 %). In the phylogenetic analysis, two distinct haplotype groups were observed. The first group contained the majority of the haplotypes, whereas the second had fewer haplotypes. CONCLUSIONS: The present study found higher genetic polymorphism in the PkRAP-1 gene than the polymorphism level reported in a previous study. This observation may stem from the difference in sample size between the present (n = 30) and the previous (n = 5) study. Synonymous and non-synonymous mutation analysis indicated purifying (negative) selection of the gene. The separation of PkRAP-1haplotypes into two groups provides further evidence to the postulation of two distinct P. knowlesi types or lineages.


Assuntos
Variação Genética/genética , Plasmodium knowlesi/genética , Plasmodium knowlesi/metabolismo , Seleção Genética/genética , Variação Genética/fisiologia , Haplótipos , Humanos , Malásia , Filogenia , Plasmodium knowlesi/classificação , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Seleção Genética/fisiologia
18.
Emerg Infect Dis ; 22(2): 201-8, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26812373

RESUMO

The zoonotic malaria species Plasmodium knowlesi has become the main cause of human malaria in Malaysian Borneo. Deforestation and associated environmental and population changes have been hypothesized as main drivers of this apparent emergence. We gathered village-level data for P. knowlesi incidence for the districts of Kudat and Kota Marudu in Sabah state, Malaysia, for 2008-2012. We adjusted malaria records from routine reporting systems to reflect the diagnostic uncertainty of microscopy for P. knowlesi. We also developed negative binomial spatial autoregressive models to assess potential associations between P. knowlesi incidence and environmental variables derived from satellite-based remote-sensing data. Marked spatial heterogeneity in P. knowlesi incidence was observed, and village-level numbers of P. knowlesi cases were positively associated with forest cover and historical forest loss in surrounding areas. These results suggest the likelihood that deforestation and associated environmental changes are key drivers in P. knowlesi transmission in these areas.


Assuntos
Meio Ambiente , Malária/epidemiologia , Malária/parasitologia , Plasmodium knowlesi , Análise Espacial , Florestas , Geografia , Humanos , Malásia/epidemiologia , Plasmodium knowlesi/classificação , Plasmodium knowlesi/genética
19.
Acta Trop ; 152: 145-150, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26384455

RESUMO

The simian malaria parasite Plasmodium knowlesi is now recognized as a species that can cause human malaria. The first report of large scale human knowlesi malaria was in 2004 in Malaysia Borneo. Since then, hundreds of human knowlesi malaria cases have been reported in Southeast Asia. The present study investigates the genetic polymorphism of P. knowlesi DI domain of the apical membrane antigen-1 (AMA-1), a protein considered as a promising vaccine candidate for malaria. The DI domain of AMA-1 gene of P. knowlesi clinical isolates from Peninsular Malaysia was amplified by PCR, cloned into Escherichia coli, then sequenced and analysed. Ninety-seven DI domain sequences were obtained. Comparison at the nucleotide level against P. knowlesi strain H as reference sequence showed 21 synonymous and 25 nonsynonymous mutations. Nonetheless, nucleotide sequence analysis revealed low genetic diversity of the DI domain, and it was under purifying (negative) selection. At the amino acid level, 26 different haplotypes were identified and 2 were predominant haplotypes (H1, H2) with high frequencies. Phylogenetic analysis revealed that the 26 haplotypes could be clustered into 2 distinct groups (I and II). Members of the groups were basically derived from haplotypes H1 and H2, respectively.


Assuntos
Antígenos de Protozoários/genética , Proteínas de Membrana/genética , Plasmodium knowlesi/genética , Polimorfismo Genético , Proteínas de Protozoários/genética , Variação Genética , Haplótipos , Humanos , Filogenia , Plasmodium knowlesi/classificação
20.
Malar J ; 12: 264, 2013 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-23902626

RESUMO

BACKGROUND: Plasmodium knowlesi is a simian malaria parasite that is widespread in humans in Malaysian Borneo. However, little is known about the incidence and distribution of this parasite in the Sandakan division, Malaysian Borneo. Therefore, the aim of the present epidemiological study was to investigate the incidence and distribution of P. knowlesi as well as other Plasmodium species in this division based on a most recent developed hexaplex PCR system (PlasmoNex™). METHODS: A total of 189 whole blood samples were collected from Telupid Health Clinic, Sabah, Malaysia, from 2008 to 2011. All patients who participated in the study were microscopically malaria positive before recruitment. Complete demographic details and haematological profiles were obtained from 85 patients (13 females and 72 males). Identification of Plasmodium species was conducted using PlasmoNex™ targeting the 18S ssu rRNA gene. RESULTS: A total of 178 samples were positive for Plasmodium species by using PlasmoNex™. Plasmodium falciparum was identified in 68 samples (38.2%) followed by 64 cases (36.0%) of Plasmodium vivax, 42 (23.6%) cases of P. knowlesi, two (1.1%) cases of Plasmodium malariae and two (1.1%) mixed-species infections (i e, P. vivax/P. falciparum). Thirty-five PlasmoNex™ positive P. knowlesi samples were misdiagnosed as P. malariae by microscopy. Plasmodium knowlesi was detected in all four districts of Sandakan division with the highest incidence in the Kinabatangan district. Thrombocytopaenia and anaemia showed to be the most frequent malaria-associated haematological complications in this study. CONCLUSIONS: The discovery of P. knowlesi in Sandakan division showed that prospective studies on the epidemiological risk factors and transmission dynamics of P. knowlesi in these areas are crucial in order to develop strategies for effective malaria control. The availability of advanced diagnostic tool PlasmoNex™ enhanced the accuracy and accelerated the speed in the diagnosis of malaria.


Assuntos
Malária/epidemiologia , Malária/parasitologia , Plasmodium knowlesi/isolamento & purificação , Adolescente , Adulto , Sangue/parasitologia , Criança , Pré-Escolar , DNA de Protozoário/genética , Feminino , Humanos , Incidência , Malásia/epidemiologia , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase Multiplex/métodos , Plasmodium knowlesi/classificação , Plasmodium knowlesi/genética , Prevalência , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...