Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 748
Filtrar
1.
Malar J ; 23(1): 145, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38741094

RESUMO

A single 300 mg dose of tafenoquine (an 8-aminoquinoline), in combination with a standard 3-day course of chloroquine, is approved in several countries for the radical cure (prevention of relapse) of Plasmodium vivax malaria in patients aged ≥ 16 years. Despite this, questions have arisen on the optimal dose of tafenoquine. Before the availability of tafenoquine, a 3-day course of chloroquine in combination with the 8-aminoquinoline primaquine was the only effective radical cure for vivax malaria. The World Health Organization (WHO)-recommended standard regimen is 14 days of primaquine 0.25 mg/kg/day or 7 days of primaquine 0.5 mg/kg/day in most regions, or 14 days of primaquine 0.5 mg/kg/day in East Asia and Oceania, however the long treatment courses of 7 or 14 days may result in poor adherence and, therefore, low treatment efficacy. A single dose of tafenoquine 300 mg in combination with a 3-day course of chloroquine is an important advancement for the radical cure of vivax malaria in patients without glucose-6-phosphate dehydrogenase (G6PD) deficiency, as the use of a single-dose treatment will improve adherence. Selection of a single 300 mg dose of tafenoquine for the radical cure of P. vivax malaria was based on collective efficacy and safety data from 33 studies involving more than 4000 trial participants who received tafenoquine, including over 800 subjects who received the 300 mg single dose. The safety profile of single-dose tafenoquine 300 mg is similar to that of standard-dosage primaquine 0.25 mg/kg/day for 14 days. Both primaquine and tafenoquine can cause acute haemolytic anaemia in individuals with G6PD deficiency; severe haemolysis can lead to anaemia, kidney damage, and, in some cases, death. Therefore, relapse prevention using an 8-aminoquinoline must be balanced with the need to avoid clinical haemolysis associated with G6PD deficiency. To minimize this risk, the WHO recommends G6PD testing for all individuals before the administration of curative doses of 8-aminoquinolines. In this article, the authors review key efficacy and safety data from the pivotal trials of tafenoquine and argue that the currently approved dose represents a favourable benefit-risk profile.


Assuntos
Aminoquinolinas , Antimaláricos , Malária Vivax , Malária Vivax/tratamento farmacológico , Aminoquinolinas/administração & dosagem , Aminoquinolinas/efeitos adversos , Aminoquinolinas/uso terapêutico , Humanos , Antimaláricos/uso terapêutico , Antimaláricos/administração & dosagem , Antimaláricos/efeitos adversos , Primaquina/administração & dosagem , Primaquina/uso terapêutico , Primaquina/efeitos adversos , Medição de Risco , Resultado do Tratamento , Quimioterapia Combinada , Plasmodium vivax/efeitos dos fármacos , Cloroquina/uso terapêutico , Cloroquina/efeitos adversos , Cloroquina/administração & dosagem
2.
Malar J ; 23(1): 140, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38725027

RESUMO

BACKGROUND: Plasmodium vivax relapses due to dormant liver hypnozoites can be prevented with primaquine. However, the dose must be adjusted in individuals with glucose-6-phosphate-dehydrogenase (G6PD) deficiency. In French Guiana, assessment of G6PD activity is typically delayed until day (D)14 to avoid the risk if misclassification. This study assessed the kinetics of G6PD activity throughout P. vivax infection to inform the timing of treatment. METHODS: For this retrospective monocentric study, data on G6PD activity between D1 and D28 after treatment initiation with chloroquine or artemisinin-based combination therapy were collected for patients followed at Cayenne Hospital, French Guiana, between January 2018 and December 2020. Patients were divided into three groups based on the number of available G6PD activity assessments: (i) at least two measurements during the P. vivax malaria infection; (ii) two measurements: one during the current infection and one previously; (iii) only one measurement during the malaria infection. RESULTS: In total, 210 patients were included (80, 20 and 110 in groups 1, 2 and 3, respectively). Data from group 1 showed that G6PD activity remained stable in each patient over time (D1, D3, D7, D14, D21, D28). None of the patients with normal G6PD activity during the initial phase (D1-D3) of the malaria episode (n = 44) was categorized as G6PD-deficient at D14. Patients with G6PD activity < 80% at D1 or D3 showed normal activity at D14. Sex and reticulocyte count were statistically associated with G6PD activity variation. In the whole sample (n = 210), no patient had severe G6PD deficiency (< 10%) and only three between 10 and 30%, giving a G6PD deficiency prevalence of 1.4%. Among the 100 patients from group 1 and 2, 30 patients (26.5%) were lost to follow-up before primaquine initiation. CONCLUSIONS: In patients treated for P. vivax infection, G6PD activity did not vary over time. Therefore, G6PD activity on D1 instead of D14 could be used for primaquine dose-adjustment. This could allow earlier radical treatment with primaquine, that could have a public health impact by decreasing early recurrences and patients lost to follow-up before primaquine initiation. This hypothesis needs to be confirmed in larger prospective studies.


Assuntos
Antimaláricos , Glucosefosfato Desidrogenase , Malária Vivax , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem , Antimaláricos/uso terapêutico , Artemisininas/uso terapêutico , Cloroquina/uso terapêutico , Guiana Francesa/epidemiologia , Glucosefosfato Desidrogenase/metabolismo , Deficiência de Glucosefosfato Desidrogenase/epidemiologia , Deficiência de Glucosefosfato Desidrogenase/complicações , Cinética , Malária Vivax/tratamento farmacológico , Plasmodium vivax/efeitos dos fármacos , Plasmodium vivax/fisiologia , Primaquina/uso terapêutico , Estudos Retrospectivos , Idoso de 80 Anos ou mais
3.
J Med Chem ; 67(9): 7312-7329, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38680035

RESUMO

N-myristoyltransferase (NMT) is a promising antimalarial drug target. Despite biochemical similarities between Plasmodium vivax and human NMTs, our recent research demonstrated that high selectivity is achievable. Herein, we report PvNMT-inhibiting compounds aimed at identifying novel mechanisms of selectivity. Various functional groups are appended to a pyrazole moiety in the inhibitor to target a pocket formed beneath the peptide binding cleft. The inhibitor core group polarity, lipophilicity, and size are also varied to probe the water structure near a channel. Selectivity index values range from 0.8 to 125.3. Cocrystal structures of two selective compounds, determined at 1.97 and 2.43 Å, show that extensions bind the targeted pocket but with different stabilities. A bulky naphthalene moiety introduced into the core binds next to instead of displacing protein-bound waters, causing a shift in the inhibitor position and expanding the binding site. Our structure-activity data provide a conceptual foundation for guiding future inhibitor optimizations.


Assuntos
Aciltransferases , Antimaláricos , Inibidores Enzimáticos , Plasmodium vivax , Pirazóis , Pirazóis/química , Pirazóis/farmacologia , Pirazóis/síntese química , Plasmodium vivax/enzimologia , Plasmodium vivax/efeitos dos fármacos , Aciltransferases/antagonistas & inibidores , Aciltransferases/metabolismo , Aciltransferases/química , Relação Estrutura-Atividade , Antimaláricos/química , Antimaláricos/farmacologia , Antimaláricos/síntese química , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/síntese química , Cristalografia por Raios X , Humanos , Modelos Moleculares , Sítios de Ligação
4.
Antimicrob Agents Chemother ; 68(5): e0028024, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38587391

RESUMO

Testing Plasmodium vivax antimicrobial sensitivity is limited to ex vivo schizont maturation assays, which preclude determining the IC50s of delayed action antimalarials such as doxycycline. Using Plasmodium cynomolgi as a model for P. vivax, we determined the physiologically significant delayed death effect induced by doxycycline [IC50(96 h), 1,401 ± 607 nM]. As expected, IC50(96 h) to chloroquine (20.4 nM), piperaquine (12.6 µM), and tafenoquine (1,424 nM) were not affected by extended exposure.


Assuntos
Aminoquinolinas , Antimaláricos , Doxiciclina , Piperazinas , Plasmodium cynomolgi , Plasmodium vivax , Doxiciclina/farmacologia , Antimaláricos/farmacologia , Aminoquinolinas/farmacologia , Plasmodium vivax/efeitos dos fármacos , Plasmodium cynomolgi/efeitos dos fármacos , Cloroquina/farmacologia , Animais , Malária Vivax/tratamento farmacológico , Malária Vivax/parasitologia , Quinolinas/farmacologia , Concentração Inibidora 50 , Humanos , Testes de Sensibilidade Parasitária
5.
Int J Antimicrob Agents ; 63(5): 107112, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38367843

RESUMO

The control and elimination of malaria caused by Plasmodium vivax is hampered by the threat of relapsed infection resulting from the activation of dormant hepatic hypnozoites. Currently, only the 8-aminoquinolines, primaquine and tafenoquine, have been approved for the elimination of hypnozoites, although their use is hampered by potential toxicity. Therefore, an alternative radical curative drug that safely eliminates hypnozoites is a pressing need. This study assessed the potential hypnozoiticidal activity of the antibiotic azithromycin, which is thought to exert antimalarial activity by inhibiting prokaryote-like ribosomal translation within the apicoplast, an indispensable organelle. The results show that azithromycin inhibited apicoplast development during liver-stage schizogony in P. vivax and Plasmodium cynomolgi, leading to impaired parasite maturation. More importantly, this study found that azithromycin is likely to impair the hypnozoite's apicoplast, resulting in the loss of this organelle. Subsequently, using a recently developed long-term hepatocyte culture system, this study found that this loss likely induces a delay in the hypnozoite activation rate, and that those parasites that do proceed to schizogony display liver-stage arrest prior to differentiating into hepatic merozoites, thus potentially preventing relapse. Overall, this work provides evidence for the potential use of azithromycin for the radical cure of relapsing malaria, and identifies apicoplast functions as potential drug targets in quiescent hypnozoites.


Assuntos
Antimaláricos , Apicoplastos , Azitromicina , Fígado , Plasmodium cynomolgi , Plasmodium vivax , Azitromicina/farmacologia , Plasmodium vivax/efeitos dos fármacos , Plasmodium cynomolgi/efeitos dos fármacos , Antimaláricos/farmacologia , Fígado/parasitologia , Fígado/efeitos dos fármacos , Apicoplastos/efeitos dos fármacos , Animais , Hepatócitos/parasitologia , Hepatócitos/efeitos dos fármacos , Humanos , Biogênese de Organelas , Malária Vivax/parasitologia , Malária Vivax/tratamento farmacológico , Camundongos , Malária/parasitologia , Malária/tratamento farmacológico
6.
Malar J ; 22(1): 181, 2023 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-37303047

RESUMO

BACKGROUND: Chloroquine (CQ) has been the preferred clinical treatment for vivax malaria in Yunnan Province since 1958, with over 300,000 patients. This study aimed to help make trend predictions regarding variations the in anti-malarial drug susceptibility of Plasmodium vivax distributed in Yunnan Province and effectively implement monitoring measures on the efficacy of anti-malarial drugs for vivax malaria. METHODS: Blood samples collected from patients with mono-P. vivax infections were employed in this study based on the principle of cluster sampling. The whole gene of P. vivax multidrug resistance 1 protein gene (pvmdr1) was amplified by nested-PCR techniques and the PCR amplification produce were sequenced by Sanger bidirectional sequencing. The mutant loci and haplotypes of coding DNA sequence (CDS) were identified by comparison with the reference sequence (NC_009915.1) of the P. vivax Sal I isolate. Parameters such as Ka/Ks ratio were calculated using MEGA 5.04 software. RESULTS: A total of 753 blood samples from patients infected with mono-P. vivax were collected, of which 624 blood samples yielded the full gene sequence (4392 bp) of the pvmdr1 gene, with 283, 140, 119, and 82 sequences from 2014, 2020, 2021 and 2022, respectively. A total of 52 single nucleotide polymorphic (SNP) loci were detected for the 624 CDSs, of which 92.3% (48/52), 34.6% (18/52), 42.3% (22/52), and 36.5% (19/52) SNPs were detected in 2014, 2020, 2021 and 2022, respectively. All of 624 CDSs were defined for a total of 105 mutant haplotypes, with CDSs of 2014, 2020, 2021, and 2022 containing 88, 15, 21, and 13 haplotypes, respectively. Of the 105 haplotypes, the threefold mutant haplotype (Hap_87) was the starting point for stepwise evolution, and the most drastic tenfold mutations were Hap_14 and Hap_78, and the fivefold, sixfold, sevenfold, and eightfold mutations. CONCLUSIONS: In the majority of vivax malaria cases in Yunnan Province, most of them were infected with strains carrying demonstrating highly mutated in pvmdr1 genes. However, the dominant mutation strains types varied from year to year, which warrants further exploration in order to confirm the correlation between with phenotypic changes in P. vivax strains and their susceptibility to anti-malarial drugs such as chloroquine.


Assuntos
Antimaláricos , Cloroquina , Resistência a Medicamentos , Malária Vivax , Plasmodium vivax , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Adulto Jovem , Antimaláricos/farmacologia , China , Cloroquina/farmacologia , Resistência a Medicamentos/genética , Malária Vivax/tratamento farmacológico , Malária Vivax/parasitologia , Plasmodium vivax/efeitos dos fármacos , Plasmodium vivax/genética , Marcadores Genéticos
8.
Malar J ; 21(1): 66, 2022 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-35241080

RESUMO

BACKGROUND: Anti-malarial drug resistance is still a major threat to malaria elimination in the Great Mekong Sub-region. Plasmodium vivax parasites resistant to anti-malarial drugs are now found in Myanmar. Molecular surveillance on drug resistance genes in P. vivax parasites from northeastern Myanmar was aimed at estimating the underlying drug resistance in this region. METHODS: Blood samples from patients with vivax malaria were collected from Laiza city in northeastern Myanmar in 2020. Drug resistance genes including Pvcrt-o, Pvmdr1, Pvdhfr and Pvdhps were amplified and sequenced. Genetic polymorphisms and haplotypes were analysed to evaluate the prevalence of mutant alleles associated with drug resistance. RESULTS: A total of 149 blood samples from P. vivax patients were collected. The prevalence of Pvmdr1 mutations at codons 958 and 1076 was 100.0% and 52.0%, respectively, whereas no single nucleotide polymorphism was present at codon 976. The proportions of single and double mutant types were 48.0% and 52.0%, respectively. A K10 "AAG" insertion in the Pvcrt-o gene was not detected. Mutations in Pvdhfr at codons 57, 58, 61, 99 and 117 were detected in 29.9%, 54.3%, 27.6%, 44.9% and 55.1% of the samples, respectively. Wild type was predominant (46.3%), followed by quadruple and double mutant haplotypes. Of three types of tandem repeat variations of Pvdhfr, Type B, with three copies of GGDN repeats, was the most common. Pvdhps mutations were only detected at codons 383 and 553 and the wild type Pvdhps was dominant (78.0%). Eleven haplotypes were identified when combining the mutations of Pvdhfr and Pvdhps, among which the predominant one was the wild type (33.9%), followed by double mutant alleles S58R/S117N /WT (24.6%). CONCLUSIONS: This study demonstrated resistant P. vivax phenotypes exists in northeastern Myanmar. Continued surveillance of drug resistance markers is needed to update treatment guidelines in this region.


Assuntos
Antimaláricos , Malária Vivax , Antimaláricos/farmacologia , Resistência a Medicamentos/genética , Humanos , Malária Vivax/parasitologia , Mutação , Mianmar , Plasmodium vivax/efeitos dos fármacos , Plasmodium vivax/genética , Polimorfismo de Nucleotídeo Único , Proteínas de Protozoários/genética
9.
Parasitol Int ; 87: 102512, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34785369

RESUMO

The aim of this narrative review is to summarise efficacy and pharmacokinetic data for Plasmodium vivax in children. The burden of P. vivax malaria in children continues to remain a significant public health issue, and the need for improved treatment regimens for this vulnerable population is critical. Relapse after re-activation of dormant liver-stage hypnozoites poses additional challenges for treatment, elimination, and control strategies for P. vivax. Whilst it is recognised that paediatric pharmacology may be significantly influenced by anatomical and physiological changes of childhood, dosing regimens often continue to be extrapolated from adult data, highlighting the need for antimalarial dosing in children to be evaluated in early phase clinical trials. This will ensure that globally recommended treatment regimens do not result in suboptimal dosing in children. Furthermore, the development of affordable paediatric formulations to enhance treatment acceptability and widespread G6PD testing to facilitate use of anti-hypnozoite treatment such as primaquine and tafenoquine, should be further prioritised. As the world prepares for malaria elimination, a renewed focus on P. vivax malaria provides an ideal opportunity to harness momentum and ensure that all populations, including children have access to safe, efficacious, and correctly dosed antimalarial therapies.


Assuntos
Antimaláricos/uso terapêutico , Malária Vivax/tratamento farmacológico , Antimaláricos/farmacologia , Criança , Humanos , Malária Vivax/diagnóstico , Malária Vivax/prevenção & controle , Plasmodium vivax/efeitos dos fármacos , Pesquisa
10.
Malar J ; 20(1): 483, 2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-34952581

RESUMO

BACKGROUND: Ethiopia is one of the few countries in Africa where Plasmodium vivax commonly co-exists with Plasmodium falciparum, and which accounts for ~ 40% of the total number of malaria infections in the country. Regardless of the growing evidence over many decades of decreasing sensitivity of this parasite to different anti-malarial drugs, there has been no comprehensive attempt made to systematically review and meta-analyse the efficacy of different anti-malarial drugs against P. vivax in the country. However, outlining the efficacy of available anti-malarial drugs against this parasite is essential to guide recommendations for the optimal therapeutic strategy to use in clinical practice. The aim of this study was to synthesize evidence on the efficacy of anti-malarial drugs against clinical P. vivax malaria in Ethiopia. METHODS: All potentially relevant, peer-reviewed articles accessible in PubMed, Scopus, Web of Science, and Clinical Trial.gov electronic databases were retrieved using a search strategy combining keywords and related database-specific subject terms. Randomized controlled trials (RCTs) and non-randomized trials aiming to investigate the efficacy of anti-malarial drugs against P. vivax were included in the review. Data were analysed using Review Manager Software. Cochrane Q (χ2) and the I2 tests were used to assess heterogeneity. The funnel plot and Egger's test were used to examine risk of publication bias. RESULTS: Out of 1294 identified citations, 14 articles that presented data on 29 treatment options were included in the analysis. These studies enrolled 2144 clinical vivax malaria patients. The pooled estimate of in vivo efficacy of anti-malarial drugs against vivax malaria in Ethiopia was 97.91% (95% CI: 97.29-98.52%), with significant heterogeneity (I2 = 86%, p < 0.0001) and publication bias (Egger's test = -12.86, p < 0.001). Different anti-malarial drugs showed varied efficacies against vivax malaria. The duration of follow-up significantly affected the calculated efficacy of any given anti-malarial drug, with longer duration of the follow-up (42 days) associated with significantly lower efficacy than efficacy reported on day 28. Also, pooled PCR-corrected efficacy and efficacy estimated from altitudinally lower transmission settings were significantly higher than PCR-uncorrected efficacy that estimated for moderate transmission settings, respectively. CONCLUSION: The overall efficacy of anti-malarial drugs evaluated for the treatment of vivax malaria in Ethiopia was generally high, although there was wide-ranging degree of efficacy, which was affected by the treatment options, duration of follow-up, transmission intensity, and the confirmation procedures for recurrent parasitaemia. Regardless of evidence of sporadic efficacy reduction reported in the country, chloroquine (CQ), the first-line regimen in Ethiopia, remained highly efficacious, supporting its continuous utilization for confirmed P. vivax mono-infections. The addition of primaquine (PQ) to CQ is recommended, as this is the only approved way to provide radical cure, and thus ensure sustained efficacy and longer protection against P. vivax. Continuous surveillance of the efficacy of anti-malarial drugs and clinical trials to allow robust conclusions remains necessary to proactively act against possible emergence and spread of drug-resistant P. vivax in Ethiopia.


Assuntos
Antimaláricos/uso terapêutico , Malária Vivax/prevenção & controle , Plasmodium vivax/efeitos dos fármacos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Etiópia , Feminino , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Ensaios Clínicos Controlados não Aleatórios como Assunto , Ensaios Clínicos Controlados Aleatórios como Assunto , Adulto Jovem
11.
Malar J ; 20(1): 470, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34930260

RESUMO

BACKGROUND: Malaria-associated anaemia, arising from symptomatic, asymptomatic and submicroscopic infections, is a significant cause of morbidity worldwide. Induced blood stage malaria volunteer infection studies (IBSM-VIS) provide a unique opportunity to evaluate the haematological response to early Plasmodium falciparum and Plasmodium vivax infection. METHODS: This study was an analysis of the haemoglobin, red cell counts, and parasitaemia data from 315 participants enrolled in IBSM-VIS between 2012 and 2019, including 269 participants inoculated with the 3D7 strain of P. falciparum (Pf3D7), 15 with an artemisinin-resistant P. falciparum strain (PfK13) and 46 with P. vivax. Factors associated with the fractional fall in haemoglobin (Hb-FF) were evaluated, and the malaria-attributable erythrocyte loss after accounting for phlebotomy-related losses was estimated. The relative contribution of parasitized erythrocytes to the malaria-attributable erythrocyte loss was also estimated. RESULTS: The median peak parasitaemia prior to treatment was 10,277 parasites/ml (IQR 3566-27,815), 71,427 parasites/ml [IQR 33,236-180,213], and 34,840 parasites/ml (IQR 13,302-77,064) in participants inoculated with Pf3D7, PfK13, and P. vivax, respectively. The median Hb-FF was 10.3% (IQR 7.8-13.3), 14.8% (IQR 11.8-15.9) and 11.7% (IQR 8.9-14.5) in those inoculated with Pf3D7, PfK13 and P. vivax, respectively, with the haemoglobin nadir occurring a median 12 (IQR 5-21), 15 (IQR 7-22), and 8 (IQR 7-15) days following inoculation. In participants inoculated with P. falciparum, recrudescence was associated with a greater Hb-FF, while in those with P. vivax, the Hb-FF was associated with a higher pre-treatment parasitaemia and later day of anti-malarial treatment. After accounting for phlebotomy-related blood losses, the estimated Hb-FF was 4.1% (IQR 3.1-5.3), 7.2% (IQR 5.8-7.8), and 4.9% (IQR 3.7-6.1) in participants inoculated with Pf3D7, PfK13, and P. vivax, respectively. Parasitized erythrocytes were estimated to account for 0.015% (IQR 0.006-0.06), 0.128% (IQR 0.068-0.616) and 0.022% (IQR 0.008-0.082) of the malaria-attributable erythrocyte loss in participants inoculated with Pf3D7, PfK13, and P. vivax, respectively. CONCLUSION: Early experimental P. falciparum and P. vivax infection resulted in a small but significant fall in haemoglobin despite parasitaemia only just at the level of microscopic detection. Loss of parasitized erythrocytes accounted for < 0.2% of the total malaria-attributable haemoglobin loss.


Assuntos
Anemia/tratamento farmacológico , Antimaláricos/uso terapêutico , Eritrócitos/parasitologia , Malária Falciparum/tratamento farmacológico , Malária Vivax/tratamento farmacológico , Parasitemia/tratamento farmacológico , Adulto , Anemia/parasitologia , Feminino , Humanos , Malária Falciparum/complicações , Malária Falciparum/parasitologia , Malária Vivax/complicações , Malária Vivax/parasitologia , Masculino , Pessoa de Meia-Idade , Parasitemia/parasitologia , Plasmodium falciparum/efeitos dos fármacos , Plasmodium vivax/efeitos dos fármacos , Adulto Jovem
12.
Malar J ; 20(1): 479, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34930278

RESUMO

BACKGROUND: Plasmodium vivax blood-stage relapses originating from re-activating hypnozoites are a major barrier for control and elimination of this disease. Radical cure is a form of therapy capable of addressing this problem. Recent clinical trials of radical cure have yielded efficacy estimates ranging from 65 to 94%, with substantial variation across trial sites. METHODS: An analysis of simulated trial data using a transmission model was performed to demonstrate that variation in efficacy estimates across trial sites can arise from differences in the conditions under which trials are conducted. RESULTS: The analysis revealed that differences in transmission intensity, heterogeneous exposure and relapse rate can yield efficacy estimates ranging as widely as 12-78%, despite simulating trial data under the uniform assumption that treatment had a 75% chance of clearing hypnozoites. A longer duration of prophylaxis leads to a greater measured efficacy, particularly at higher transmission intensities, making the comparison between the protection of different radical cure treatment regimens against relapse more challenging. Simulations show that vector control and parasite genotyping offer two potential means to yield more standardized efficacy estimates that better reflect prevention of relapse. CONCLUSIONS: Site-specific biases are likely to contribute to variation in efficacy estimates both within and across clinical trials. Future clinical trials can reduce site-specific biases by conducting trials in low-transmission settings where re-infections from mosquito bite are less common, by preventing re-infections using vector control measures, or by identifying and excluding likely re-infections that occur during follow-up, by using parasite genotyping methods.


Assuntos
Ensaios Clínicos como Assunto/estatística & dados numéricos , Malária Vivax/prevenção & controle , Plasmodium vivax/efeitos dos fármacos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Geografia , Humanos , Pessoa de Meia-Idade , Modelos Teóricos , Adulto Jovem
13.
Sci Rep ; 11(1): 19905, 2021 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-34620901

RESUMO

Improved control of Plasmodium vivax malaria can be achieved with the discovery of new antimalarials with radical cure efficacy, including prevention of relapse caused by hypnozoites residing in the liver of patients. We screened several compound libraries against P. vivax liver stages, including 1565 compounds against mature hypnozoites, resulting in one drug-like and several probe-like hits useful for investigating hypnozoite biology. Primaquine and tafenoquine, administered in combination with chloroquine, are currently the only FDA-approved antimalarials for radical cure, yet their activity against mature P. vivax hypnozoites has not yet been demonstrated in vitro. By developing an extended assay, we show both drugs are individually hypnozonticidal and made more potent when partnered with chloroquine, similar to clinically relevant combinations. Post-hoc analyses of screening data revealed excellent performance of ionophore controls and the high quality of single point assays, demonstrating a platform able to support screening of greater compound numbers. A comparison of P. vivax liver stage activity data with that of the P. cynomolgi blood, P. falciparum blood, and P. berghei liver stages reveals overlap in schizonticidal but not hypnozonticidal activity, indicating that the delivery of new radical curative agents killing P. vivax hypnozoites requires an independent and focused drug development test cascade.


Assuntos
Aminoquinolinas/farmacologia , Antimaláricos/farmacologia , Fígado/parasitologia , Malária Vivax/parasitologia , Testes de Sensibilidade Parasitária , Plasmodium vivax/efeitos dos fármacos , Aminoquinolinas/química , Aminoquinolinas/uso terapêutico , Antimaláricos/química , Antimaláricos/uso terapêutico , Cloroquina/farmacologia , Relação Dose-Resposta a Droga , Descoberta de Drogas/métodos , Sinergismo Farmacológico , Humanos , Estágios do Ciclo de Vida , Malária Vivax/tratamento farmacológico , Estrutura Molecular , Testes de Sensibilidade Parasitária/métodos , Plasmodium vivax/crescimento & desenvolvimento , Curva ROC , Fatores de Tempo
14.
Parasit Vectors ; 14(1): 549, 2021 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-34689796

RESUMO

BACKGROUND: Radical cure of the Plasmodium vivax latent liver stage is required to effectively manage vivax malaria. Targeted mass treatment with primaquine may be an effective mechanism for reducing reservoirs of the disease. Since community engagement and high coverage are essential for mass treatment programs, this study aimed to determine the acceptability of mass primaquine treatment in a targeted community in a northern Myanmar township. METHODS: A cross-sectional mixed-methods study was deployed among household leaders in July 2019. Face-to-face interviews using structured questionnaires and standardized qualitative guidelines were conducted to gather information. Descriptive and inferential statistics, including logistic regression models, were applied. RESULTS: Among 609 study respondents, > 90% agreed to participate in an upcoming targeted mass primaquine treatment (TPT) program. Factors contributing to higher odds of acceptability of the program were older age [adjusted odds ratios (aOR): 2.38, 95% confidence intervals (CI) 1.08-8.96], secondary education level (aOR: 3.99, 95% CI 1.12-20.01), having good knowledge of malaria (aOR: 2.12, 95% CI 1.04-4.76), experiencing malaria within the family (aOR: 1.92, 95% CI 1.14-5.13), and believing eliminating malaria from the village is possible (aOR: 2.83, 95% CI 1.07-4.07). Furthermore, 50 community respondents, 6 midwives, and 4 public health staff (grade II) participated in the qualitative component of the study. Many thought that TPT seemed feasible and stressed that high coverage of underserved groups and health education are needed before commencing the activity. CONCLUSIONS: Most respondents agreed to participate in the proposed mass treatment campaign. Older people with secondary education level and those who had experienced malaria within their families were most likely to report willingness to participate. These same individuals may be important in the community engagement process to increase community acceptance of the program.


Assuntos
Antimaláricos/uso terapêutico , Malária Vivax/tratamento farmacológico , Administração Massiva de Medicamentos/psicologia , Aceitação pelo Paciente de Cuidados de Saúde/psicologia , Primaquina/uso terapêutico , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos Transversais , Erradicação de Doenças , Esquema de Medicação , Características da Família , Feminino , Humanos , Malária Vivax/prevenção & controle , Masculino , Pessoa de Meia-Idade , Mianmar , Plasmodium vivax/efeitos dos fármacos , Recidiva , Inquéritos e Questionários , Adulto Jovem
15.
Biochem J ; 478(18): 3445-3466, 2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34486667

RESUMO

OTU proteases antagonize the cellular defense in the host cells and involve in pathogenesis. Intriguingly, P. falciparum, P. vivax, and P. yoelii have an uncharacterized and highly conserved viral OTU-like proteins. However, their structure, function or inhibitors have not been previously reported. To this end, we have performed structural modeling, small molecule screening, deconjugation assays to characterize and develop first-in-class inhibitors of P. falciparum, P. vivax, and P. yoelii OTU-like proteins. These Plasmodium OTU-like proteins have highly conserved residues in the catalytic and inhibition pockets similar to viral OTU proteins. Plasmodium OTU proteins demonstrated Ubiquitin and ISG15 deconjugation activities as evident by intracellular ubiquitinated protein content analyzed by western blot and flow cytometry. We screened a library of small molecules to determine plasmodium OTU inhibitors with potent anti-malarial activity. Enrichment and correlation studies identified structurally similar molecules. We have identified two small molecules that inhibit P. falciparum, P. vivax, and P. yoelii OTU proteins (IC50 values as low as 30 nM) with potent anti-malarial activity (IC50 of 4.1-6.5 µM). We also established enzyme kinetics, druglikeness, ADME, and QSAR model. MD simulations allowed us to resolve how inhibitors interacted with plasmodium OTU proteins. These findings suggest that targeting malarial OTU-like proteases is a plausible strategy to develop new anti-malarial therapies.


Assuntos
Antimaláricos/farmacologia , Peptídeo Hidrolases/química , Plasmodium falciparum/efeitos dos fármacos , Plasmodium vivax/efeitos dos fármacos , Plasmodium yoelii/efeitos dos fármacos , Inibidores de Proteases/farmacologia , Proteínas de Protozoários/química , Antimaláricos/química , Sítios de Ligação , Eritrócitos/efeitos dos fármacos , Eritrócitos/parasitologia , Expressão Gênica , Ensaios de Triagem em Larga Escala , Humanos , Concentração Inibidora 50 , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/metabolismo , Plasmodium falciparum/enzimologia , Plasmodium falciparum/genética , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium vivax/enzimologia , Plasmodium vivax/genética , Plasmodium vivax/crescimento & desenvolvimento , Plasmodium yoelii/enzimologia , Plasmodium yoelii/genética , Plasmodium yoelii/crescimento & desenvolvimento , Inibidores de Proteases/química , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Relação Quantitativa Estrutura-Atividade , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Ubiquitina/genética , Ubiquitina/metabolismo , Ubiquitinação
16.
Malar J ; 20(1): 366, 2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-34503519

RESUMO

BACKGROUND: In many endemic areas, Plasmodium vivax malaria is predominantly a disease of young adults and children. International recommendations for radical cure recommend fixed target doses of 0.25 or 0.5 mg/kg/day of primaquine for 14 days in glucose-6-phosphate dehydrogenase normal patients of all ages. However, for many anti-malarial drugs, including primaquine, there is evidence that children have lower exposures than adults for the same weight-adjusted dose. The aim of the study was to develop 14-day weight-based and age-based primaquine regimens against high-frequency relapsing tropical P. vivax. METHODS: The recommended adult target dose of 0.5 mg/kg/day (30 mg in a 60 kg patient) is highly efficacious against tropical P. vivax and was assumed to produce optimal drug exposure. Primaquine doses were calculated using allometric scaling to derive a weight-based primaquine regimen over a weight range from 5 to 100 kg. Growth curves were constructed from an anthropometric database of 53,467 individuals from the Greater Mekong Subregion (GMS) to define weight-for-age relationships. The median age associated with each weight was used to derive an age-based dosing regimen from the weight-based regimen. RESULTS: The proposed weight-based regimen has 5 dosing bands: (i) 5-7 kg, 5 mg, resulting in 0.71-1.0 mg/kg/day; (ii) 8-16 kg, 7.5 mg, 0.47-0.94 mg/kg/day; (iii) 17-40 kg, 15 mg, 0.38-0.88 mg/kg/day; (iv) 41-80 kg, 30 mg, 0.37-0.73 mg/kg/day; and (v) 81-100 kg, 45 mg, 0.45-0.56 mg/kg/day. The corresponding age-based regimen had 4 dosing bands: 6-11 months, 5 mg, 0.43-1.0 mg/kg/day; (ii) 1-5 years, 7.5 mg, 0.35-1.25 mg/kg/day; (iii) 6-14 years, 15 mg, 0.30-1.36 mg/kg/day; and (iv) ≥ 15 years, 30 mg, 0.35-1.07 mg/kg/day. CONCLUSION: The proposed weight-based regimen showed less variability around the primaquine dose within each dosing band compared to the age-based regimen and is preferred. Increased dose accuracy could be achieved by additional dosing bands for both regimens. The age-based regimen might not be applicable to regions outside the GMS, which must be based on local anthropometric data. Pharmacokinetic data in small children are needed urgently to inform the proposed regimens.


Assuntos
Antimaláricos/administração & dosagem , Esquema de Medicação , Malária Vivax/prevenção & controle , Plasmodium vivax/efeitos dos fármacos , Primaquina/administração & dosagem , Adolescente , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Peso Corporal , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Adulto Jovem
17.
Malar J ; 20(1): 341, 2021 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-34391426

RESUMO

BACKGROUND: The relapsing nature of Plasmodium vivax infection is a major barrier to its control and elimination. Factors such as adequate dosing, adherence, drug quality, and pharmacogenetics can impact the effectiveness of radical cure of P. vivax and need to be adequately evaluated. CYP2D6 pathway mediates the activation of primaquine (primaquine) into an active metabolite(s) in hepatocytes, and impaired activity has been linked to a higher risk of relapse. CASES PRESENTATION: Three patients diagnosed with P. vivax malaria presented repeated relapses after being initially treated with chloroquine (25 mg/kg) and primaquine (3.5 mg/kg in 14 days) at a non-endemic travel clinic. Recurring episodes were subsequently treated with a higher dose of primaquine (7 mg/kg in 14 days), which prevented further relapses in two patients. However, one patient still presented two episodes after a higher primaquine dose and was prescribed 300 mg of chloroquine weekly to prevent further episodes. Impaired CYP2D6 function was observed in all of them. CONCLUSION: Lack of response to primaquine was associated with impaired CYP2D6 activity in three patients presenting multiple relapses followed in a non-endemic setting. Higher primaquine dosage was safe and effectively prevented relapses in two patients and should be further investigated as an option in Latin America. It is crucial to investigate the factors associated with unsuccessful radical cures and alternative therapeutic options.


Assuntos
Citocromo P-450 CYP2D6/deficiência , Malária Vivax/prevenção & controle , Plasmodium vivax/efeitos dos fármacos , Primaquina/uso terapêutico , Prevenção Secundária , Adulto , Relação Dose-Resposta a Droga , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
18.
Clin Pharmacol Ther ; 110(3): 595-598, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34042179

RESUMO

Plasmodium vivax (P. vivax) is the most widespread human malaria parasite, with 2.5 billion people at risk of infection worldwide. P. vivax forms liver hypnozoites, which trigger further symptomatic episodes (relapses) weeks or months after the initial episode. Radical cure of vivax malaria requires hypnozoitocide therapy to prevent relapses. The two US Food and Drug Administration (FDA)-approved hypnozoiticides for human use, primaquine, and tafenoquine, are pro-drugs, that require in vivo conversion into metabolites with redox activity. This mini-review focuses on the association between CYP2D6-mediated hydroxylation and hypnozoitocide efficacy of primaquine and tafenoquine. Studies in murine models show that the antimalarial activity of primaquine and tafenoquine is abolished by CYP2D knock-out and partially restored by knock-in of humanized CYP2D6. Human studies explored the impact of CYP2D6 genetic variation and genotype-inferred CYP2D6 phenotype on anti-relapse efficacy. Most, but not all, studies with primaquine report higher rates of relapse in patients with decreased CYP2D6 activity (activity scores (AS) ≤ 1) compared to normal activity (AS ≥ 1.5). Potential factors for discordance among studies include risk of reinfection in endemic areas, adherence to primaquine-treatment, assignment of CYP2D6 phenotypes based on CYP2D6 polymorphism and choice of AS values for dichotomizing the study cohorts. Tafenoquine anti-relapse efficacy did not differ between patients with AS < 1 vs. AS ≥ 1.5 in 2 studies. Absence/small number of poor CYP2D6 metabolizers in AS ≤ 1 groups, combined with lesser dependence of tafenoquine on CYP2D6-mediated conversion into active redox metabolites may account for this result. Additional tafenoquine studies with larger representation of poor CYP2D6 metabolizers are warranted.


Assuntos
Antimaláricos/farmacologia , Citocromo P-450 CYP2D6/genética , Variação Genética/genética , Malária Vivax/tratamento farmacológico , Malária Vivax/genética , Plasmodium vivax/efeitos dos fármacos , Animais , Humanos , Malária Vivax/parasitologia , Recidiva
19.
Nat Commun ; 12(1): 3160, 2021 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-34039976

RESUMO

Despite the high burden of Plasmodium vivax malaria in South Asian countries, the genetic diversity of circulating parasite populations is not well described. Determinants of antimalarial drug susceptibility for P. vivax in the region have not been characterised. Our genomic analysis of global P. vivax (n = 558) establishes South Asian isolates (n = 92) as a distinct subpopulation, which shares ancestry with some East African and South East Asian parasites. Signals of positive selection are linked to drug resistance-associated loci including pvkelch10, pvmrp1, pvdhfr and pvdhps, and two loci linked to P. vivax invasion of reticulocytes, pvrbp1a and pvrbp1b. Significant identity-by-descent was found in extended chromosome regions common to P. vivax from India and Ethiopia, including the pvdbp gene associated with Duffy blood group binding. Our investigation provides new understanding of global P. vivax population structure and genomic diversity, and genetic evidence of recent directional selection in this important human pathogen.


Assuntos
Genes de Protozoários , Malária Vivax/parasitologia , Plasmodium vivax/genética , Seleção Genética , África Oriental , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Ásia , Resistência a Medicamentos/genética , Sistema do Grupo Sanguíneo Duffy , Loci Gênicos , Humanos , Malária Vivax/sangue , Malária Vivax/tratamento farmacológico , Filogenia , Filogeografia , Plasmodium vivax/efeitos dos fármacos , Plasmodium vivax/patogenicidade , Polimorfismo de Nucleotídeo Único , Proteínas de Protozoários/genética , Reticulócitos/parasitologia
20.
Parasit Vectors ; 14(1): 280, 2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-34034802

RESUMO

BACKGROUND: Malaria mixed infections are often unrecognized by microscopists in the hospitals, and a delay or failure to treat Plasmodium-mixed infection may lead to aggravated morbidity and increased mortality. The present study aimed to quantify the pooled proportion and risk of malarial recurrences after the treatment of Plasmodium-mixed infection. The results of the study may provide benefits in the management of Plasmodium-mixed infection in co-endemic regions. METHODS: This systematic review and meta-analysis searched the international Prospective Register of Systematic Reviews (PROSPERO; ID = CRD42020199709), MEDLINE, Web of Science, and Scopus for potentially relevant studies in any language published between January 1, 1936, and July 20, 2020, assessing drug efficacy in patients with Plasmodium-mixed infection. The primary outcome was the pooled prevalence of Plasmodium parasitemia after initiating antimalarial treatment for Plasmodium-mixed infection. The secondary outcome was the pooled risk ratio (RR) of malarial recurrence in Plasmodium-mixed infection compared with those in Plasmodium falciparum and Plasmodium vivax mono-infection. The pooled analyses were calculated by random-effects meta-analysis. After the initial treatment in different days of recurrences (≤ 28 days or > 28 days), the risk of Plasmodium parasitemia was compared in subgroup analysis. RESULTS: Out of 5217 screened studies, 11 were included in the meta-analysis, including 4390 patients from six countries. The pooled prevalence of all recurrences of Plasmodium-mixed parasitemia was 30% (95% confidence interval (CI) 16-43; I2: 99.2%; 11 studies). The RR of malarial recurrence within 28 days after the initial treatment (clinical treatment failure) of Plasmodium-mixed parasitemia compared with the treatment of P. falciparum was 1.22 (p: 0.029; 95% CI 1.02-1.47; Cochran Q: 0.93; I2: 0%; six studies), while there was no significant difference in the risk of recurrence 28 days after initial treatment compared with the treatment of P. falciparum (p: 0.696, RR: 1.14; 95% CI 0.59-2.18; Cochran Q < 0.05; I2: 98.2%; four studies). The subgroup analysis of antimalarial drugs showed that significant malarial recurrence within 28 days was observed in patients treated with artemisinin-based combination therapies (ACTs) with no significant heterogeneity (p: 0.028, RR: 1.31; 95% CI 1.03-1.66; Cochran Q: 0.834; I2: 0%). CONCLUSIONS: The present findings showed a high prevalence of malarial recurrence after the initial treatment of Plasmodium-mixed infection. Moreover, significant malaria recurrence of mixed infection occurred within 28 days after treatment with ACTs.


Assuntos
Antimaláricos/uso terapêutico , Coinfecção/parasitologia , Malária/tratamento farmacológico , Plasmodium falciparum/efeitos dos fármacos , Plasmodium vivax/efeitos dos fármacos , Humanos , Malária/epidemiologia , Malária/etiologia , Malária Falciparum/tratamento farmacológico , Malária Vivax/tratamento farmacológico , Recidiva , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...