Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.961
Filtrar
1.
Elife ; 132024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38700136

RESUMO

Cholecystokinin (CCK) is an essential modulator for neuroplasticity in sensory and emotional domains. Here, we investigated the role of CCK in motor learning using a single pellet reaching task in mice. Mice with a knockout of Cck gene (Cck-/-) or blockade of CCK-B receptor (CCKBR) showed defective motor learning ability; the success rate of retrieving reward remained at the baseline level compared to the wildtype mice with significantly increased success rate. We observed no long-term potentiation upon high-frequency stimulation in the motor cortex of Cck-/- mice, indicating a possible association between motor learning deficiency and neuroplasticity in the motor cortex. In vivo calcium imaging demonstrated that the deficiency of CCK signaling disrupted the refinement of population neuronal activity in the motor cortex during motor skill training. Anatomical tracing revealed direct projections from CCK-expressing neurons in the rhinal cortex to the motor cortex. Inactivation of the CCK neurons in the rhinal cortex that project to the motor cortex bilaterally using chemogenetic methods significantly suppressed motor learning, and intraperitoneal application of CCK4, a tetrapeptide CCK agonist, rescued the motor learning deficits of Cck-/- mice. In summary, our results suggest that CCK, which could be provided from the rhinal cortex, may surpport motor skill learning by modulating neuroplasticity in the motor cortex.


Assuntos
Colecistocinina , Aprendizagem , Camundongos Knockout , Córtex Motor , Destreza Motora , Plasticidade Neuronal , Animais , Córtex Motor/fisiologia , Córtex Motor/metabolismo , Córtex Motor/efeitos dos fármacos , Colecistocinina/metabolismo , Colecistocinina/farmacologia , Plasticidade Neuronal/fisiologia , Plasticidade Neuronal/efeitos dos fármacos , Camundongos , Destreza Motora/fisiologia , Aprendizagem/fisiologia , Masculino
2.
Pharmacol Rev ; 76(3): 323-357, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38697859

RESUMO

Over the last six decades, lithium has been considered the gold standard treatment for the long-term management of bipolar disorder due to its efficacy in preventing both manic and depressive episodes as well as suicidal behaviors. Nevertheless, despite numerous observed effects on various cellular pathways and biologic systems, the precise mechanism through which lithium stabilizes mood remains elusive. Furthermore, there is recent support for the therapeutic potential of lithium in other brain diseases. This review offers a comprehensive examination of contemporary understanding and predominant theories concerning the diverse mechanisms underlying lithium's effects. These findings are based on investigations utilizing cellular and animal models of neurodegenerative and psychiatric disorders. Recent studies have provided additional support for the significance of glycogen synthase kinase-3 (GSK3) inhibition as a crucial mechanism. Furthermore, research has shed more light on the interconnections between GSK3-mediated neuroprotective, antioxidant, and neuroplasticity processes. Moreover, recent advancements in animal and human models have provided valuable insights into how lithium-induced modifications at the homeostatic synaptic plasticity level may play a pivotal role in its clinical effectiveness. We focused on findings from translational studies suggesting that lithium may interface with microRNA expression. Finally, we are exploring the repurposing potential of lithium beyond bipolar disorder. These recent findings on the therapeutic mechanisms of lithium have provided important clues toward developing predictive models of response to lithium treatment and identifying new biologic targets. SIGNIFICANCE STATEMENT: Lithium is the drug of choice for the treatment of bipolar disorder, but its mechanism of action in stabilizing mood remains elusive. This review presents the latest evidence on lithium's various mechanisms of action. Recent evidence has strengthened glycogen synthase kinase-3 (GSK3) inhibition, changes at the level of homeostatic synaptic plasticity, and regulation of microRNA expression as key mechanisms, providing an intriguing perspective that may help bridge the mechanistic gap between molecular functions and its clinical efficacy as a mood stabilizer.


Assuntos
Compostos de Lítio , Humanos , Animais , Compostos de Lítio/farmacologia , Compostos de Lítio/uso terapêutico , Antimaníacos/farmacologia , Antimaníacos/uso terapêutico , Transtorno Bipolar/tratamento farmacológico , Plasticidade Neuronal/efeitos dos fármacos , Quinase 3 da Glicogênio Sintase/metabolismo , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores
3.
Brain Behav ; 14(5): e3515, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38702895

RESUMO

INTRODUCTION: Maternal sleep deprivation (MSD), which induces inflammation and synaptic dysfunction in the hippocampus, has been associated with learning and memory impairment in offspring. Melatonin (Mel) has been shown to have anti-inflammatory, antioxidant, and neuroprotective function. However, the beneficial effect of Mel on MSD-induced cognitive impairment and its mechanisms are unknown. METHODS: In the present study, adult offspring suffered from MSD were injected with Mel (20 mg/kg) once a day during postnatal days 61-88. The cognitive function was evaluated by the Morris water maze test. Levels of proinflammatory cytokines were examined by enzyme-linked immunosorbent assay. The mRNA and protein levels of synaptic plasticity associated proteins were examined using reverse transcription-polymerase chain reaction and western blotting. RESULTS: The results showed that MSD impaired learning and memory in the offspring mice. MSD increased the levels of interleukin (IL)-1creIL-6, and tumor necrosis factor-α and decreased the expression levels of brain-derived neurotrophic factor, tyrosine kinase receptor B, postsynaptic density protein-95, and synaptophysin in the hippocampus. Furthermore, Mel attenuated cognitive impairment and restored markers of inflammation and synaptic plasticity to control levels. CONCLUSIONS: These findings indicated that Mel could ameliorate learning and memory impairment induced by MSD, and these beneficial effects were related to improvement in inflammation and synaptic dysfunction.


Assuntos
Hipocampo , Melatonina , Transtornos da Memória , Plasticidade Neuronal , Privação do Sono , Animais , Melatonina/farmacologia , Melatonina/administração & dosagem , Privação do Sono/complicações , Privação do Sono/tratamento farmacológico , Privação do Sono/fisiopatologia , Camundongos , Masculino , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Feminino , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/etiologia , Transtornos da Memória/fisiopatologia , Plasticidade Neuronal/efeitos dos fármacos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Gravidez , Privação Materna , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/fisiopatologia , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Doenças Neuroinflamatórias/tratamento farmacológico
4.
Neuromolecular Med ; 26(1): 15, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38653878

RESUMO

Lycium barbarum polysaccharide (LBP) have a certain curative effect on hypoglycemic and neuroprotective effects, but the specific mechanism is unclear and needs to be further explored. This study aimed to clarify the mechanisms of LBP in the treatment of ICV-STZ mice model of AD from the perspectives of insulin resistance, IRS1/PI3K/AKT signaling pathway, and synaptic protein expression. We used male C57BL/6J mice injected with STZ (3 mg/kg) in the lateral ventricle as an AD model. After treatment with LBP, the learning and memory abilities of ICV-STZ mice were enhanced, and the pathological changes in brain tissue were alleviated. LBP can regulate the expression of proteins related to the IRS1/PI3K/AKT signaling pathway and thereby reducing Aß deposition and tau protein phosphorylation in the brain of ICV-STZ mice. In addition, LBP also can up-regulate the expression of synaptic proteins. The results indicated that LBP played a neuroprotective role by regulating the IRS1/PI3K/AKT pathway, inhibiting tau protein hyperphosphorylation and improving the expression levels of synapse-related proteins.


Assuntos
Doença de Alzheimer , Medicamentos de Ervas Chinesas , Proteínas Substratos do Receptor de Insulina , Camundongos Endogâmicos C57BL , Plasticidade Neuronal , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Proteínas tau , Animais , Masculino , Camundongos , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Cognição/efeitos dos fármacos , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas/uso terapêutico , Medicamentos de Ervas Chinesas/farmacologia , Proteínas Substratos do Receptor de Insulina/metabolismo , Resistência à Insulina , Plasticidade Neuronal/efeitos dos fármacos , Fármacos Neuroprotetores/uso terapêutico , Fármacos Neuroprotetores/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Estreptozocina , Sinapses/efeitos dos fármacos , Proteínas tau/metabolismo
5.
J Affect Disord ; 356: 586-596, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38657764

RESUMO

BACKGROUND: Diabetes mellitus (DM) is frequently associated with the occurrence and development of depression, and the co-occurrence of diabetes mellitus with depression (DD) may further reduce patients' quality of life. Recent research indicates that dopamine receptors (DRs) play a crucial role in immune and metabolic regulation. Pramipexole (PPX), a D2/3R agonist, has demonstrated promising neuroprotective and immunomodulatory effects. Nevertheless, the therapeutic effects and mechanisms of action of PPX on DM-induced depression are not clear at present. METHODS: Depression, DM, and DD were induced in a rat model through a combination of a high-fat diet (HFD) supplemented with streptozotocin (STZ) and chronic unpredictable mild stress (CUMS) combined with solitary cage rearing. The pathogenesis of DD and the neuroprotective effects of DRs agonists were investigated using behavioral assays, enzyme-linked immunosorbent assay (ELISA), hematoxylin-eosin (HE) staining, Nissl staining, Western blotting (WB) and immunofluorescence (IF). RESULTS: DD rats exhibited more severe dopaminergic, neuroinflammatory, and neuroplastic impairments and more pronounced depressive behaviors than rats with depression alone or DM. Our findings suggest that DRs agonists have significant therapeutic effects on DD rats and that PPX improved neuroplasticity and decreased neuroinflammation in the hippocampus of DD rats while also promoting DG cell growth and differentiation, ultimately mitigating depression-like behaviors. LIMITATION: Our study is based on a rat model. Further evidence is needed to determine whether the therapeutic effects of PPX apply to patients suffering from DD. CONCLUSIONS: Neuroinflammation mediated by damage to the dopaminergic system is one of the key pathogenic mechanisms of DD. We provide evidence that PPX has a neuroprotective effect on the hippocampus in DD rats and the mechanism may involve the inhibition of NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome activation by DRs to attenuate the neuroinflammatory response and neuroplasticity damage.


Assuntos
Depressão , Diabetes Mellitus Experimental , Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Plasticidade Neuronal , Pramipexol , Animais , Pramipexol/farmacologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Ratos , Plasticidade Neuronal/efeitos dos fármacos , Masculino , Inflamassomos/efeitos dos fármacos , Depressão/tratamento farmacológico , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/complicações , Ratos Sprague-Dawley , Doenças Neuroinflamatórias/tratamento farmacológico , Agonistas de Dopamina/farmacologia , Hipocampo/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Comportamento Animal/efeitos dos fármacos , Modelos Animais de Doenças
6.
Pharmacol Biochem Behav ; 239: 173775, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38657873

RESUMO

Electroconvulsive shock (ECS) is utilized to treat depression but may cause learning/memory impairments, which may be ameliorated by anesthetics through the modulation of hippocampal synaptic plasticity. Given that synaptic plasticity is governed by aerobic glycolysis, it remains unclear whether anesthetics modulate aerobic glycolysis to enhance learning and memory function. Depression-like behavior in rats was induced by chronic mild unpredictable stress (CUMS), with anhedonia assessed via sucrose preference test (SPT). Depressive-like behaviors and spatial learning/memory were assessed with forced swim test (FST), open field test (OFT), and Morris water maze (MWM) test. Changes in aerobic glycolysis and synaptic plasticity in the hippocampal region of depressive-like rats post-ECS were documented using immunofluorescence analysis, Western blot, Lactate Assay Kit and transmission electron microscopy. Both the OFT and FST indicated that ECS was effective in alleviating depressive-like behaviors. The MWM test demonstrated that anesthetics were capable of attenuating ECS-induced learning and memory deficits. Immunofluorescence analysis, Western blot, Lactate Assay Kit and transmission electron microscopy revealed that the decline in learning and memory abilities in ECS-induced depressive-like rats was correlated with decreased aerobic glycolysis, and that the additional use of ciprofol or propofol ameliorated these alterations. Adding the glycolysis inhibitor 2-DG diminished the ameliorative effects of the anesthetic. No significant difference was observed between ciprofol and propofol in enhancing aerobic glycolysis in astrocytes and synaptic plasticity after ECS. These findings may contribute to understanding the mechanisms by which anesthetic drugs modulate learning and memory impairment after ECS in depressive-like behavior rats.


Assuntos
Depressão , Glicólise , Hipocampo , Transtornos da Memória , Ratos Sprague-Dawley , Animais , Ratos , Masculino , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Glicólise/efeitos dos fármacos , Depressão/metabolismo , Depressão/tratamento farmacológico , Transtornos da Memória/metabolismo , Transtornos da Memória/tratamento farmacológico , Plasticidade Neuronal/efeitos dos fármacos , Eletrochoque , Estresse Psicológico/metabolismo , Estresse Psicológico/tratamento farmacológico , Modelos Animais de Doenças , Propofol/farmacologia , Aprendizagem em Labirinto/efeitos dos fármacos
7.
Ecotoxicol Environ Saf ; 277: 116401, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38677069

RESUMO

Exposure to fine particulate matter (PM) is associated with the neurodegenerative diseases. Coke oven emissions (COEs) in occupational environment are important sources of PM. However, its neurotoxicity is still unclear. Therefore, evaluating the toxicological effects of COE on the nervous system is necessary. In the present study, we constructed mouse models of COE exposure by tracheal instillation. Mice exposed to COE showed signs of cognitive impairment. This was accompanied by a decrease in miR-145a-5p and an increase in SIK1 expression in the hippocampus, along with synaptic structural damage. Our results demonstrated that COE-induced miR-145a-5p downregulation could increase the expression of SIK1 and phosphorylated SIK1, inhibiting the cAMP/PKA/CREB pathway by activating PDE4D, which was associated with reduced synaptic structural plasticity. Furthermore, restoring of miR-145a-5p expression based on COE exposure in HT22 cells could partially reversed the negative effects of COE exposure through the SIK1/PDE4D/cAMP axis. Collectively, our findings link epigenetic regulation with COE-induced neurotoxicity and imply that miR-145a-5p could be an early diagnostic marker for neurological diseases in patients with COE occupational exposure.


Assuntos
Disfunção Cognitiva , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4 , MicroRNAs , Plasticidade Neuronal , Proteínas Serina-Treonina Quinases , Animais , MicroRNAs/genética , Camundongos , Disfunção Cognitiva/induzido quimicamente , Plasticidade Neuronal/efeitos dos fármacos , Masculino , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , AMP Cíclico/metabolismo , Hipocampo/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Poluentes Atmosféricos/toxicidade , Material Particulado/toxicidade
8.
Adv Med Sci ; 69(1): 176-189, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38561071

RESUMO

PURPOSE: Metabolic syndrome (MetS) is a common disorder associated with disturbed neurotransmitter homeostasis. Memantine, an N-methyl-d-aspartate receptor (NMDAR) antagonist, was first used in Alzheimer's disease. Allopregnanolone (Allo), a potent positive allosteric modulator of the Gamma-Amino-Butyric Acid (GABA)-A receptors, decreases in neurodegenerative diseases. The study investigated the impact of Memantine versus Allo administration on the animal model of MetS to clarify whether the mechanism of abnormalities is related more to excitatory or inhibitory neurotransmitter dysfunction. MATERIALS AND METHODS: Fifty-six male rats were allocated into 7 groups: 4 control groups, 1 MetS group, and 2 treated MetS groups. They underwent assessment of cognition-related behavior by open field and forced swimming tests, electroencephalogram (EEG) recording, serum markers confirming the establishment of MetS model and hippocampal Glial Fibrillary Acidic Protein (GFAP) and Brain-Derived Neurotrophic Factor (BDNF). RESULTS: Allo improved anxiety-like behavior and decreased grooming frequency compared to Memantine. Both drugs increased GFAP and BDNF expression, improving synaptic plasticity and cognition-related behaviors. The therapeutic effect of Allo was more beneficial regarding lipid profile and anxiety. We reported progressive slowing of EEG waves in the MetS group with Memantine and Allo treatment with increased relative theta and decreased relative delta rhythms. CONCLUSIONS: Both Allo and Memantine boosted the outcome parameters in the animal model of MetS. Allo markedly improved the anxiety-like behavior in the form of significantly decreased grooming frequency compared to the Memantine-treated groups. Both drugs were associated with increased hippocampal GFAP and BDNF expression, indicating an improvement in synaptic plasticity and so, cognition-related behaviors.


Assuntos
Memantina , Síndrome Metabólica , Plasticidade Neuronal , Receptores de GABA-A , Receptores de N-Metil-D-Aspartato , Animais , Plasticidade Neuronal/efeitos dos fármacos , Masculino , Ratos , Síndrome Metabólica/metabolismo , Síndrome Metabólica/tratamento farmacológico , Receptores de N-Metil-D-Aspartato/metabolismo , Memantina/farmacologia , Receptores de GABA-A/metabolismo , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Pregnanolona/farmacologia , Pregnanolona/metabolismo , Ratos Wistar , Modelos Animais de Doenças
9.
Biomed Pharmacother ; 174: 116526, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38574621

RESUMO

Spinocerebellar ataxia type 1 (SCA1) is a debilitating neurodegenerative disorder of the cerebellum and brainstem. Memantine has been proposed as a potential treatment for SCA1. It blocks N-methyl-D-aspartate (NMDA) receptors on neurons, reduces excitotoxicity and decreases neurodegeneration in Alzheimer models. However, in cerebellar neurodegenerative diseases, the potential value of memantine is still unclear. We investigated the effects of memantine on motor performance and synaptic transmission in the cerebellum in a mouse model where mutant ataxin 1 is specifically targeted to glia. Lentiviral vectors (LVV) were used to express mutant ataxin 1 selectively in Bergmann glia (BG). In mice transduced with the mutant ataxin 1, chronic treatment with memantine improved motor activity during initial tests, presumably due to preserved BG and Purkinje cell (PC) morphology and numbers. However, mice were unable to improve their rota rod scores during next days of training. Memantine also compromised improvement in the rota rod scores in control mice upon repetitive training. These effects may be due to the effects of memantine on plasticity (LTD suppression) and NMDA receptor modulation. Some effects of chronically administered memantine persisted even after its wash-out from brain slices. Chronic memantine reduced morphological signs of neurodegeneration in the cerebellum of SCA1 model mice. This resulted in an apparent initial reduction of ataxic phenotype, but memantine also affected cerebellar plasticity and ultimately compromised motor learning. We speculate that that clinical application of memantine in SCA1 might be hampered by its ability to suppress NMDA-dependent plasticity in cerebellar cortex.


Assuntos
Modelos Animais de Doenças , Memantina , Fenótipo , Ataxias Espinocerebelares , Animais , Memantina/farmacologia , Ataxias Espinocerebelares/tratamento farmacológico , Ataxias Espinocerebelares/patologia , Camundongos , Ataxina-1/metabolismo , Ataxina-1/genética , Atividade Motora/efeitos dos fármacos , Cerebelo/efeitos dos fármacos , Cerebelo/patologia , Cerebelo/metabolismo , Células de Purkinje/efeitos dos fármacos , Células de Purkinje/patologia , Células de Purkinje/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Camundongos Transgênicos , Camundongos Endogâmicos C57BL , Neuroglia/efeitos dos fármacos , Neuroglia/patologia , Neuroglia/metabolismo , Masculino , Plasticidade Neuronal/efeitos dos fármacos
10.
Brain Stimul ; 17(2): 421-430, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38574852

RESUMO

BACKGROUND: Studies in animals and humans have shown that cortical neuroplasticity can be modulated by increasing serotonin levels by administering selective serotonin reuptake inhibitors (SSRI). However, little is known about the mechanistic background, especially the contribution of intracortical inhibition and facilitation, which depend on gamma-aminobutyric acid (GABA) and glutamate. OBJECTIVE: We aimed to explore the relevance of drivers of plasticity (glutamate- and GABA-dependent processes) for the effects of serotonin enhancement on tDCS-induced plasticity in healthy humans. METHODS: A crossover, partially double-blinded, randomized, and sham-controlled study was conducted in 21 healthy right-handed individuals. In each of the 7 sessions, plasticity was induced via transcranial direct current stimulation (tDCS). Anodal, cathodal, and sham tDCS were applied to the left motor cortex under SSRI (20 mg/40 mg citalopram) or placebo. Short-interval cortical inhibition (SICI) and intracortical facilitation (ICF) were monitored by paired-pulse transcranial magnetic stimulation for 5-6 h after intervention. RESULTS: Under placebo, anodal tDCS-induced LTP-like plasticity decreased SICI and increased ICF. In contrast, cathodal tDCS-elicited LTD-like plasticity induced the opposite effect. Under 20 mg and 40 mg citalopram, anodal tDCS did not affect SICI largely, while ICF was enhanced and prolonged. For cathodal tDCS, citalopram converted the increase of SICI and decrease of ICF into antagonistic effects, and this effect was dosage-dependent since it lasted longer under 40 mg when compared to 20 mg. CONCLUSION: We speculate that the main effects of acute serotonergic enhancement on tDCS-induced plasticity, the increase and prolongation of LTP-like plasticity effects, involves mainly the glutamatergic system.


Assuntos
Estudos Cross-Over , Córtex Motor , Plasticidade Neuronal , Inibidores Seletivos de Recaptação de Serotonina , Estimulação Transcraniana por Corrente Contínua , Humanos , Plasticidade Neuronal/fisiologia , Plasticidade Neuronal/efeitos dos fármacos , Masculino , Adulto , Método Duplo-Cego , Feminino , Córtex Motor/fisiologia , Córtex Motor/efeitos dos fármacos , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Inibidores Seletivos de Recaptação de Serotonina/administração & dosagem , Adulto Jovem , Estimulação Magnética Transcraniana , Serotonina/metabolismo , Citalopram/farmacologia , Potencial Evocado Motor/fisiologia , Potencial Evocado Motor/efeitos dos fármacos , Ácido gama-Aminobutírico/metabolismo , Ácido Glutâmico/metabolismo
11.
J Neurosci ; 44(18)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38508714

RESUMO

Drugs of abuse induce neuroadaptations, including synaptic plasticity, that are critical for transition to addiction, and genes and pathways that regulate these neuroadaptations are potential therapeutic targets. Tropomodulin 2 (Tmod2) is an actin-regulating gene that plays an important role in synapse maturation and dendritic arborization and has been implicated in substance abuse and intellectual disability in humans. Here, we mine the KOMP2 data and find that Tmod2 knock-out mice show emotionality phenotypes that are predictive of addiction vulnerability. Detailed addiction phenotyping shows that Tmod2 deletion does not affect the acute locomotor response to cocaine administration. However, sensitized locomotor responses are highly attenuated in these knock-outs, indicating perturbed drug-induced plasticity. In addition, Tmod2 mutant animals do not self-administer cocaine indicating lack of hedonic responses to cocaine. Whole-brain MR imaging shows differences in brain volume across multiple regions, although transcriptomic experiments did not reveal perturbations in gene coexpression networks. Detailed electrophysiological characterization of Tmod2 KO neurons showed increased spontaneous firing rate of early postnatal and adult cortical and striatal neurons. Cocaine-induced synaptic plasticity that is critical for sensitization is either missing or reciprocal in Tmod2 KO nucleus accumbens shell medium spiny neurons, providing a mechanistic explanation of the cocaine response phenotypes. Combined, these data, collected from both males and females, provide compelling evidence that Tmod2 is a major regulator of plasticity in the mesolimbic system and regulates the reinforcing and addictive properties of cocaine.


Assuntos
Cocaína , Corpo Estriado , Camundongos Knockout , Plasticidade Neuronal , Animais , Cocaína/farmacologia , Plasticidade Neuronal/efeitos dos fármacos , Plasticidade Neuronal/fisiologia , Camundongos , Masculino , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Camundongos Endogâmicos C57BL , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/fisiologia , Feminino , Transtornos Relacionados ao Uso de Cocaína/fisiopatologia , Transtornos Relacionados ao Uso de Cocaína/genética , Proteínas dos Microfilamentos/metabolismo , Proteínas dos Microfilamentos/genética , Excitabilidade Cortical/efeitos dos fármacos , Inibidores da Captação de Dopamina/farmacologia , Inibidores da Captação de Dopamina/administração & dosagem
12.
Neuroscience ; 545: 31-46, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38460903

RESUMO

Traumatic brain injury (TBI) is a prevalent form of cranial trauma that results in neural conduction disruptions and damage to synaptic structures and functions. Cannabidiol (CBD), a primary derivative from plant-based cannabinoids, exhibits a range of beneficial effects, including analgesic, sedative, anti-inflammatory, anticonvulsant, anti-anxiety, anti-apoptotic, and neuroprotective properties. Nevertheless, the effects of synaptic reconstruction and the mechanisms underlying these effects remain poorly understood. TBI is characterized by increased levels of tumor necrosis factor-alpha (TNF-α), a cytokine integral for the modulation of glutamate release by astrocytes. In the present study, the potential of CBD in regulating aberrant glutamate signal transmission in astrocytes following brain injury, as well as the underlying mechanisms involved, were investigated using immunofluorescence double staining, enzyme-linked immunosorbent assay (ELISA), western blot analysis, hematoxylin and eosin (H&E) staining, Nissl staining, transmission electron microscopy, and RT-qPCR. In this study, we examined the impact of CBD on neuronal synapses, focusing on the TNF-α-driven purinergic signaling pathway. Specifically, our research revealed that CBD pretreatment effectively reduced the secretion of TNF-α induced by astrocyte activation following TBI. This reduction inhibited the interaction between TNF-α and P2Y1 receptors, leading to a decrease in the release of neurotransmitters, including Ca2+ and glutamate, thereby initiating synaptic remodeling. Our study showed that CBD exhibits significant therapeutic potential for TBI-related synaptic dysfunction, offering valuable insights for future research and more effective TBI treatments. Further exploration of the potential applications of CBD in neuroprotection is required to develop innovative clinical strategies.


Assuntos
Astrócitos , Lesões Encefálicas Traumáticas , Canabidiol , Transdução de Sinais , Sinapses , Fator de Necrose Tumoral alfa , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Animais , Canabidiol/farmacologia , Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/patologia , Fator de Necrose Tumoral alfa/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Masculino , Ratos Sprague-Dawley , Ácido Glutâmico/metabolismo , Fármacos Neuroprotetores/farmacologia , Plasticidade Neuronal/efeitos dos fármacos , Plasticidade Neuronal/fisiologia , Ratos , Camundongos
13.
Neuroscience ; 545: 148-157, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38513764

RESUMO

In this study, the electrophysiological and biochemical consequences of repeated exposure to morphine in male rats on glutamatergic synaptic transmission, synaptic plasticity, the expression of GABA receptors and glutamate receptors at the temporoammonic-CA1 synapse along the longitudinal axis of the hippocampus (dorsal, intermediate, ventral, DH, IH, VH, respectively) were investigated. Slice electrophysiological methods, qRT-PCR, and western blotting techniques were used to characterize synaptic plasticity properties. We showed that repeated morphine exposure (RME) reduced excitatory synaptic transmission and ability for long-term potentiation (LTP) in the VH as well as eliminated the dorsoventral difference in paired-pulse responses. A decreased expression of NR2B subunit in the VH and an increased expression GABAA receptor of α1 and α5 subunits in the DH were observed following RME. Furthermore, RME did not affect the expression of NR2A, AMPA receptor subunits, and γ2GABAA and GABAB receptors in either segment of the hippocampus. In sum, the impact of morphine may differ depending on the region of the hippocampus studied. A distinct change in the short- and long-term synaptic plasticity along the hippocampus long axis due to repeated morphine exposure, partially mediated by a change in the expression profile of glutamatergic receptor subunits. These findings can be useful in further understanding the cellular mechanism underlying deficits in information storage and, more generally, cognitive processes resulting from chronic opioid abuse.


Assuntos
Morfina , Plasticidade Neuronal , Ratos Sprague-Dawley , Animais , Masculino , Morfina/farmacologia , Plasticidade Neuronal/efeitos dos fármacos , Plasticidade Neuronal/fisiologia , Região CA1 Hipocampal/efeitos dos fármacos , Região CA1 Hipocampal/metabolismo , Ratos , Potenciação de Longa Duração/efeitos dos fármacos , Potenciação de Longa Duração/fisiologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Entorpecentes/farmacologia , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia , Receptores de GABA-A/metabolismo , Receptores de GABA-A/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Receptores de GABA/metabolismo , Receptores de GABA/efeitos dos fármacos
14.
J Chem Neuroanat ; 137: 102414, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38490283

RESUMO

Rat offspring who are exposed to an amorphous formula of curcumin (CUR) from the embryonic stage have anti-anxiety-like behaviors, enhanced fear extinction learning, and increased synaptic plasticity in the hippocampal dentate gyrus (DG). In the present study, we investigated the links between genes with altered methylation status in the neurogenic niche and enhanced neural functions after CUR exposure. We conducted methylation and RNA sequencing analyses of the DG of CUR-exposed rat offspring on day 77 after delivery. Methylation status and transcript levels of candidate genes were validated using methylation-sensitive high-resolution melting and real-time reverse-transcription PCR, respectively. In the CUR group, we confirmed the hypermethylation and downregulation of Gpr150, Mmp23, Rprml, and Pcdh8 as well as the hypomethylation and upregulation of Ppm1j, Fam222a, and Opn3. Immunohistochemically, reprimo-like+ hilar cells and protocadherin-8+ granule cells were decreased and opsin-3+ hilar cells were increased by CUR exposure. Both reprimo-like and opsin-3 were partially expressed on subpopulations of glutamic acid decarboxylase 67+ γ-aminobutyric acid-ergic interneurons. Furthermore, the transcript levels of genes involved in protocadherin-8-mediated N-cadherin endocytosis were altered with CUR exposure; this was accompanied by Ctnnb1 and Syp upregulation and Mapk14, Map2k3, and Grip1 downregulation, suggesting that CUR-induced enhanced synaptic plasticity is associated with cell adhesion. Together, our results indicate that functionally different genes have altered methylation and expression in different neuronal populations of the hippocampal neurogenic niche, thus enhancing synaptic plasticity after CUR exposure.


Assuntos
Curcumina , Metilação de DNA , Hipocampo , Animais , Curcumina/farmacologia , Ratos , Metilação de DNA/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Feminino , Neurogênese/efeitos dos fármacos , Neurogênese/genética , Masculino , Gravidez , Ratos Sprague-Dawley , Plasticidade Neuronal/efeitos dos fármacos , Plasticidade Neuronal/genética , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente
15.
Pharmacol Biochem Behav ; 239: 173752, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38521210

RESUMO

RATIONALE: Antipsychotic medications that are used to treat psychosis are often limited in their efficacy by high rates of severe side effects. Treatment success in schizophrenia is further complicated by high rates of comorbid nicotine use. Dopamine D2 heteroreceptor complexes have recently emerged as targets for the development of more efficacious pharmaceutical treatments for schizophrenia. OBJECTIVE: The current study sought to explore the use of the positive allosteric modulator of the mGlu5 receptor 3-Cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl)benzamide (CDPPB) as a treatment to reduce symptoms related to psychosis and comorbid nicotine use. METHODS: Neonatal treatment of animals with the dopamine D2-like receptor agonist quinpirole (NQ) from postnatal day (P)1-21 produces a lifelong increase in D2 receptor sensitivity, showing relevance to psychosis and comorbid tobacco use disorder. Following an 8-day conditioning paradigm, brain tissue in the mesolimbic pathway was analyzed for several plasticity markers, including brain derived neurotrophic factor (BDNF), phosphorylated p70 ribosomal S6 kinase (phospho-p70S6K), and cadherin-13 (Cdh13). RESULTS: Pretreatment with CDPPB was effective to block enhanced nicotine conditioned place preference observed in NQ-treated animals. Pretreatment was additionally effective to block the nicotine-induced increase in BDNF and sex-dependent increases in cadherin-13 in the ventral tegmental area (VTA), as well as increased phospho-p70S6K in the nucleus accumbens (NAcc) shell found in NQ-treated animals. CONCLUSION: In conjunction with prior work, the current study suggests positive allosteric modulation of the mGlu5 receptor, an emerging target for schizophrenia therapeutics, may be effective for the treatment of comorbid nicotine abuse in psychosis.


Assuntos
Benzamidas , Nicotina , Receptor de Glutamato Metabotrópico 5 , Recompensa , Animais , Nicotina/farmacologia , Masculino , Benzamidas/farmacologia , Benzamidas/uso terapêutico , Receptor de Glutamato Metabotrópico 5/metabolismo , Ratos , Plasticidade Neuronal/efeitos dos fármacos , Fumar Cigarros , Feminino , Quimpirol/farmacologia , Pirazóis/farmacologia , Ratos Sprague-Dawley , Transtornos Psicóticos/tratamento farmacológico , Transtornos Psicóticos/metabolismo , Regulação Alostérica/efeitos dos fármacos , Sistema Límbico/metabolismo , Sistema Límbico/efeitos dos fármacos , Animais Recém-Nascidos , Núcleo Accumbens/metabolismo , Núcleo Accumbens/efeitos dos fármacos
16.
Artigo em Inglês | MEDLINE | ID: mdl-38341085

RESUMO

There has been renewed interest in the use of 3,4-methylenedioxy-methamphetamine (MDMA) and serotonergic psychedelics in the treatment of multiple psychiatric disorders. Many of these compounds are known to produce prosocial effects, but how these effects relate to therapeutic efficacy and the extent to which prosocial effects are unique to a particular drug class is unknown. In this article, we present a narrative overview and compare evidence for the prosocial effects of MDMA and serotonergic psychedelics to elucidate shared mechanisms that may underlie the therapeutic process. We discuss 4 categories of prosocial effects: altered self-image, responses to social reward, responses to negative social input, and social neuroplasticity. While both categories of drugs alter self-perception, MDMA may do so in a way that is less related to the experience of mystical-type states than serotonergic psychedelics. In the case of social reward, evidence supports the ability of MDMA to enhance responses and suggests that serotonergic psychedelics may also do so, but more research is needed in this area. Both drug classes consistently dampen reactivity to negative social stimuli. Finally, preclinical evidence supports the ability of both drug classes to induce social neuroplasticity, promoting adaptive rewiring of neural circuits, which may be helpful in trauma processing. While both MDMA and serotonergic psychedelics produce prosocial effects, they differ in the mechanisms through which they do this. These differences affect the types of psychosocial interventions that may work best with each compound.


Assuntos
Alucinógenos , N-Metil-3,4-Metilenodioxianfetamina , Comportamento Social , Humanos , N-Metil-3,4-Metilenodioxianfetamina/farmacologia , N-Metil-3,4-Metilenodioxianfetamina/administração & dosagem , Alucinógenos/farmacologia , Alucinógenos/administração & dosagem , Serotoninérgicos/farmacologia , Serotoninérgicos/administração & dosagem , Recompensa , Plasticidade Neuronal/efeitos dos fármacos , Plasticidade Neuronal/fisiologia , Autoimagem , Animais
17.
J Cell Mol Med ; 27(23): 3928-3938, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37799103

RESUMO

Major depressive disorder (MDD) is a severe mental disorder associated with high rates of morbidity and mortality. Current first-line pharmacotherapies for MDD are based on enhancement of monoaminergic neurotransmission, but these antidepressants are still insufficient and produce significant side-effects. Consequently, the development of novel antidepressants and therapeutic targets is desired. Engeletin, a natural Smilax glabra rhizomilax derivative, is a compound with proven efficacy in treating ischemic stroke, yet its therapeutic effects and mechanisms for depression remain unexplored. The effects of engeletin were assessed in the forced swimming test (FST) and tail suspension test (TST) in mice. Engeletin was also investigated in the chronic restraint stress (CRS) mouse model of depression with fluoxetine (FLX) as the positive control. Changes in prefrontal cortex (PFC) spine density, synaptic plasticity-linked protein expressions and the brain-derived neurotrophic factor (BDNF)-tyrosine kinase B (TrkB)- mammalian target of rapamycin complex 1 (mTORC1) signalling pathway after chronic stress and engeletin treatment were then investigated. The TrkB and mTORC1 selective inhibitors, ANA-12 and rapamycin, respectively, were utilized to assess the engeletin's antidepressive mechanisms. Our data shows that engeletin exhibited antidepressant-like activity in the FST and TST in mice without affecting locomotor activity. Furthermore, it exhibited efficiency against the depression of CRS model. Moreover, it enhanced the BDNF-TrkB-mTORC1 pathway in the PFC during CRS and altered the reduction in dendritic spine density and levels of synaptic plasticity-linked protein induced by CRS. In conclusion, engeletin has antidepressant activity via activation of the BDNF-TrkB-mTORC1 signalling pathway and upregulation of PFC synaptic plasticity.


Assuntos
Transtorno Depressivo Maior , Plasticidade Neuronal , Receptor trkB , Animais , Humanos , Camundongos , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Fator Neurotrófico Derivado do Encéfalo/efeitos dos fármacos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Transtorno Depressivo Maior/tratamento farmacológico , Hipocampo/metabolismo , Mamíferos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/efeitos dos fármacos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas Tirosina Quinases/metabolismo , Estresse Psicológico/tratamento farmacológico , Estresse Psicológico/metabolismo , Plasticidade Neuronal/efeitos dos fármacos , Receptor trkB/efeitos dos fármacos , Receptor trkB/metabolismo
18.
Nature ; 620(7976): 1071-1079, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37587343

RESUMO

Identifying therapeutics to delay, and potentially reverse, age-related cognitive decline is critical in light of the increased incidence of dementia-related disorders forecasted in the growing older population1. Here we show that platelet factors transfer the benefits of young blood to the ageing brain. Systemic exposure of aged male mice to a fraction of blood plasma from young mice containing platelets decreased neuroinflammation in the hippocampus at the transcriptional and cellular level and ameliorated hippocampal-dependent cognitive impairments. Circulating levels of the platelet-derived chemokine platelet factor 4 (PF4) (also known as CXCL4) were elevated in blood plasma preparations of young mice and humans relative to older individuals. Systemic administration of exogenous PF4 attenuated age-related hippocampal neuroinflammation, elicited synaptic-plasticity-related molecular changes and improved cognition in aged mice. We implicate decreased levels of circulating pro-ageing immune factors and restoration of the ageing peripheral immune system in the beneficial effects of systemic PF4 on the aged brain. Mechanistically, we identified CXCR3 as a chemokine receptor that, in part, mediates the cellular, molecular and cognitive benefits of systemic PF4 on the aged brain. Together, our data identify platelet-derived factors as potential therapeutic targets to abate inflammation and rescue cognition in old age.


Assuntos
Envelhecimento , Cognição , Disfunção Cognitiva , Doenças Neuroinflamatórias , Nootrópicos , Fator Plaquetário 4 , Animais , Masculino , Camundongos , Envelhecimento/sangue , Envelhecimento/efeitos dos fármacos , Envelhecimento/fisiologia , Cognição/efeitos dos fármacos , Cognição/fisiologia , Doenças Neuroinflamatórias/sangue , Doenças Neuroinflamatórias/complicações , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/prevenção & controle , Fator Plaquetário 4/sangue , Fator Plaquetário 4/metabolismo , Fator Plaquetário 4/farmacologia , Fator Plaquetário 4/uso terapêutico , Nootrópicos/sangue , Nootrópicos/metabolismo , Nootrópicos/farmacologia , Nootrópicos/uso terapêutico , Plasma/química , Hipocampo/efeitos dos fármacos , Hipocampo/fisiologia , Disfunção Cognitiva/sangue , Disfunção Cognitiva/complicações , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/prevenção & controle , Transcrição Gênica/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos
19.
Nat Neurosci ; 26(6): 1032-1041, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37280397

RESUMO

Psychedelics produce fast and persistent antidepressant effects and induce neuroplasticity resembling the effects of clinically approved antidepressants. We recently reported that pharmacologically diverse antidepressants, including fluoxetine and ketamine, act by binding to TrkB, the receptor for BDNF. Here we show that lysergic acid diethylamide (LSD) and psilocin directly bind to TrkB with affinities 1,000-fold higher than those for other antidepressants, and that psychedelics and antidepressants bind to distinct but partially overlapping sites within the transmembrane domain of TrkB dimers. The effects of psychedelics on neurotrophic signaling, plasticity and antidepressant-like behavior in mice depend on TrkB binding and promotion of endogenous BDNF signaling but are independent of serotonin 2A receptor (5-HT2A) activation, whereas LSD-induced head twitching is dependent on 5-HT2A and independent of TrkB binding. Our data confirm TrkB as a common primary target for antidepressants and suggest that high-affinity TrkB positive allosteric modulators lacking 5-HT2A activity may retain the antidepressant potential of psychedelics without hallucinogenic effects.


Assuntos
Antidepressivos , Alucinógenos , Dietilamida do Ácido Lisérgico , Psilocibina , Receptor trkB , Alucinógenos/metabolismo , Humanos , Células HEK293 , Sítios de Ligação , Simulação de Dinâmica Molecular , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Transdução de Sinais , Receptor trkB/metabolismo , Plasticidade Neuronal/efeitos dos fármacos , Antidepressivos/metabolismo , Regulação Alostérica , Masculino , Feminino , Animais , Camundongos , Camundongos Endogâmicos C57BL , Embrião de Mamíferos/citologia , Neurônios/efeitos dos fármacos , Dietilamida do Ácido Lisérgico/química , Dietilamida do Ácido Lisérgico/metabolismo , Dietilamida do Ácido Lisérgico/farmacologia , Psilocibina/química , Psilocibina/metabolismo , Psilocibina/farmacologia
20.
BMC Neurosci ; 24(1): 35, 2023 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-37391744

RESUMO

When it comes to studying neural plasticity and psychedelics, the numerous and diverse neuroscientific fields converging on the topic provide unique insight into a complex picture. This editorial will describe the major ways in which the known effects of psychedelics on plasticity are being studied. We lay out strengths of different techniques and the major gaps and room for future research, particularly in the translation of pre-clinical studies to human research.


Assuntos
Pesquisa Biomédica , Alucinógenos , Plasticidade Neuronal , Humanos , Alucinógenos/farmacologia , Plasticidade Neuronal/efeitos dos fármacos , Pesquisa Biomédica/tendências , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...